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Abstract

Aims Despite multiple studies investigating the environ-
mental controls on CH, fluxes from arctic tundra eco-
systems, the high spatial variability of CH4 emissions is
not fully understood. This makes the upscaling of CH,4
fluxes from plot to regional scale, particularly challeng-
ing. The goal of this study is to refine our knowledge of
the spatial variability and controls on CH4 emission
from tundra ecosystems.

Methods CH,4 fluxes were measured in four sites across
a variety of wet-sedge and tussock tundra ecosystems in
Alaska using chambers and a Los Gatos CO, and CH,4
gas analyser.

Results All sites were found to be sources of CHy, with
northern sites (in Barrow) showing similar CH, emis-
sion rates to the southernmost site (ca. 300 km south,
Ivotuk). Gross primary productivity (GPP), water level
and soil temperature were the most important environ-
mental controls on CH4 emission. Greater vascular plant
cover was linked with higher CH, emission, but this
increased emission with increased vascular plant cover
was much higher (86 %) in the drier sites, than the
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wettest sites (30 %), suggesting that transport and/or
substrate availability were crucial limiting factors for
CH,4 emission in these tundra ecosystems.

Conclusions Overall, this study provides an increased
understanding of the fine scale spatial controls on CHy
flux, in particular the key role that plant cover and GPP
play in enhancing CH, emissions from tundra soils.

Keywords Arctic- Climate change- Permafrost -
Greenhouse gas emission- Vegetation control

Introduction

Global warming in the Arctic is occurring at nearly
twice the global average rate (IPCC 2013), resulting in
increased temperatures, permafrost degradation, de-
creased snow-cover duration, changes in the hydrolog-
ical cycle and changes in vegetation composition
(Callaghan et al. 2010; Hinzman et al. 2005, 2013;
IPCC 2013). Warmer temperatures may stimulate in-
creased release of carbon dioxide (CO,) and methane
(CH,) from tundra ecosystems (Billings et al. 1982; von
Fischer et al. 2010; Harazono et al. 2006; Oechel et al.
1995; Zona et al. 2009) which are largely temperature
and moisture limited. The global warming potential
(GWPy¢) of CHy is 28.5 times greater than that of
CO,, making it an important greenhouse gas (IPCC
2013). CH,4 concentration increased in the Arctic by
31 % between 2003 and 2007 accounting for around
8-10 % of global CH,4 emissions (Bloom et al. 2010;
Dlugokencky et al. 2011). In addition to temperature,
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the hydrological status of the soil is a very important
control on CH, fluxes (Bubier et al. 1993; Moore and
Roulet 1993; Zona et al. 2009). The predicted increase
in rainfall at northern high latitudes (IPCC 2013) may
increase CH, loss by increasing the anoxic status of the
soil (Bhullar et al. 2013b; Blodau et al. 2004; Moore and
Roulet 1993; Sebacher et al. 1986). Finally, as vegeta-
tion has a significant role for both CH, transport and for
the provision of substrate for methanogens, vegetation
changes might significantly affect the Arctic CH, bud-
get (Bhullar et al. 2013a; Joabsson and Christensen
2001; Shannon et al. 1996; Walter and Heimann 2000).

The processes controlling methanogenesis are tightly
coupled to surrounding environmental conditions (von
Fischer et al. 2010; Harazono et al. 2006; Harriss and
Frolking 1992; Jones et al. 1987) and are holocoenotic
(Billings 1952). Because of the complexity of arctic
ecosystems, there are still large uncertainties in the
impact that environmental changes will have on CHy
emissions from the Arctic, with different CH, models
disagreeing on both the direction and magnitude of
future changes in CH, emissions from northern high
latitudes with warming and increased CO, (Melton
et al. 2013).

Production, oxidation and transport are the three
most important processes in controlling the rate of arctic
tundra CH,4 emission (Brummell et al. 2012; Bubier
et al. 1993; Cao et al. 1996; von Fischer et al. 2010;
Harazono et al. 2006; Lai 2009). CH, is transported
from the soil to the atmosphere through four main
pathways: it can diffuse directly across the surface of
the soil, be transported by pressure changes and wind,
released as bubbles of gas (ebullition) in standing water
(Bubier et al. 1993; Klapstein et al. 2014; Walter et al.
2006) or it can diffuse through the aerenchyma of vas-
cular plants (Joabsson et al. 1999; Whalen and
Reeburgh 1992). Therefore changes in vegetation com-
position and density might also substantially impact
CH, emissions (Lai et al. 2014a,b; Sebacher et al.
1985; Shannon et al. 1996). Vegetation can have a key
influence on CH, fluxes (von Fischer and Hedin 2007;
Harazono et al. 2006; Jones et al. 1987; Schimel 1995,
Strom et al. 2003) through the supply of organic sub-
strates for CH,4 production and by increasing CH,4 trans-
port from the soil to the atmosphere (Bhullar et al.
2013a; Joabsson and Christensen 2001; Noyce et al.
2014; Schimel 1995; Shannon et al. 1996; Torn and
Chapin 1993). Photosynthetically driven root exudation
of organic compounds and the decomposition of dead
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plant matter provides the primary substrates for CHy
production (Joabsson et al. 1999; King et al. 1998; Lai
2009; Olefeldt et al. 2013; Shannon et al. 1996; Singh
2001; Strom et al. 2012). Post production, plants facil-
itate transport of CH, by providing important conduits
for CH, flux between the soil and atmosphere (Bhullar
et al. 2013a,b; Brummell et al. 2012; Joabsson et al.
1999; Strom et al. 2003; Whalen 2005), allowing CH4 to
bypass oxic layers within the soil where it would other-
wise be re-oxidised (Frenzel and Karofeld 2000;
Heilman and Carlton 2001; Inubushi et al. 2001;
Jespersen et al. 1998; Joabsson and Christensen 2001;
Strom et al. 2005; Whalen and Reeburgh 1990; Wilson
and Humphreys 2010). Structurally, the tissue of some
vascular plants found in tundra, especially sedges, are
comprised of soft aerenchyma and lacunae tissues
which contain tiny airspaces that allow for this gaseous
exchange between roots and shoots via molecular diffu-
sion (Armstrong and Armstrong 1991; Le Mer and
Roger 2001; Shannon et al. 1996; Torn and Chapin
1993). The importance of vascular plants in CH4 emis-
sion is particularly evident during the growing season
when the increase in the plant productivity and plant
biomass, by increasing both substrate availability and
the CHy transport, ultimately increases CH4 emissions
(Couwenberg et al. 2011; von Fisher and Hedin 2007;
Greenup et al. 2000; Grunfeld and Brix 1999; Joabsson
et al. 1999; Joabsson and Christensen 2001; Shannon
et al. 1996). On the other hand, vascular plants can aid
the competing process of CH4 oxidation by transporting
O, to their roots which supports methanotrophy when it
is released to the surrounding soil (Conrad 1996;
Harazono et al. 2006; Sebacher et al. 1985). The net
effect of these processes helps determine the CH,4 emis-
sions from arctic ecosystems (Harazono et al. 2006;
Joabsson et al. 1999; Shannon et al. 1996). Increased
CH, emission has been found to correlate with higher
abundances of more conductive vascular plant species
such as graminoids (Bhullar et al. 2013a,b; Bubier et al.
1993; Dias et al. 2010; Strom et al. 2003, 2005).

The complexity and heterogeneous pattern of all
these biotic and abiotic processes controlling CH,4 fluxes
leads to high variations in CH4 measurements across
arctic landscapes, as measured by chamber flux and
eddy covariance techniques (Budishchev et al. 2014;
Kutzbach et al. 2004; Morrissey and Livingston 1992;
Sebacher et al. 1986). For example, previously reported
cumulative peak growing season rates (late July to
August) range from 30 to 120 mg C CH, m 2 d"! with
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daily averages ranging from 4.5 to 9.6 mg C CH, m 2
d™" and can vary considerably, even across consecutive
measurements within the same sites (Harazono et al.
2006; Sturtevant and Oechel 2013; Vourlitis and
Occhel 1997; Whiting and Chanton 1993; Wille et al.
2008). Despite extensive research into the patterns and
controls of CH,4 emissions from the Arctic (Joabsson
etal. 1999; Lai et al. 2014a,b; Morrissey and Livingston
1992; Schimel 1995; Sturtevant and Oechel 2013;
Whalen and Reeburgh 1990; Zona et al. 2009) the most
important limiting factors, their relative importance, and
the role of vegetation in controlling CH, emissions are
still highly debated. Some studies have argued that
methanogenesis (and overall CH4 emissions from the
Arctic) is substrate limited (Dunfield et al. 1993; King
et al. 2002; Rinnan et al. 2007; Strom et al. 2003;
Yoshitake et al. 2007) while others identify transport
as the key limitation for CH, emission (Bhullar et al.
2013a; Joabsson et al. 1999; Joabsson and Christensen
2001; Schimel 1995; Sebacher et al. 1985). To add
further complexity, vegetative and environmental con-
trols driving CH, exchange within the tundra ecosystem
are not independent, but rather have a combined influ-
ence upon local CHy flux. For example, differences in
water table levels, soil temperatures, pH and nutrient
content not only directly affect CH,4 production within
the soil, but also determine the growth rates, activities
and compositions of vascular plants, thus indirectly
influencing vegetation control of CH,4 fluxes
(Couwenberg et al. 2011; von Fischer et al. 2010;
Harazono et al. 2006; Lai et al. 2014a,b; Schimel 1995).

To enhance our understanding of these complex con-
trols on CH,4 emission, we measured CH, fluxes using
portable chambers across four arctic tundra ecosystems,
including wet-sedge tundra and tussock tundra ecosys-
tems, with different degrees of polygonization. Portable
chamber measurements of microrelief patterns in green-
house gas fluxes are useful for disentangling the fine
scale environmental and vegetation controls on CHy
emission and will provide a basis for upscalling to
generate estimates of CH, flux patterning at the ecosys-
tem scale (Hill et al. 2009; Sachs et al. 2010).

In order to determine the relative importance of en-
vironmental controls on CH, flux, an extensive range of
environmental variables were measured alongside CH,4
fluxes, together with a classification of vegetation types,
in these four sites in Alaska. Net ecosystem exchange
(NEE), ecosystem respiration (ER) and gross primary
productivity (GPP) were also determined to assess the

importance of plant productivity on CH,4 emissions. We
hypothesised that increased soil and air temperature,
water table height, vascular plant cover, GPP and thaw
depth would be associated with increased CH,4 emis-
sions. We also expected that interactions between these
factors may be important in determining rates of CHy
flux.

Methods
Site description

This study was performed at four sites: three in the
northern part of the Arctic Coastal Plain (Barrow)
(BEN, 71°17 11.80 N, 156°36 12.23 W, BES,
71°16 51.17 N, 156°35 47.28"W and BEO, 71° 16
51.61 N, 156° 36 44.44 W) (Zona et al. 2009, 2012)
and one at the foothill of the Brooks Range (Ivotuk,
68.49° N, 155.74° W). The Barrow study sites (BEN,
BEO, and BES) are located in the North Coast of
Alaska, USA. The vegetation in these northern sites is
classified as sedge-moss wetland (CAVM Team 2003;
W2, Walker et al. 2005), and includes prostrate dwarf
shrubs, lichen, grass, forbs, rushes and bryophytes
(CAVM Team 2003; Raynolds et al. 2005; Walker
et al. 2005); with substantial ice wedge polygon devel-
opment (Billings and Peterson 1980; Britton 1957). The
presence of permafrost and the substantial development
of ice-wedge polygons results in large spatial heteroge-
neity with high and dry oxic rims and low anoxic
centres, with high water tables for most of the growing
season (Harazono et al. 2006; Kwon et al. 20006;
Vourlitis and Oechel 1997; Zona et al. 2009, 2011).
High environmental microtopographic variation allows
colonisation by a wide variety of moss, lichen and
vascular dwarf shrub vegetation (Billings and Peterson
1980). Among these three study sites, BEN and BEO
have the more developed polygons (low-centre and
high-centre polygons respectively), while the BES site
presents fairly flat and homogenous terrain. The south-
ern study location (Ivotuk), is classified as tussock-
sedge, dwarf-shrub, moss tundra and has no substantial
polygon development (Riedel et al. 2005; Romanovsky
et al. 2003; G4, Walker et al. 2005).

The multiple sampling locations in Barrow included
a variety of microhabitats with different local environ-
mental conditions and vegetation types. In the BEO site
at the beginning of the summer, eight colourless
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transparent acrylic soil collars (200 x 440 x 440 mm)
were inserted into the moss layer with a serrated knife.
These eight sampling plots were located across a 100 m
transect including drier polygon rims (dry sites) and
wetter polygons centres (wet sites), spaced approxi-
mately 5-10 m apart. Sites were classified as wet when
the water table was at or above the soil surface level for
the entire duration of the measuring period (soils were
assumed to be mostly anaerobic for the entire summer);
dry sites presented water tables below surface level
(1 cm or deeper) for the entire measuring period (there-
fore containing an upper oxic soil layer, where CHy4
oxidation can potentially occur). The cylindrical collars
(radius 140 mm) used in the BES and BEN sites were
inserted during a previous experiment in summer 2005
(Zona et al. 2009). Finally, in Ivotuk, cylindrical collars
(radius 100 mm) were inserted, using the serrated knife
method, in six wet sites and six dry sites (where the dry
sites comprised of three tussock sites and three inter-
tussock sites) (Fig. 1). Across all these four sites in both
Barrow and Ivotuk, there were 15 sites with water table
permanently below the surface (dry sites) and 16 sites
flooded for the entire summer (wet sites) (Fig. 1). All
soil collars were left for 24 h before measurements
began to avoid soil disturbance effects on trace gas flux
measurements.

CH4 and CO2 flux measurements

All sites in Barrow were measured between the end of
July and the beginning of September 2013. CH, and
CO, fluxes were measured on a weekly basis for six
weeks in Barrow (29th July to 15th September 2013)
and once in Ivotuk (18th August 2013). The Barrow
sites are within driving distance from a research station,
which allowed multiple sampling during the season,
while the remote location of Ivotuk, with no commercial
airport, required chartering a plane and was accessed
only once during the summer. CH, and CO, fluxes at
each site were measured using an LGR™, Ultra-
Portable Greenhouse Gas Analyser (Model 915-0011,
Los Gatos Research, Palo Alto, CA, USA) with a 1 Hz
sampling rate, connected to a transparent, colourless
acrylic chamber. At BEO, the large clear acrylic cham-
ber (638%x440%x440 mm) was connected via inlet and
outlet tubing (3.5 m by 2 mm internal diameter of Bev-
A-Line) to the LGR™ analyser. An elastic bungee rope
was attached between the chamber and collar to ensure a
gas tight seal (Moosavi and Crill 1997). At BES and

@ Springer

BEN, smaller cylindrical chambers (140 mm height x
290 mm diameter) were used. Sampling at Ivotuk was
performed using an opaque Licor (LI-8100A) automat-
ed soil CO, Flux System (155 height x 188 mm diam-
eter) clamped closed, and connected to the LGR™ to
collect gas fluxes under respiratory conditions for
2.5 min. Similar sized chambers were used in previous
studies at these sites (Oberbauer et al. 2007; Olivas et al.
2011; Vourlitis et al. 1993; Zona et al. 2011) and their
fluxes were in close agreement with fluxes estimated by
eddy covariance, despite the difference in size (Oechel
et al. 1998; Zona et al. 2011).

Before each measurement, the chamber was carefully
placed on each collar forming a gas tight seal. At BEO,
the chamber was left on each soil collar for 4.5 min to
achieve a stable increase in CH4 and CO, concentration
within the chamber headspace. The chamber was then
lifted from the collar and waived in the air to expel any
built up gas and to allow for ambient air levels to re-
establish. The chamber was then covered with a black
felt blanket and placed back on the collar for an addi-
tional 4.5 min to measure ER and estimate GPP (GPP=
NEE+ER). As the CH, fluxes did not differ between the
dark and light measurements, means of these values
were used to perform the statistical analysis. Because
of the smaller size of the chamber used in BEN and
BES, and the shorter time required to achieve a stable
increase in CO, and CH, concentration, both light and
dark measurements in these two sites were performed
for 2.5 min each.

CH,4 and CO, fluxes were calculated from the linear
increase in gas concentrations inside the chamber head-
space as measured by the LGR™. Least squares linear
regression was applied to the increase in CHy after
chamber closure. The obtained rate of concentration
increase was then used with the following equation to
obtain the CH,4 and CO, flux at each site.

Where:

VM273.16

Fo=8——""""
0T U4Y,(273.16 + 7)

3600

Fo  Flux at the time of chamber closure (ug C CHy/
CO,m?2h™")

S Time derivative (slope) CH4 and CO, concen-
tration change over time (ppm s )

V  Chamber volume (m?)



Plant Soil (2015) 388:37-52 41

QY

9
'\(,,\\ \ \\

BEN Dry 2 BEN Wet 1

BES Wet 2

e
8

BEO Dry 1

I TG Lot

P A\ S
BEO Wet 2 BEO Wet 3
N . \ - 2 3

A i )

%

IVO Tussock IVO Tussock 3 IVO Intertussock 1 IVO Intertussock 2 IVO Intertussock 3

™

IVO Wet 1 VO Wet 2 1VO Wet 3 IVO Wet 4 VO Wet 5 IVO Wet 6
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A Chamber area (m?)
M Molecular mass of CH,/CO; (g mol )
Vi, Ideal gas mole volume (0.0224 m® mol ™)

Each regression plot was individually assessed and
their R-squared values were used as a form of quality
control for the selection of fluxes incorporated into the
analysis; 94 % of all fluxes had a R-squared value of 0.7
or above (of which, 83 % had a R-squared value of 0.9
or above).

Environmental measurements

Measurement of environmental variables (thaw depth,
water table height) and soil parameters (pH, temperature
and moisture) were performed at the same time as flux
sampling in each plot. Soil temperature was measured
just below the soil surface (1-4 cm) and at depth (9—
11 cm) using a portable type T thermocouple, volumet-
ric soil moisture was measured within the top 20 cm of
soil (TDR 300 Fieldscout, Spectrum technologies INC)
and soil pH at 3—7 cm (Thermo Scientific Orion 3-Star
Plus pH Meter). The pH probe was calibrated against
standards (pH 3 and 7) before starting the field cam-
paign, and regularly during the field season, as a quality
control of the measurements. Thaw depth and water
table height were measured using a graduated metal
rod, as described in Zona et al. (2009). Ambient air
temperatures were recorded by the LGR™ Ultra-
Portable Greenhouse Gas Analyser. Percentage vascular
plant and moss cover was estimated visually after the
end of the field season using photographs collected from
each plot, during each sampling week.

Statistical analysis

The importance of the variables explaining CH, fluxes
was determined using linear mixed models. CH, fluxes
were log transformed to meet the normality and homo-
scedasticity assumptions required for the analyses. All
statistical analyses were carried out in R version 3.1.0 (R
Core Team 2014). The following variables, their two-
way interactions and squared terms were all tested as
candidate explanatory variables; ER, NEE, GPP, thaw
depth, water table depth, soil temperature at 9—11 cm,
soil moisture, soil pH and percentage vascular plant
cover. Initially, curvature in the relationship between
explanatory and response variables was tested by fitting
all explanatory variables and their squared terms, and
only those statistically significant quadratic terms were
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retained. A series of models each containing main ef-
fects and a subset of all possible two way interactions
were used to identify potentially significant interactions.
A full model was then constructed using all main effect
terms plus the quadratic and two way interactions al-
ready identified by the procedure described above. This
model was simplified by the sequential removal of non-
significant terms until removal of further terms caused
an increase in AIC (Crawley 2012). For all mixed
models the identity of the chamber (chamber ID) was
included as a random intercept term to account for the
repeated measurements taken at the same plots.
Interactions were interpreted using the methods of
Aiken and West (1991). Marginal R* (RZLMM(m)), which
describes the proportion of the variance in the data
explained by the fixed effects, and conditional R?
(RZLMM(C)) which describes the proportion of the data
explained by both fixed and random effects were calcu-
lated following Nakagawa and Schielzeth (2013).
Model fits were checked visually to ensure that they
conformed to model assumptions. Final p values were
Bonferroni adjusted (multiplied by 54, the number of
candidate explanatory variables) to mitigate the risk of
type I error.

Because missing data for some variables (e.g., soil
moisture data were missing due to power failure of the
instrument) limited the number of observations avail-
able for the multiple regression, further mixed effect
models were used to assess the importance of percent
vascular plant cover and water table height on CH, flux.
Vascular plant cover and water table (above/below sur-
face) were included as fixed effects and chamber was
included as a random intercept. Initially three levels of
the vascular plant cover were included (<10, 10-60 and
>60 %) however this was reduced to two levels (<10 and
>10 %) following model simplification. Further mixed
effect models were fitted to test the impact of soil
submergence on ER, NEE, GPP and CH, flux. In each
of these models, submergence (water table above/below
soil surface) was fitted as a fixed effect while chamber
ID was included as a random intercept. The dependant
variable was transformed where necessary to meet the
assumptions of homoscedasticity and homogeneity of
variance.

As the sampling plots were stratified by wetness, we
also tested the difference in NEE, ER, GPP, and CHy,
between dry and wet sites by using a mixed model,
again with chamber included as a random intercept.
Wald test p values are presented.
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Results
Environmental variables

During the course of the experiment, average air tem-
peratures in Barrow and Ivotuk were 10.9 © C+5.36 s.d.
and 5.6 ° C+0.32 s.d. respectively, with peak tempera-
tures in Barrow in early August (max. 21.8 ° C) decreas-
ing steadily throughout August and September (min.
1.38 © C). Thaw depths in Barrow ranged from 25 to
47 cm below the surface in wet sites (average of 34 cm=+
4.04 s.d., n=62) and from 10 to 42 cm below surface in
the dry sites (average of 34 cm+6.68 s.d., n=48) and in
Ivotuk from 44 to 53 cm below surface in wet sites
(average of 48 cm+3.25 s.d., n=7) and from 45 to
50 cm below surface in dry sites (average of 48 cm+
2.11 s.d., n=5). Water tables within wet plots ranged
from surface to 16 cm above surface (average 7 cm+
11.5 s.d., n=62) at Barrow and from surface to 5 cm
above surface (average 2 cm+6.4 s.d., n=7) in Ivotuk
(Fig. 2). Water tables within dry plots in Barrow ranged
from 1 to 33 cm below surface (average 13 cmz=
11.6 s.d., n=44) and from 8 to 15 cm below surface
(average 9 cm+5.2 s.d., n=5) in Ivotuk. Across all sites,
surface soil temperature (1-4 cm) ranged from 0.2 ° C to
14.6 © C (average 5.9 °© C+4.0 s.d., n—122) and deeper
soil temperatures (9-11 ¢cm) ranged from 0.3t0 9.1 °C
(average 3.8 °© C+2.5 s.d., n=122). Soil pH was consis-
tently acidic, ranging from 2.7 to 6.5 (average 4.4+
0.7 s.d., n=94) throughout the measurement period.
Thaw depth was weakly correlated to both soil temper-
ature (R*=0.08) and water table (R*=0.06) within wet
sites, where wetter and warmer soils tended to have
deeper thaw.

Spatial variability in and influence of water table depth
on CH4 fluxes

CH, emission was observed across all sites with no
CH, uptake recorded even in the driest of plots. High
variability in CH4 emission was recorded, with rates
ranging from 20 mg C CH, m > h™' (measured on the
10/08/2013 in Barrow) to 0.01 mg C CH, m > h™'
(measured on the 11/09/2013 in Barrow) (Fig. 2),
corresponding with decreasing air temperatures from
21.2 ° C (Barrow, 10/08/2013) to 7.7 ° C (Barrow,
11/09/2013). As expected, the wettest site (BES)
showed the highest CH, emissions (Fig. 2 and
Fig. 3). The average of the entire measurement period
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Fig. 2 a) CH, flux (mg C CH, m > h™") in August in BES (fairly
flat, homogenous terrain) (n=20, 1-25 August), BEN (low-centre,
developed polygons) (n=24, 1-25 August), BEO (high-centre,
developed polygons) (n=18, 6-26 August) in Barrow and Ivotuk
(no substantial polygon development) (n=11, on 18 August) and
b) ground water table, cm, at sites BES (n=18), BEN (n=30),
BEO (n=20) in Barrow and Ivotuk (n=12). Boxplots represent
median (midline), quartiles (box), maximum and minimum (whis-
ker) with outliers represented as black points

indicated that CH,4 emissions were significantly greater
from wet sites (4.52 mg C CH, m 2h'+0.45 s.e., n=
64) compared to dry sites (2.17 mg C CHym > h™'+
0.55 s.e., n=42) (Wald test, n=106, F 1,75=8.2,
p=0.005) (Fig. 3d). The spatial variability in water
table heights was more pronounced in the sites with
more developed polygons (BEO: high centre polygons
and BEN: low centre polygons; Fig. 2b). However, this
variability in water table levels was not reflected in a
similar variability in CH, fluxes, which were more
variable in the BES and Ivotuk sites despite their lower
degrees of polygonization (Fig. 2a).

The influence of water table depth on CO2 fluxes

There was a marginally significant trend for net ecosys-
tem exchange (NEE) to be more negative (i.e., more net
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Fig. 3 Average a) Ecosystem Respiration b) Net Ecosystem
Exchange and ¢) Gross Primary Production fluxes (g C CO,
m 2h ') and d) CH, flux (mg C CHy m2h Yat sample locations
in Barrow (BES, BEO and BEN) and Ivotuk split by sites where
water table height is below (-ve) or above (+ve) surface level (cm).
Bars represent means with error bars shown as standard errors. **
denotes bars are significantly different at p<0.01, @ denotes p<0.1

ecosystem CO, uptake) in wet sites (-0.08 g C CO,
m 2 h '£0.1 s.e., n=51) compared to dry sites
(—0.05 ¢ C CO, m 2 h '+0.01 s.e., n=36; Wald test,
n=87, F1,67=3.552, p=0.0638; Fig. 3b). However ER
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(Wald test, n=93, F1,61=0.628, p=0.4309; Fig. 3a) and
GPP (Wald test, n=72, F1,52=0.972, p=0.3287,
Fig. 3c) did not differ significantly between the wet
and dry sites.

Environmental and vegetation control on CH4 flux

Based on our multiple regression modelling, the most
important variables explaining CH,4 fluxes were GPP
and water table depth, followed by the interaction be-
tween water table and soil temperature (Table 1). All
these variables combined explained 60 % (RZLMM(m):
0.60) of the variability in CH,4 fluxes across the four
sites investigated (Table 1).

Methane flux increased with increasing GPP
(Table 1). GPP was significantly higher when vascular
plant cover was >10 % in comparison to <10 %, and this
relationship explains 18 % of the variation in GPP
(mixed effect model, p=0.005, R*| | yi(m)=0.176,
RZLMM(C):0.176) while soil temperature (at 9—11 cm
depth) explained 43 % of the variation in GPP (mixed
effect model, p<0.001, RZLMM(m)=0.431, RZLMM(C)=
0.622)

There was a conditional effect of water table depth on
CH,4 emissions, with those sites with a deeper water
table being more conducive to CH4 emission (Table 1,
Fig. 3). This conditional effect was influenced by a
significant interaction between water table depth and
soil temperature at 9—11 cm (Table 1, Fig. 4). As the
depth of the water table increased, the relationship be-
tween CH,4 emission and soil temperature switched from
negative to positive, with the sign of the slope of the
relationship changing near the point where the water
table is just above the soil surface (Fig. 4).

Methane emmissions were influenced by a signifi-
cant interaction between soil wetness (water table above
ground surface vs. below ground suface) and percentage
vascular plant cover (Table 2, Fig. 5). Importantly, with-
in wet sites, CH4 emissions were less dependent on
vascular plant cover (increasing from 3.3 to 4.69 mg C
CH, m % h™"), whereas in dry sites there was a much
more substantial increase in CH, emission (almost an
order of magnitude) from 0.35 mg C CH, m >h™" (n=
29) to 2.45 mg C CH, m 2 h™' (n=30) with increasing
vascular plant cover (Fig. 5, Table 2). Dry sites with
>10 % vascular coverage had an average CH4 emission
(2.46 mg C CHy m 2 h™', n=30) similar to that in wet
sites with <10 % vascular cover (3.29 mg C CH,
m 2 h™', n=27) (Fig. 5). The combination of soil
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Table 1 Parameter estimates for ]

the fixed effects in a linear mixed ~ Parameter Estimate SE af ¢ r

model of the variables influencing

CHy flux; =51, R yiuimy=0.60, Intercept 3.750942  0.525874 28 7.132776  <0.001

RLaviiy=0.77. Bonferroni ad- GPP 19017379 4478884 28 4246008 0011

justed p values are displayed Water table depth 0.170248  0.043746 28  3.891735  0.032
Soil temperature at 9-11 cm depth 0.1538064  0.165532 28 0.929509 1.000
pH —0.388229  0.781263 28 —0.496925 1.000
pH? —1.585871 0.588373 28 —2.695347 0.637

Water table depth* Soil temperature 0.067599  0.015570 28 4.341595 0.011

at 9-11 cm depth

wetness and vegetation cover explained 56 % of the
variation seen in CH4 emissions (RzLMM(C)=O.56,
Table 2).

Discussion

All sites, representing a diversity of conditions given the
high spatial heterogeneity, had positive CH, flux across
the entire experimental period, even the driest sites
(water table about 24 cm below the surface) had rela-
tively low emissions of <1.5 mg m™ h™'. This is in
contrast to some previous studies that have found CHy4
uptake in dry soils due to oxic layers reducing CHy
production while promoting oxidation (Chen et al.
2014; Whalen and Reeburgh 1990). This was probably

20 ° Water table height (cm)
L]
10
= 15+ 0
% -10
I
O 10+ ° o %0 -20
E g
g
= Water table height (cm)
°
T 5. /. ____________ s / 10.2 cm
O __:_‘:%-" W Y ) P
[ S EEERAE @ . 0.0cm
St ® <,
0- o 09 00  TTV=o_ // -10.2cm
T T T T
0.0 25 5.0 7.5

Soil Temperature at 9 -11 cm (°C)

Fig. 4 The influence of the interaction between soil temperature
9-11 cm below the surface and water table depth on CH, flux.
Points are mapped onto a colour scale to show the water table
depth for each measurement. Regression lines show conditional
influence of soil temperature on CH, flux at the mean water table
height (0.0 cm above the surface) and at 1 standard deviation
above and below the mean (10.2 and —10.2 cm respectively)
determined using the methods of Aiken and West (1991). For
statistics see Table 1

due to the substantial CH, emission rates that occur
during the growing season, in this nutrient rich, anaero-
bic environment, which is favourable to high rates of
methanogenesis (Christensen et al. 2002; Grunfeld and
Brix 1999; Harazono et al. 2006; Mastepanov et al.
2013; Morrissey and Livingston 1992; Sturtevant and
Oechel 2013).

The most significant control on CH, fluxes across all
the sites was found to be GPP. This may suggest a
dominant role of plant productivity on CH4 emissions,
as higher plant productivity (i.e., higher GPP) is likely to
stimulate CH,4 emission by providing photosynthetically
derived substrates for methanogenic processes
(Harazono et al. 2006; Lai et al. 2014b). However those
plots with the highest GPP also tended to have a greater
percentage cover of vascular plants, meaning both sub-
strate input and the provision of CH, transport pathways
may have increased simultaneously (Lai et al. 2014b;
Shannon et al. 1996; Fig. 6). In comparison to mosses,
vascular plants have a higher photosynthetic capacity
and their substantial root exudation and litter input in-
crease substrate availability for methane production
(Olivas et al. 2011; Riutta et al. 2007). Furthermore,
vascular plants play a critical role in the transport of
CH, from the soil (Joabsson et al. 1999; Noyce et al.
2014), which is a key limit on CH, flux, where emis-
sions can depend more on the transport than CH,4 pro-
duction itself (Born et al. 1990; Harazono et al. 2006).
With an absence of vascular plants, within drier sites at
the polygon rims, limitation of transport and/or substrate
availability appeared to be of major relevance in sup-
pressing CH,4 emission to relatively low levels (Fig. 5
and Fig. 6). For this reason, very low CH,4 emissions
were observed with low vascular plant cover (<10 %)
within dry oxic sites (Fig. 5) in comparison to wet sites
at the polygon centre, where CH, can diffuse directly
from the surface water (Fig. 6). However, in sites with
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Table 2 Parameter estimates for the fixed effects in the linear mixed effects model of the effect of waterlogging and degree of vascular plant

cover on CH, flux; n=108, R*_yivem =0-52, R*Lpviey=0.56

Parameter Estimate SE df t D

Intercept —-1.89 0.258 74 —7.34 <0.001
Vascular plant cover 2.59 0.347 28 747 <0.001
Waterlogging 2.81 0.396 74 7.09 <0.001
Vascular plant cover*waterlogging -2.29 0.486 74 —4.71 <0.001

vascular plants present, CH; was transported through
plant stems, bypassing oxic soil layers where it would
otherwise be re-oxidised by methanotrophs (Joabsson
and Christensen 2001; Shannon et al. 1996; Fig. 6).
Mechanistically, vascular plants act as a conduit for
methanogenesis, connecting the CH,4 produced at depth
within the soil to the atmosphere, thereby enhancing the
release of CH4 (von Fischer et al. 2010; Harazono et al.
2006; Joabsson and Christensen 2001; Sebacher et al.
1985; Shannon et al. 1996).

The ability of vascular plants to both transport CHy
and provide soil C for methanogenesis varies by species.
For example, the presence of Eriophorum ssp (cotton
grass) results in CH, emissions between 1.4-2.2 and
3.7-5.5 times higher than the Maianthemum/Ledum and
the shrub Chamaedaphne communities respectively
(Lai et al. 2014a). The amount and extent of plant roots

Not waterlogged Waterlogged
20 °
=
o 15 - L4
= °
T
8 10 - H
o
£ L [T
= °7 T
O i
0 - * I | I
1 I 1 ||
<10 >10 <10 >10

Vascular plant cover (%)

Fig.5 The influence of water table depth (above or below the soil
surface) and vegetation cover on CH, flux. Boxplots represent
median (midline), quartiles (box), maximum and minimum (whis-
ker) with outliers represented as black points. Grey points with
error bars represent means with 95 % bootstrapped confidence
intervals. For statistics see Table 2.

@ Springer

varies between vascular species, where deeper and
wider root structures facilitate the increased production
and release of CH, from soil layers below the water
table and closer to the permafrost layer (Harazono et al.
2006; Joabsson and Christensen 2001; Lai et al. 2014a;
Shannon et al. 1996). However, we show in this study
that the influence of vegetation on CH, emissions is
strongly dependent on the water level and this interac-
tion must be taken into account when considering over-
all CH, loss. With sparse vascular plant cover, wet sites
tend to be higher CH,4 emitters than dry sites (Fig. 5). On
the other hand, in the presence of substantial vascular
plant cover, both wet polygon troughs and dry oxic rims
emitted substantial CH,4 (Table 2, Fig. 5). This created
local scale spatial variability within the ice wedge poly-
gon landscape in relation to vascular plant community
cover. It should be mentioned, however, that downward
transportation of O, into the soil by vascular plants can
increase methane oxidation by methanotrophs, lowering

WATER TABLE ABOVE
SURFACE

WATER TABLE BELOW
SURFACE

f

Oxic layer ':’

Fig 6 CH,4 exchange within arctic tundra. CH, is transported to
the atmosphere directly through diffusion from the soil and indi-
rectly through the roots and stems of vascular plants. In opposition,
CH,4 oxidation is aided by O, diffusion directly into the soil and
root aeration
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CH, emission (Frenzel and Rudolph 1998; Harazono
et al. 2006; Heilman and Carlton 2001; Strom et al.
2005). This process, however, was likely to be less
important in comparison to the enhancement of both
CHy,4 transport and carbon (C) supply, and never resulted
in an uptake of CH,, even within the driest sites during
this study (Fig. 5). NEE was marginally significantly
lower in the wetter sites, perhaps because plant produc-
tivity was promoted due to increased nutrient availabil-
ity resulting from warmer temperatures in these soils
(Nadelhoffer et al. 1991; Rustad et al. 2001). Hence the
wet conditions which promote CH,4 emission by causing
anoxia may further promote CH,4 emission by increasing
GPP and vascular plant growth, which could promote
both CH4 transport and substrate production (Joabsson
et al. 1999; King et al. 2002; Rinnan et al. 2007; Strdm
et al. 2003).

Water table depth was the next most significant con-
trol on CH,4 emission after GPP, with wet sites showing
higher CH4 emission (Table 1, Fig. 3). This is consistent
with other studies where site wetness has been found to
be a strong driver of CH, emission due to the high
abundance of methanogens in anaerobic, waterlogged
conditions (Bubier et al. 1993; von Fischer et al. 2010;
Lai et al. 2014a; Moore and Roulet 1993; Roulet et al.
1992; Zona et al. 2009). Christensen et al. (2003) de-
scribed water table as an ‘on-off switch’ controlling CH,4
flux, while other factors control CH, flux within water
tables shallower than a certain threshold, above which
site wetness governs CH, emission. On the other hand,
wet sites are not always found to be correlated with
higher CH,4 emission, for example Brown et al. (2014)
found a critical zone for maximum rates of
methanogenesis at 40 to 55 cm below the surface, which
they speculated coincided with the maximum provision
of fresh organic material and necessary redox potentials,
in addition to facilitating the potential degassing of
stored CH,4. In our sites the water table was never below
33 cm, which may have explained the substantial CHy
losses in all of the sites measured here, including the
driest (Fig. 5).

Interestingly, water table level determined the tem-
perature dependence of CH,4 emissions, as shown by the
significant interaction of water table and soil tempera-
tures on CH, loss (Table 1, Fig. 4). Wetter peat soils tend
to be warmer due to a higher heat capacity of water
(Dunfield et al. 1993; Whiting and Chanton 1993).
Generally, higher soil temperatures are expected to in-
crease substrate availability and the abundance of

methanogens in peat, and therefore CH, emissions
(Dunfield et al. 1993; Valentine et al. 1994). Increases
in temperatures from 2 to 12 ° C have been correlated
with an increase in CH4 emission by a factor of 6.7 (von
Fischer et al. 2010; Svensson and Rosswall 1984).
However, in the dry, oxic sites, CH4 oxidation occurs
together with methanogenesis, and these two processes
might cancel each other out resulting in the lack of a net
increase in CH4 emissions with temperature increase
(Lai et al. 2014a; Svensson and Rosswall 1984; Zhu
et al. 2014). This result suggests the need to stratify the
measurements in this highly polygonized tundra envi-
ronment to be able to capture the different response of
different microtopographic features, including both dry
and wet sites.

In addition to water table, thaw depth has been found
in other studies to be a key control on CH, emission
from tundra ecosystems (Nakano et al. 2000; Sturtevant
and Oechel 2013; Verville et al. 1998; Zona et al. 2009).
However, there was fairly low variability in thaw depths
in this study (from 26 to 42 cm below surface level),
partially because of the limited temporal range of sam-
pling (from peak to late season) across sites, and this
may have explained why it was not found to be signif-
icant in explaining CH4 fluxes. This contrasts with
previous work within this region (Harazono et al.
2006; Morrissey and Livingston 1992; Torn and
Chapin 1993; Zona et al. 2009, 2011) which showed
thaw depth to be a critical control of fluxes over the
growing season (but these studies included early as well
as late season, resulting in a broader range of thaw
depths). Within this acidic tundra, pH across the study
sites presented a large variation (2.7-6.49) and yet did
not significantly correlate with CH, fluxes, however the
highest CH,4 emissions were observed at a pH of around
4.2. These unusually low pH values (2.7-3.4) were
found in Ivotuk plot sites, where similar values (down
to 2) have been previously recorded within a similar
ecosystem (Lipson et al. 2012). Due to the particularly
dry conditions, dry plot sites with low pH were probably
more oxidised than usual (for example oxidation of
Fe(Il), S compounds and NH,") releasing protons and
making these extreme soil pH values possible within
localised areas of the tundra (Lipson, personal commu-
nication). In contrast, the few wet sites found with low
pH had high proportions of peat accumulation and dense
moss cover, mostly characterised by dwarf shrub and
acidophilic mosses that further secrete organic acids
during growth (Gornall et al. 2007; Hobbie and Gough

@ Springer



48

Plant Soil (2015) 388:37-52

2004; Riedel et al. 2005). Variable responses of CHy
emissions on soil pH have been previously reported in
field studies ranging from no correlation (Brummell
et al. 2012; Ohtsuka et al. 2006), to positive correlations
(Moore et al. 1990) and negative correlations (Kato et al.
2011; Walker et al. 1998).

In our study, CH, fluxes ranged from 0.01 to 20 mg C
CHy, across a spatially dynamic environment, with wet-
ter sites with higher GPP having higher emission. This
high spatial variability, where CH, emissions can vary
by an order of magnitude between different plots, has
consistently been found across other studies where daily
averages can range some 4.5 10 9.6 mg C CHym 2 d !,
across consecutive measurements within the same sites
(Harazono et al. 2006; Schimel 1995; Shannon et al.
1996; Wille et al. 2008). The general scarcity of data on
the plot scale from these arctic environments limits our
understanding of the controls over this large variability
in CH, fluxes, where fine scale datasets are critical for
increasing our understanding of the smaller scale land-
scape heterogeneity (Sachs et al. 2010). Fine-scale rela-
tionships between CH, fluxes, vegetation and environ-
mental conditions might be missed by eddy covariance
measurements measuring C fluxes over a wider scale in
these highly heterogeneous arctic ecosystems (Fox et al.
2008; Sachs et al. 2010; Wickland et al. 2006).
Therefore our results, as measured by chambers, might
prove very useful for identifying the detailed relation-
ship between environmental and vegetation controls,
namely GPP, water table depth and soil temperature,
and for describing how fluxes relate to fine scale
microtography.

Conclusion

In this study we showed that multiple complex process-
es driving CH, flux emissions within the wet sedge and
tussock tundra ecosystems interacted with each other in
controlling CHy flux. Crucially we have demonstrated
the importance of vascular plant cover in determining
CH,4 flux and that increased vascular plant cover can
promote CH,4 production and release from both water-
logged and drier soils. The most important environmen-
tal control on CH, emissions within our study locations
was GPP. Vascular plant coverage seemed to be the
factor most correlated with CH,4 emissions within dry
sites, highlighting the importance of CH, oxidation and
potentially labile C availability in controlling emissions
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from the high-centre polygons and rims. In these dry
sites, greater vascular plant cover increased CH, emis-
sion by almost an order of magnitude to levels equiva-
lent of wet sites. Overall, given the importance of vas-
cular plant cover on CH,4 emissions, hydrological
changes in the Arctic might affect CH4 emissions very
differently depending on the plant communities present
and how they develop under a changing climate.
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