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Statement of Translational Relevance 

Survival rates for patients with glioblastoma (GBM) are abysmal, with median overall 

survival of approximately 15 months. Immunotherapy of GBM is a promising area of 

investigation, although challenges around identification of novel and immunogenic target 

antigens exist. IMA950 is a GBM specific vaccine comprising 11 tumor-associated peptides 

(TUMAPs) developed to address this challenge. We have performed a phase 1 safety and 

immunogenicity study in newly diagnosed GBM patients using IMA950 plus GM-CSF 

alongside standard of care chemo-radiotherapy. Our results demonstrate that IMA950 is 

well tolerated with 90% of patients having a CD8+ T-cell immune response to at least one 

TUMAP, with 50% responding to two or more TUMAPs. No effect of pre-treatment 

regulatory T-cell levels on IMA950 immunogenicity was found and steroids did not appear 

to affect immune responses to the TUMAPs. This data provides evidence to support further 

development and optimization of IMA950 together with other immunotherapies for GBM.  
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Abstract 

PURPOSE: To perform a two-cohort, phase 1 safety and immunogenicity study of IMA950 

in addition to standard chemo-radiotherapy (CRT) and adjuvant temozolomide in patients 

with newly diagnosed glioblastoma (GBM).   IMA950 is a novel GBM specific therapeutic 

vaccine containing 11 tumor-associated peptides (TUMAPs), identified on human leukocyte 

antigen (HLA) surface receptors in primary human GBM tissue. 

EXPERIMENTAL DESIGN: Patients were HLA-A*02 positive and had undergone tumor 

resection. Vaccination comprised 11 intradermal injections with IMA950 plus GM-CSF over 

a 24 week period, beginning 7-14 days prior to initiation of CRT (Cohort 1) or 7 days post 

CRT (Cohort 2). Safety was assessed according to NCI CTCAE Version 4.0 and TUMAP 

specific T-cell immune responses determined. Secondary observations included 

progression-free survival (PFS), pre-treatment regulatory T-cell (Treg) levels and the effect 

of steroids on T-cell responses. 

RESULTS: Forty five patients were recruited. Related adverse events included minor 

injection site reactions, rash, pruritus, fatigue, neutropenia and single cases of allergic 

reaction, anemia and anaphylaxis. Two patients experienced Grade 3 dose limiting toxicity 

of fatigue and anaphylaxis. Of 40 evaluable patients, 36 were TUMAP responders and 20 

were multi-TUMAP responders, with no important differences between cohorts. No effect of 

pre-treatment Treg levels on IMA950 immunogenicity was observed and steroids did not 

affect TUMAP responses. PFS was 74% at 6 months and 31% at 9 months. 

CONCLUSION: IMA950 plus GM-CSF was well tolerated with the primary immunogenicity 

endpoint of observing multi-TUMAP responses in at least 30% of patients exceeded. 

Further development of IMA950 is encouraged. 
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Introduction 

GBM, the most aggressive central nervous system tumor, develops from glial tissue of the 

brain and spinal cord (1). Newly diagnosed GBM is an orphan disease with 100% mortality 

and a median overall survival (OS) of only 14.6 months (2). Standard first-line therapy 

comprises maximal safe tumor resection, followed by concomitant chemo-radiotherapy 

(radiotherapy plus daily temozolomide; CRT) and six 28-day cycles of adjuvant 

temozolomide (TMZ) (2). Although the incidence is relatively low, around 3 to 4 cases per 

100,000 population (3), GBM affects patients of all ages and there is a large unmet medical 

need for improved first-line therapy. Furthermore, there is evidence to suggest that the 

overall incidence of GBM is rising over time and will continue to increase in an ageing 

population (4, 5).  

IMA950 is an immunotherapeutic multiple-peptide vaccine specifically developed to treat 

GBM (6). It contains 11 tumor-associated peptides (TUMAPs) that are presented by a 

majority of GBMs on human leukocyte antigen (HLA) surface receptors. IMA950 is 

designed to trigger the immune system by activation of TUMAP-specific cytotoxic T cells. 

Once activated, these cells are postulated to find and destroy malignant tumor cells 

presenting the cognate TUMAPs. By vaccinating with 11 TUMAPs simultaneously there is 

an increased probability that a multi-clonal, broad yet highly specific T-cell response can be 

mounted against tumor cells thus hindering potential tumor escape mechanisms. 

The primary objectives of this first time in human study were to assess the safety, 

tolerability and immunogenicity of IMA950 plus GM-CSF given alongside standard therapy 

in newly diagnosed GBM patients. 
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Patients and Methods 

Patients 

Eligible patients had histologically or cytologically proven GBM, an operable tumor which 

had already been maximally resected, were at least 18 years of age, human leukocyte 

antigen (HLA) A*02 positive and hepatitis B core antigen seronegative; had a World Health 

Organization (WHO) performance status 0 or 1, a life expectancy of at least 30 weeks and 

were expected to complete standard CRT and six 28 day cycles of adjuvant TMZ. Key 

exclusion criteria included: receipt of any prior GBM treatment apart from surgery, 

vaccination within 2 weeks or having taken dexamethasone at a dose >4 mg/day within 7 

days prior to the first IMA950 plus GM-CSF vaccination, a history of serious cardiac or 

autoimmune disease or any condition which might interfere with the patient’s ability to 

generate an immune response. This study was conducted in accordance with the principles 

of International Conference on Harmonisation (ICH) Good Clinical Practice (GCP), the 

requirements of the UK Clinical Trials regulations (SI 2004/1031 and SI 2006/1928), and 

the Declaration of Helsinki. The study protocol, patient information sheet and informed 

consent form were approved by the Sponsor’s Central Institutional Review Board, and the 

appropriate Research Ethics Committee prior to study conduct. After a full explanation of 

the study protocol, written informed consent was obtained from all patients before being 

enrolled. 

IMA950 Vaccine 

IMA950 is a novel multi-peptide GBM specific vaccine comprising 11 HLA binding TUMAPs 

and one viral marker peptide, identified on HLA surface receptors in primary human GBM 

tissue, as described previously (6). Supplementary Table S1 gives an overview of the 

TUMAP source antigens and their respective expression levels found in primary GBM 
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tumor samples. Selected TUMAPs are designed to activate TUMAP-specific CD8+ 

cytotoxic and CD4+ helper T lymphocytes, which then recognize cognate TUMAPs 

presented by GBM tumor cells and effect a targeted immune response. Nine of the 11 

TUMAPs were selected on the basis of their functional relevance, association with the 

human leukocyte antigen HLA-A*02, over-expression in GBM and proven immunogenicity 

using in vitro T-cell assays. The other two TUMAPs contained in IMA950 are both HLA 

class II-binding peptides designated IMA-BIR-002 and IMA-MET-005. IMA-BIR-002 has the 

capacity to activate CD4+ helper T cells (7) and potentially cytotoxic T lymphocytes (CTLs). 

IMA-MET-005 contains a known HLA class I epitope, which was elongated based on the 

natural sequence of c-Met (known oncogene and potential marker of GBM stem cells (8), 

with the capacity to activate helper T cells (9) and, after processing, CTLs). An additional 

non-TUMAP (IMA-HBV-001) was included in IMA950 derived from Hepatitis B virus (HBV) 

core antigen, to act as a positive control from a “non-self” antigen in cases where no 

vaccine-induced T-cell responses to TUMAPs from “self” antigens are observed. 

Study Design and Treatment 

Vaccination comprised fixed doses of recombinant granulocyte macrophage-colony 

stimulating factor (GM-CSF; 75 ȝg), a commonly used immunomodulator (10), followed by 

IMA950 (4.96 mg, 413 ȝg each peptide) injected intradermally (i.d.) at 11 time points over a 

24 week period. All patients received the same vaccination schedule comprising an 

“Induction Phase” (VIP) of six intensive vaccinations (V1-V6), followed by a “Maintenance 

Phase” (VMP) of five vaccinations (V7-V11) over a longer period. Forty five patients with 

newly diagnosed GBM were entered into one of two Cohorts that differed by virtue of the 

first vaccination given at different time points alongside standard therapy (rationale for 

recruiting at least 20 patients per cohort is given in Supplementary Table S2). In Cohort 1, 

the VIP started 7 to 14 days before the scheduled onset of CRT to ensure that at least the 
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first three vaccinations (Days 1, 2, 3) were administered prior to the start of CRT. In Cohort 

2, the VIP started a minimum of 7 days after the final dose of CRT and 28 days (+7 days) 

prior to the first scheduled dose of adjuvant TMZ. This ensured that all six vaccinations in 

the VIP were administered at least a week after the end of immunosuppressive CRT and 

completed a week prior to the start of adjuvant TMZ. Three safety observation periods of 21 

days were included after 1, 3 and 6 patients had completed 21 days of treatment prior to 

opening to general recruitment. CRT comprised 54 to 60 Gray in 30 daily fractions over 6 

weeks with concomitant daily TMZ, 75 mg/m2 throughout. Adjuvant TMZ, 150-200 mg/m2 

for 5 days began 35 (+/-7 days) following the last fraction of radiotherapy, repeated every 

28 days for a total of 6 cycles.  See Supplementary Fig. S1 for a detailed overview of the 

treatment and assessment schedule. 

Patient Monitoring and Assessment 

The primary study endpoint of safety and tolerability was assessed according to National 

Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE) version 

4.0. Disease was assessed using MacDonald criteria (11) with the secondary endpoint of 

progression free survival evaluated at 6 (PFS-6) and 9 months (PFS-9) from date of 

surgery. Any clinical complete (CR) or partial response (PR) to therapy was confirmed by 

an independent neuro-oncologist and radiologist. Although not an endpoint of the study, 

survival data was collected for two years after the final patient had received their first 

vaccination. The cut-off date for analysis was February 18, 2015. 

Pharmacodynamic Analysis 

A co-primary endpoint was determining the number of patients showing patient individual 

T-cell responses directed against TUMAPs contained in IMA950 at one or more 

post-vaccination time points, as determined by HLA multimer analysis (12, 13). Individual 
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patient peripheral blood mononuclear cell (PBMC) samples were pooled in order to ensure 

sufficient viable PBMCs for multimer analysis as follows: “Pre-vaccination” (PBMC samples 

1 and 2), “post-vaccination 1” (PBMC samples 3 and 4), “post-vaccination 2” (PBMC 

samples 5 and 6) and “post-vaccination 3” (samples 7 and 8). See Supplementary Fig. S1 

for further details. Tetramer staining for each TUMAP and control antigens were performed 

after an in vitro sensitization as described previously (13). Exemplary gating is shown in 

Supplementary Fig. S2. A positive vaccine-induced multimer CD8 T-cell response for any 

specific post-vaccination time point of a given antigen and patient was assigned if the 

following criteria were met: an above threshold immune response (assessed by five 

independent, trained and blinded jurors and according to Association for Cancer 

Immunotherapy recommendations (14)) and an at least four-fold higher frequency of 

multimer positive CD8 T cells (normalized to total CD8 T cells) compared to the respective 

pre-vaccination time point. Based on prior clinical experience, at the time of study inception, 

with similar multi-peptide vaccines (13), study success criteria were defined as either ≥ 30% 

multi-TUMAP response or > 60% single TUMAP response in the study population. Further 

development would be recommended if either criterion was met. Secondary outcome 

measures included Treg levels (defined as CD3+CD4+CD8-CD25highCD127lowFoxp3+ 

lymphocytes (15)) pre- and post-vaccination, and correlation of steroid dose with observed 

T-cell responses. Research analysis examined the kinetics of TUMAP immunogenicity, 

effect of O6-Methylguanine DNA methyltransferase (MGMT) promoter methylation status on 

PFS and exploring the possible effects of vaccination on observed disease pseudo-

progression and pseudo-regression measured using a standardized diffusion-weighted 

(DWI) and perfusion-weighted (PWI) magnetic resonance imaging (MRI) protocol. Pseudo-

progression was defined as an apparent increase in the enhancing tumor (>25%) on an 

early reference scan followed by a reduction in subsequent scans (assessed at Week 25 
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onwards), with no associated clinical deterioration. Pseudo-regression was assessed using 

an inverse definition. It was recommended that patients continue on therapy until the true 

clinical diagnosis was clarified. Although this design pre-dated that of recently published 

guidance, suggesting that patients continue the immunotherapy regimen for 3 months prior 

to PD confirmation (16), it is generally in line with these recommendations. 

Statistical Analysis 

For the pharmacodynamic analysis, several different methods were used to calculate 

statistical significance depending on the type of data being examined. All statistical analysis 

was performed using Prism version 6.02 software (GraphPad Software Inc., La Jolla, 

California, USA). Two-tailed non-parametric Mann-Whitney test was used to determine 

differences between independent groups under examination. This included, for example, 

the number of vaccine induced TUMAP responses per patient between Cohorts and 

frequency of Treg as a percentage of total lymphocytes for a given patient compared 

between Cohorts. Fisher’s exact test was used to analyze contingency tables. This included 

a comparison of the proportion of patients showing a TUMAP response between Cohorts. 

Non-parametric Spearman’s rank correlation test was used to analyze dependence 

between two variables such as immune responses and regulatory T cell levels. 

The Kaplan-Meier method was used to generate survival curves and estimate OS rates.  

Log rank test was used to compare the survival distributions between groups of patients 

that included censored data.  

Statistical analysis of imaging parameters was performed using a one-way ANOVA analysis 

with post hoc intergroup analysis using Tukey’s test, due to a significant number of datasets 

being unavailable for analysis.  

Results 
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Patient Demographics  

Table 1 provides an overview of patient demographics. Of 138 patients screened, 53% 

were HLA-A*02 positive, which is in the expected range for a United Kingdom population 

(17). Reasons for non-entry of 26 HLA-A*02 patients is given in Supplementary Table S3. 

Forty five patients were recruited into the study; 22 in Cohort 1 and 23 in Cohort 2. Forty 

patients were immune evaluable, with 39 evaluable for clinical activity assessment. This 

discrepancy is a result of two patients being lost for follow up between blood sample 6 and 

week 25 scan (see Supplementary Fig. S1), including one patient that was immune 

evaluable. The overall median age was 53 years (range 20-75 years) with no meaningful 

difference between cohorts. All patients had WHO performance status (PS) 0 or 1 at 

recruitment. A larger proportion of patients in Cohort 2 (65%) had a PS of 1 compared to 

Cohort 1 (27%), most likely due to Cohort 2 patients having undergone treatment with CRT. 

As expected, the lymphocyte count on patient entry was lower in Cohort 2 (0.80x109/L) 

compared to Cohort 1 (1.49x109/L) reflecting the effect of concomitant TMZ in the former. 

Of the 38 patients evaluable for MGMT promoter methylation testing, 11 (29%) were 

positive for methylated promoter, 8 of 19 (42%) in Cohort 1 compared to 3 of 19 (16%) in 

Cohort 2. 

Safety  

All patients received at least one vaccination and were evaluated for safety (see Table 2 for 

the most commonly reported adverse events (AEs), regardless of causality). Injection site 

reaction (ISR) was the most frequent AE, and most common study drug related AE with 81 

instances reported in 26 patients (12/22 patients in Cohort 1 and 14/23 patients in Cohort 

2). The majority of ISRs were grade 1 (24 out of 26 patients) with only two instances of 

grade 2 events. Thirty one patients experienced at least one serious adverse event (SAE), 
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one of which was a death unrelated to the study drug. The most frequently reported SAEs 

were seizure in 8 patients followed by thromboembolic events in 6 patients, none was study 

drug related. Investigators considered 4 SAEs to be related to the study drug including two 

cases of grade 4 neutrophil count decrease and one case each of grade 3 fatigue and 

anaphylaxis. The related SAEs of anaphylaxis and fatigue were both considered dose 

limiting toxicities. There were no unexpected differences in the safety profiles observed in 

the two cohorts.  

Pharmacodynamics 

Thirty six of 40 immune evaluable patients (90%) were TUMAP responders, with 20 (50%) 

responding to more than one TUMAP (Fig. 1A). The pre-defined primary immunologic 

endpoint for recommending further development (≥60% single or ≥30% multi TUMAP 

responders) was therefore reached for the total immune evaluable study population and 

each of the two individual study cohorts. In Cohort 1, 9/19 (47%) evaluable patients 

responded to multiple TUMAPs, with a further 9 (47%) responding to a single TUMAP. 

Similarly, in Cohort 2, 11/21 (52%) evaluable patients had multiple TUMAP responses and 

a further 7 (33%) had a single response. Although the number of vaccine induced 

responses per patient in Cohort 2 appeared to be greater than in Cohort 1 (an arithmetic 

mean of 2.2 in Cohort 2 versus 1.6 in Cohort 1), this was not statistically significant (p=0.3; 

Mann Whitney test; Fig. 1B). Immune response kinetics showed a predominant onset of 

vaccine-induced TUMAP responses in the post-vaccination 1 sample PBMC pool, with 47 

(61%) being detected at this time point (Fig. 2A). This was also true for each cohort. In 

addition, 24 out of 77 (31%) of vaccine-induced TUMAP responses were already detectable 

pre-vaccination and were boosted at least four-fold by administration of IMA950 plus GM-

CSF (data not shown). The majority of vaccine-induced TUMAP responses were detectable 

at one post-vaccination assay time point only (61%, 52/77 immune responses; Fig. 2A) and 



CONFIDENTIAL  Running Title: IMA950 Phase I Trial Final Results 

 

Page 14 of 32 

 

 

were of relatively low magnitude (see Supplementary Fig. S3 for exemplary data). The 

proportion of vaccine induced TUMAP responses detected at only one post-vaccination 

assay time point was significantly higher (p=0.025; Fisher’s exact test) in Cohort 1 (25/30 

immune responses; 83%) than in Cohort 2 (27/47 immune responses; 57%) (Fig. 2B). No 

apparent differences in TUMAP responses were noted between patients who were and 

were not receiving concomitant steroid treatment (data not shown).  

Twenty five immune evaluable patients (63%) responded to the “non-self” viral antigen, 

IMA-HBV-001 (13) and was by trend, associated with the number of vaccine-induced 

TUMAP responses (p=0.117 by Wilcoxon test; data not shown). There was also a trend for 

the proportion of IMA-HBV-001 responders to be enriched within the multi-TUMAP 

responder fraction of patients (p=0.191 by Fisher’s exact test; data not shown). 

There was no correlation between pre-treatment Treg levels and number of vaccine-induced 

TUMAP responses overall (Fig. 3A) or within either cohort of patients (Fig 3B and C). A 

comparative analysis of study cohorts revealed that pre-treatment Treg levels normalized to 

lymphocytes were significantly increased (p=0.0003 by Wilcoxon test) in Cohort 2 

compared to Cohort 1 (Fig. 3D).  

In order to explore possible effects of vaccination on observed pseudo-progression and 

pseudo-regression of disease, DWI and PWI was performed alongside standard gadolinium 

MRI scans. Cohort 1 patients showed increases in apparent diffusional coefficient (p<0.05), 

following CRT (see Supplementary Fig. S4).  Over the same period, PWI parameters 

showed a trend (albeit not statistically significance) towards increased T1 values, contrast 

transfer coefficient (Ktrans) and total enhancing volume (ve) with an associated decrease in 

plasma volume (vp) between scans 1 and 2 (data not shown). 

Clinical Activity  
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Twenty nine of 39 evaluable patients were progression free at 6 months (PFS-6 of 74.4%) 

with 12 continuing to be progression free at 9 months (PFS-9 of 30.8%). Stable disease 

(SD) was confirmed for 11 evaluable patients (28.2%) at Week 40. One patient with 

residual disease at baseline had a partial response (PR) at Week 40, with tumor size 

decreasing from 357 mm2 at baseline to 25 mm2 at week 17, being maintained until they 

went off study. Four patients with SD and the patient with PR at Week 40 had MGMT 

promoter methylation (5/11 patients with a methylated MGMT promoter; 45.5%). Five other 

patients with SD at Week 40 had unmethylated MGMT promoters (5/27 patients with an 

unmethylated MGMT promoter; 18.5%). Eleven patients out of an evaluable 38 (29%) had a 

methylated MGMT promoter, which conferred a significant survival advantage (28.3 versus 

14.8 months; p=0.025 using Log-rank test; data not shown).  

As of the cutoff date (18-Feb-15), median OS for the study was 15.3 months (Fig. 4A) with 

no significant differences between the cohorts or those patients that responded to multiple 

TUMAPs compared to those that did not respond or to one TUMAP only (Fig. 4B). 

Interestingly, patients experiencing one or more ISRs had a significantly improved (p = 

0.0001; hazard ratio 0.33) median OS of 26.7 months compared to 13.2 months for those 

that did not (Fig. 4C). The median age of patients in the ISR group was significantly lower 

than that of the non-ISR (47 versus 57 years respectively; p = 0.023 by Mann Whitney test). 

Imaging parameters in patients displaying ISRs showed no significant difference. However 

in Cohort 2 ISR was associated with lower Ktrans (p <0.05), vp (p<0.01), ve (p<0.05) and rate 

constant Kep (p<0.05) values at baseline.  
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Discussion 

In the majority of treated GBM patients, IMA950 produced antigen specific peripheral CD8+ 

T-cell immune responses to the TUMAPs contained within the vaccine, with a relatively 

benign drug related toxicity profile comprising mainly minor injection site reactions. The two 

cohort study design was used to help define the most biologically effective and clinically 

feasible administration schedule of IMA950 for subsequent development as determined by 

the level of vaccine induced TUMAP specific immune responses for each schedule. 

However, it does not allow direct comparison of clinical efficacy between cohorts since 

recruitment was not randomized nor was the trial prospectively powered to make such a 

comparison. Both cohorts presented challenges that had the potential to interfere with 

successful vaccination and the mounting of a measurable TUMAP specific immune 

response. In Cohort 1, there was a risk that CRT could be immunosuppressive (18, 19) and 

interfere with the induction and maintenance of TUMAP specific CD8+ T cells. Whereas in 

Cohort 2 there was the possibility that following completion of CRT, patient lymphocyte 

counts would be depleted and have lost the ability to mount a detectable immune response 

to IMA950. Indeed, immune data showed that Cohort 1 patients had a decreased detection 

rate of vaccine induced TUMAP responses at later time points (Fig. 2), suggesting that CRT 

may interfere with the induction and maintenance of antigen specific CD8+ T cells. The 

greater number and improved durability of TUMAP responses in Cohort 2 suggests that 

lymphocyte depletion caused by CRT is either insufficient to hinder induction of antigen 

specific CD8+ T cells or can be recovered sufficiently rapidly to support their expansion.  

Treg are a potent immunosuppressive cell population (20) that may interfere with the 

immunogenicity of cancer vaccines (21). Given this, an additional key biological endpoint of 

this study was to explore the effect of pre-treatment Treg levels on the immunogenicity of 

IMA950. There was no correlation between pre-treatment Treg levels (relative to the overall 
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lymphocyte population) and the number of vaccine induced TUMAP responses for the 

overall group of immune evaluable study patients. This result is similar to previous reports 

in other GBM vaccine studies (22, 23). There was a significant increase in the Treg levels at 

the start of vaccinations in Cohort 2 compared to Cohort 1, likely indicating a relative 

increase of Treg compared to other lymphocyte subpopulations as a result of the preceding 

CRT (24). The importance of this finding is unclear given that there were more 

vaccine-induced immune responses in Cohort 2. 

The overall number of immune evaluable patients responding to multiple TUMAPs in this 

study (50%) exceeded that demonstrated for other similar vaccine products (13) such as 

IMA901, which had a multi-TUMAP response rate of 26%. In contrast to that found with 

IMA901, there was no apparent correlation between the number of TUMAP responses and 

improved survival (Fig. 4B). However, there are key differences between this study and that 

of IMA901. IMA901 comprises different TUMAPs, selected specifically for the treatment of 

renal cell carcinoma (RCC) patients and the IMA901 study was conducted in the absence 

of potentially confounding standard of care therapy. Low dose cyclophosphamide (shown to 

decrease the number and function of Treg (25, 26)) was also used alongside GM-CSF to 

further enhance immune response potential. In addition, RCC is known to be an 

immune-responsive tumor type (27), whereas immunotherapy for GBM is still in its infancy. 

Indeed, cancer vaccine immunotherapy strategies for GBM patients require considerable 

refinement due to the challenges posed by immune resistance and suppression in this 

tumor type (28). Multiple immunosuppressive mechanisms are likely to be important in 

GBM including, enhanced secretion of immunosuppressive factors after exposure to 

standard therapy (29), induction of tumor infiltrating lymphocytes and Treg activity (30), as 

well as immune checkpoint pathways such as PD-1/PD-L1 and CTLA-4 (31, 32). 
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The aim of administering adjuvant(s) alongside therapeutic vaccines is to attempt to 

augment immune response and overcome immune suppression by either: moving the 

immune response toward Th1 or Th2 immunity, activating innate immunity or to serve as a 

local repository for prolonged antigen release and protection from degradation. In this study 

we utilized GM-CSF as an adjuvant based on the principle that it should enhance effective 

priming of T-cell responses (33, 34) and the fact that it had been successfully applied in late 

stage clinical trials (35). There is evidence to suggest that in some circumstances at least, 

GM-CSF may not significantly enhance immune responses and may even be detrimental 

(36).  Even so, an earlier meta-analysis of published trials suggests that low-dose GM-CSF 

(40-80 ȝg for 1-5 days) given s.c. or i.d. at the site of vaccination enhances the cellular 

immune response, while high-dose, systemic treatment (>=100 ȝg) does not increase the 

efficacy of a peptide vaccine due to expansion of immune-inhibiting MDSCs (10). Based on 

this evidence, we opted for a fixed dose of 75 ʅg GM-CSF given i.d. prior to vaccination 

with IMA950.  In light of the relatively low magnitude and transient immune responses, 

enhancement of the vaccination regimen, including selection of the most effective adjuvant 

partner(s), is necessary; for example by using alternate or additional adjuvants such as 

locally applied poly-ICLC (37), imiquimod (38) or systemically administering CD40 ligand 

(39) or cyclophosphamide (40). Combining cancer vaccines such as IMA950 with immune 

checkpoint inhibitors such as anti-PD1/PD-L1 or anti-CTLA4 antibodies should also be 

expected to enhance anti-tumor immune responses. This is based on the rationale that 

overcoming local immune suppression and T cell anergy by checkpoint blockade can be 

limited by the specificity/size of the pre-existing T cell population and the fact that some 

tumors are relatively non-immunogenic. Indeed, preclinical and clinical data is beginning to 

emerge demonstrating that the anti-tumor activity of immune checkpoint blockade can be 

enhanced by vaccination (41, 42). 
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The observation that patients experiencing one or more ISRs had improved survival and 

were generally of younger age, suggest that ISR may be a prognostic marker for a patient 

population with an inherently healthier immune system (43). This is supported by the 

significantly different imaging features in Cohort 2 patients experiencing ISRs whose tumors 

showed less vascularity and reduced angiogenesis associated vascular permeability. 

Although this was an unplanned and retrospective analysis, a contribution of the vaccine to 

patient survival for those with a more vigorous immune system cannot be ruled out and 

could be investigated in future randomized studies that might include a non-specific 

immunogen. In addition, methylation of MGMT promoter conferred a survival advantage for 

GBM patients, as previously reported (44). 

A key factor that will need to be considered during the future development of IMA950 and 

therapeutic cancer vaccines more generally is the need to continue vaccination even after 

the disease appears to be progressing. Unlike conventional cancer chemotherapy, the 

effect of cancer immunotherapies is not directly on the disease but rather on the immune 

system which leads to a cellular immune response followed by tumoricidal biological activity 

and potentially improved patient survival (45). This can lead to non-typical patient survival 

curves and misinterpretation of study results. Given this, chronic vaccination beyond 

disease progression, and potentially during subsequent therapy, will need to be carefully 

planned as part of future positioning alongside other therapy for the treatment of GBM.   

IMA-HBV-001 was also included in the IMA950 vaccine to act as a positive control in cases 

where no vaccine-induced T cell responses to TUMAPs from “self” antigens are observed. 

There was a trend (albeit not reaching statistical significance) for patients mounting an 

immune response toward IMA-HBV-001 also to respond to one or more TUMAP, supporting 

its use as a general immunogenicity marker. However these findings also suggest that IMA-

HBV-001 has limited use as an independent control peptide for association analysis.  
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Successful development of effective therapeutic vaccines for cancer has proven to be 

particularly challenging.  In the context of GBM, the most advanced therapeutic vaccine 

approach was that of rindopepimut (CDX-110) which consists a single 14-mer peptide 

derived from epidermal growth factor receptor variant III deletion mutation (EGFRvIII) (46). 

Results from a Phase II single arm study of rindopepimut, given to newly diagnosed 

EGFRvIII+ GBM patients post-CRT in combination with adjuvant TMZ, demonstrated a 

median OS of 21.8 months, an increase in anti-EGFRvIII antibody titer and clearance of 

EGFRvIII from the majority of analyzed post-treatment tumors (47). Even so, the resulting 

pivotal, double-blind, randomized, Phase III trial using the same schedule and setting was 

terminated at a planned interim analysis due to emergent data indicating that the study 

would not reach statistical significance for the primary OS endpoint (48). It is currently 

unclear as to why the study failed to meet the primary endpoint, albeit a median OS of 21.1 

months was reported for the placebo treated group (versus 20.4 months for vaccinated), 

well above the expected median of approximately 16 months, which may have confounded 

the data. A previous report suggests that GBM patients taking part in US based Phase II 

trials have significantly longer survival compared to historical data (49). The authors 

speculate that this may be due to the novel agent being tested or advances in standard of 

care. If the latter is correct, the apparent improvement in survival found in the Phase II 

rindopepimut study may have lead to an overly optimistic prediction of clinical benefit and 

subsequent failure of the Phase III trial. It is also possible that the reported loss of EGFRvIII 

from tumors during the vaccination period may have led to escape from immune 

surveillance, an issue that the IMA950 vaccine attempts to address by simultaneous 

targeting of 11 different antigens (TUMAPs). Nevertheless, even though the study reported 

here clearly met predefined immune response success criteria, further clinical optimization 

should precede transition of IMA950 into the next phase of clinical development. This 
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should include selection of the most appropriate adjuvant(s) and gaining a deeper 

understanding of how best to combine IMA950 with other immunotherapies, such as 

immune checkpoint inhibitors, in order to maximize the magnitude of immune response, as 

well as gaining a better understanding as to the optimal position and schedule of the 

vaccine relative to the current standard of care.  
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Table 1. Patients’ Baseline Characteristics 

Characteristic Cohort 1 Cohort 2 Overall 

Age, years  

Median 54 49 53 

Range 21 ʹ 75 20 ʹ 68 20 - 75 

Sex, No. (%)  

Male 15 (68%) 15 (65%) 30 (67%) 

Female 7 (32%) 8 (35%) 15 (33%) 

Total 22 23 45 

WHO performance status, No. (%)  

0 16 (73%) 8 (35%) 24 (53%) 

1 6 (27%) 15 (65%) 21 (47%) 

MGMT methylation status, No. (%Ώ)  

Methylated 8 (42%) 3 (16%) 11 (29%) 

Unmethylated 11 (58%) 16 (84%) 27 (71%) 

Unavailable 3 4 7 

Lymphocyte count, x109/L  

Median 1.49* 0.80* 1.12 

Range 0.88 ʹ 2.50 0.35 ʹ 1.91 0.35 ʹ 2.50 

Concomitant steroid use, No. (%)  

Yes 16 (73%) 17 (74%) 43 (73%) 

Entry concomitant steroid dose, mg  

Median 2.0 1.5 2.0 

Range 0 ʹ 4.0 0 ʹ 4.0 0 ʹ 4.0 

Abbreviations: WHO, World Health Organization; MGMT, O6-Methylguanine DNA 
methyltransferase. 
† Percentages calculated excluding those patients whose MGMT methylation status was 
unavailable. 
* Significantly different lymphocyte counts between the two cohorts; p < 0.0001, two-tailed Man-
Whitney test. 
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Table 2. Most Common Adverse Events Occurring in >20% Patients (regardless of 

causality) 

 Grade, No. Total 

Symptom* 1 2 3 4 No. (% pts) 

Nausea 21 6 0 0 27 (60%) 

Injection Site Reaction 24 2 0 0 26 (58%) 

Fatigue 16 5 4 0 25 (56%) 

Headache 20 2 0 0 22 (49%) 

Vomiting 16 4 1 0 21 (47%) 

Alopecia 8 8 0 0 16 (36%) 

Dizziness 11 3 0 0 14 (31%) 

Seizure 4 4 3 2 13 (29%) 

Cough 9 2 0 0 11 (24%) 

Abbreviations: pts, patients. 
* Patients may have experienced multiple AEs of the same type. 
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Figure Legends 

Figure 1. Primary Immune Response Summary.  (A) Further development is based on: * 

>60% of patients being single or † >30% of patients being multi-TUMAP responders. (B) 

The number of vaccine-induced TUMAP responses is shown for the overall immune 

evaluable patient population (n=40) as well as for study cohorts. Black lines indicate mean 

values. For statistical analysis the Mann-Whitney test was used. 

Abbreviations: HBV, hepatitis B virus-derived vaccinated marker peptide; TUMAP, tumor 

associated peptide; VI, vaccine induced. 

 

Figure 2. Onset and sustainability of vaccine induced immune responses.  (A) Onset 

(first appearance) of vaccine-induced immune responses to IMA950 TUMAPs (n=77 total 

detected vaccine-induced responses in n=40 immune evaluable patients). (B) The 

percentage of vaccine-induced responses to IMA950 TUMAPs with detection at one, two or 

three post-vaccination assay time points. p-values were calculated using the Fisher’s exact 

test (only significant results are shown). 

Abbreviations: TUMAP, tumor associated peptide; VI, vaccine induced. 

 

Figure 3. Correlation of pre-treatment levels of regulatory T cells with vaccine-

induced immune responses to IMA950 TUMAPs. Treg (CD4+/CD25hi/CD127lo/FoxP3+) 

levels, normalized to lymphocytes, at V1 were analyzed in correlation with vaccine-induced 

CD8 T-cell responses to IMA950 TUMAPs in (A) all immune evaluable patients with n=40, 

(B) study Cohort 1 with n=19 and (C) study Cohort 2 with n=21. Correlation coefficients and 

p-values, calculated using Spearman’s correlation, are indicated on each graph. (D) Cohort 
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comparison of pre-treatment Treg levels on the first vaccination day for immune evaluable 

patients. For statistical analysis the Mann-Whitney test was used. 

Abbreviations: Treg, regulatory T cells; TUMAP, tumor associated peptide; V1, vaccination 1. 

 

Figure 4. Overall survival from date of surgery for different patient sub-sets. A) 

Median OS was 15.3 months for all patients (n = 44), 14.4 months for patients in Cohort 1 

(n =22) and 15.7 months for patients in Cohort 2 (n = 22). There was no significant 

difference between each of the cohorts (p = 0.63, Log-rank test); one patient was lost for 

follow up in Cohort 2 and excluded from survival analysis. B) Relationship between survival 

and TUMAP response. Only patients that were immune evaluable were included in the 

analysis. Log-rank test was used to calculate significance between the two different patient 

populations. C) Relationship between overall survival and injection site reaction. One 

patient was lost to survival follow up and is excluded from the analysis. Log-rank test was 

used to calculate significance and hazard ratio. Median age of patients in the ISR group 

was significantly lower than that of the non-ISR (47 versus 57 years respectively; p = 0.023 

by Mann Whitney test). 

Abbreviations: HR, hazard ratio; ISR, injection site reaction; TUMAP, tumor associated 

peptide; y, years. 
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Figure 1. Primary Immune Response Summary.   
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Figure 2. Onset and sustainability of vaccine induced immune responses.   
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Figure 3. Correlation of pre-treatment levels of regulatory T cells with vaccine-

induced immune responses to IMA950 TUMAPs.  
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Figure 4. Overall survival from date of surgery for different patient sub-sets.  
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