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Abstract 
In the seed processing industry, rotary batch seed coaters are widely used for providing a 

protective coating layer (consisting of various ingredients including fertilisers and crop 

protection chemicals) on the seeds. Seed motion and mixing are important in ensuring uniform 

coating. In the batch seed coater, the base of a cylindrical vessel rotates, whilst the cylindrical 

wall is stationary and two baffles turn the bed over for mixing. In the present study, the Discrete 

Element Method (DEM) is used to simulate the effect of particle shape on motion and mixing 

in this device. Corn seed is used as a model material and the effect of its shape on motion is 

analysed by considering two approaches: (1) manipulation of rolling friction to account for 

shape as it is commonly used in the field; (2) approximation of the actual shape by a number 

of overlapping spheres of various sizes. The geometry of corn seeds is captured using X-Ray 

micro tomography and then the ASG2013 software (Cogency, South Africa) is used to generate 

and optimise the arrangement of the overlapping spheres. A comparison is made of the 

predicted tangential and radial velocity distributions of the particles from DEM and those 

measured experimentally. It is concluded that for rapid shearing systems with short collisional 

contacts a small number of clumped spheres suffices to provide a reasonable agreement with 

experimental results. Equally well, manipulating the rolling friction coefficient can provide 

results that match experiments but its most suitable value is unknown a priori, hence the 

approach is empirical rather than predictive. 
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1 Introduction 

In industries such as agricultural, food, detergent and pharmaceutical manufacturing, granule 

mixing and coating are common processes. The quality of finished product is strongly 

influenced by the rate of mixing and quality of coverage, which themeselves depend on the 

spraying and spreading processes. Hence it is important to understand the effect of each 

process parameter on the final product quality and to optimise them. To do so, the particle 

kinematic behaviour (flow field, mixing pattern, etc.) needs to be analysed. Discrete Element 

Method (DEM) [1] provides a robust way of simulating particulate systems [2–4]. Spherical 

particles are most commonly used due to the simplicity of contact detection and mechanics, 

where contact can be detected if the distance between two particles become less than the sum 

of their radii. This results in efficient contact detection and  faster contact force calculations. 

There are many other approaches for representing particle shape, such as elliptical [5], 

polygonal [6], bonded assemblies of polygons [7], spherosimplices [8] and super-quadric 

particles [9].  Lu et al. [10] have recently provided a comprehensive review on approaches 

for consideration of non-spherical particles in DEM. 

To account for the non-sphericity of particles, Morgan [11] proposed a new method for 

simulating mechanical interlocking of irregularly shaped particles by restricting particles 

from rolling. This method showed that the addition of rolling friction would lead to more 

realistic values of bulk friction compared to free rolling spheres. Ai et al. [12] have classified 

the rolling resistance models into four categories: directional constant torque, viscous, elastic-

plastic spring-dashpot and contact-independent models. Wensrich and Katterfeld [13] 

reported that consideration of rolling friction alone would not lead to an accurate 

representation of the  particle shape in the case of simulating the angle of repose. They 
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attributed this to the fact that the rolling friction only acted to oppose the rolling motion 

whereas in reality the non-sphericity of a particle may increase rolling. 

Favier et al. [14] implemented a new technique for considering particle shape in DEM, where 

the particle shape was approximated by a number of overlapping or touching spheres with 

different sizes (known as clumped spheres), the centres of which were fixed in a position 

relative to each other. This method approximates the shape of irregular particles by a number 

of clumped spheres, while maintaining computational efficiency. Theoretically, any particle 

shape can be modelled, although highly angular particles require a large number of small 

spheres to approximate their sharp edges, making this method unsuitable [15]. 

Approximation of shape using this technique produces undesired surface roughness for the 

modelled particles [16]. However, the induced roughness can be controlled by increasing the 

number of spheres, though this has a negative impact on the computational efficiency. 

Wiącek et al. [17] investigated the influence of grain shape and interparticle friction of peas 

and beans on the mechanical response of the assemblies in a uniaxial compression test. They 

showed that the mechanical response of the granules was highly affected by increasing the 

aspect ratio of the particles; the lateral-to-vertical pressure decreased as the particles aspect 

ratio was increased. Once the aspect ratio of the particles exceeded 1.6, however, the lateral-

to-vertical pressure became relatively invariant. Moreover, the authors reported that the DEM 

simulations predicted values of the effective elastic modulus of the bed close to those 

obtained from experiments for spherical particles (i.e. peas) but not in the case of oblong 

particles (i.e. beans). Hare and Ghadiri [18] investigated the effect of particle shape and 

roughness of particles on their flowability in a shear box by DEM. The particles were 

represented by a number of overlapped spheres and the roughness was controlled by the 

separation of the centres of overlapped spheres from one another. They concluded that an 

increase in roughness of particles resulted in an increased stress ratio. Gonzalez-Montellano 
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et al. [19] investigated the discharge flow of glass beads and corn seeds from silos using 

DEM, where the glass beads and corn seeds were simulated using spherical and multiple non-

adhesive clumped spheres, respectively. Their predictions for the mean bulk density for the 

filling phase, discharge time and flow patterns were then compared to the experimental 

results. The authors reported that due to the shape and difficulty of measuring the friction of 

irregularly shaped particles, the flow pattern and discharge time in the simulations did not 

follow those obtained in experiments. Therefore, the value of particle-particle friction 

coefficient was calibrated using sensitivity analysis based on the approach of Balevicius et al. 

[20]. More recently, Gonzalez-Montellano et al. [21] investigated the vertical and horizontal 

distributions of the normal pressure, tangential stresses, mobilised friction and velocity 

profiles of filling and emptying silos using experiments and DEM. They found a reasonable 

agreement with experiments. However, the predicted horizontal distribution of normal stress 

on the wall was greater for the central positions on the wall, as compared to those measured 

experimentally. The authors suggested hybrid models, similar to the work done by Lu et al. 

[22], where FEM and DEM were coupled may to improve the results. 

Recently, there have been studies carried out on the adequacy of the number of clumped 

spheres needed to represent particle shape in DEM. At single particle level, Song et al. [23] 

investigated this for tablet-shaped particles, where the shape was represented by 10, 26, 66 

and 178 mono size spheres.  They analysed the magnitude of angular velocity of a tablet upon 

impact on to a stationary tablet. They have reported that for all the cases, no agreement could 

be found between the simulations and experiments, where the magnitude of the angular 

velocity was much higher in the simulations.  They also reported that increasing the number 

clumped spheres increased the magnitude of angular velocity of particles upon impact on to 

another tablet.  They attributed this to the fact that there were more sphere contacts when 

using a larger number of clumped spheres. It should be noted that these findings may not be 
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applicable to clumped spheres representing a bed of particles, since there are more particle-

particle contacts in such a system. Similarly, Price et al. [24] investigated the angular velocity 

of irregularly shaped particles, represented by clumped spheres, upon impact on to a flat steel 

plate. They reported that increasing the number of clumped spheres did not influence the 

angular velocity in the case of densely packed spheres, where no voids were present in the 

structure of the particle. They attributed this to the fact that in the particle shape that they 

investigated the particle was compact; hence the centroid of the particle was located close to 

the centre of the particle. It is noteworthy that their simulated particle shape was not highly 

irregular and the surfaces were smooth; hence further investigation is required for more 

complex particle shapes. Moreover, the above work only addressed the effect of particle 

shape at the single particle level.  At the bulk level, Markauskas et al. [25] investigated the 

adequacy of the number of clumped spheres required for DEM simulations in a particle piling 

system. In their study, an ellipsoid particle shape was approximated using a number of 

spheres. They reported that the porosity of the bed initially decreased, but remained relatively 

constant for assemblies consisting of more than 13 clumped spheres. Moreover, the average 

coordination number of particles increased with the number of spheres used, but again 

remained relatively constant for particles of consisting of more than 13 spheres. In their work, 

the simulation results have not been directly compared to experiments; hence it is difficult to 

assess the accuracy of the predictions. In another work, Kodam et al. [26] investigated the 

accuracy of shape representation by using clumped spheres and actual cylindrical particle 

shapes for both single particle and bulk levels. In their work, a cylindrical particle as well as 

two assemblies of 9 and 54 mono-size clumped spheres were considered. At the single 

particle level, the particle was impacted on to a flat surface and the angular velocity was 

analysed. Compared to theoretical results, a poor agreement was found in both cases of 

clumped spheres (9 and 54 spheres), whereas a relatively good agreement prevailed for the 
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actual cylindrical particle shape. Moreover, they investigated the residence time of the 

particles in a baffled rotating horizontal drum, where a reasonably good agreement was found 

for all the particle shapes investigated (both clumped spheres and actual cylinders). Further 

analysis of the bulk solid fraction of particles in a cylindrical vessel showed that using 54 

clumped spheres slightly underpredicted the solid fraction. This could be as a result of 

artificial introduction of surface roughness and could be minimised by considering poly-size 

spheres in the individual particle assembly; where smaller spheres are present at the surface 

of the particle to improve the accuracy of shape representation. Kruggel-Emden et al. [27] 

also raised concern on the validity of using the clumped sphere method. They reported that at 

the single particle level at least the method did not reliably simulate the real case. However, 

they suggested that the bulk behaviour might not face the same shortcomings.  Guo et al. [28] 

investigated the effect of particle aspect ratio and surface geometry on granular shear flow of 

rod-like particles in three regimes of solid volume fractions (i.e. dilute, intermediate and 

dense regimes).  

Much work has been carried out in the literature on consideration of particle shape in DEM 

simulations. In most cases, the adequacy of the number of clumped spheres required to 

reliably simulate the real case is investigated at the single particle level, which may not 

represent bulk behaviour of particles. In this paper however, we report on our work on the 

effect of particle shape on particles motion in a rotary batch seed coater, using both spherical 

particles with the addition of rolling friction, and particles represented by clumped spheres 

and, comparing the simulation results with those obtained experimentally. 
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2  Materials and Methods 

2.1 Experiments 

A series of laboratory experiments were conducted using a SATEC ML2000 rotary batch 

seed coater (0.3 m in diameter and 0.21 m in height) as shown in Figure 1. For the seed 

coating, a liquid stream is introduced by a nozzle to a spraying disc, where the liquid is 

atomised and sprayed onto the surfaces of the seeds. The base rotates to mobilise the seeds, 

whilst the vertical plates act as baffles, turning the bed over and ensuring adequate mixing of 

the seeds in order to increase the uniformity of the seed coating. In the work reported here the 

system was run dry, i.e. no liquid was added during the experiments. The interest here is in 

corn seeds, which are used as the test material. The seeds are sieved prior to the experiments 

and only particles in the range of 7.1 – 8.0 mm are considered. For both simulations and 

experiments, the base rotational speed is 300 rpm, the baffle angle is 45° and the baffle to 

wall clearance is 15 mm. The motion of particles moving on the bed surface  near the vertical 

baffles is captured using a Redlake HG-100K high-speed video recorder, where the velocities 

in the x and y directions are calculated from the distance travelled by each particle within one 

video frame (4 ms) in the measurement cell (50 mm by 50 mm) highlighted in Figure 2. The 

tangential and radial velocity of particles are then calculated using Equations 1 and 2.  

    sin cos   x yV V V   Eq.(1) 

    cos sin  r x yV V V   Eq.(2) 

where Vx and Vy are velocities in x and y direction, respectively, and ș is the angular position 

of the particle (anti-clockwise from the x-axis).  
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2.2 DEM Simulations 

A series of DEM simulations were carried out using the EDEM® software (DEM-Solutions, 

Edinburgh, UK) by considering the rolling friction to account for non-sphericity of particles, 

and also approximating the shape by clumping a number of spheres with various sizes. The 

effect of particle shape is presented in terms of the radial and tangential velocity distributions 

of particles inside two cubic measurement cells in the seed coater as shown in Figure 3. The 

length of each side of the cubic measurement cell is 50 mm (approximately seven particle 

diameters). In these DEM simulations, the motion of particles in the absence of coating liquid 

is considered since the main interest is the bulk motion and its sensitivity on the coefficient of 

rolling friction. The simulations were conducted using Hertz-Mindlin contact model [29] with 

rolling friction based on viscous dissipation [30] where the size of vessel and particles are the 

same as those used in the experiments. A bed consisting of 4,200 particles corresponding to 

1.2 kg of corn seeds was used. The simulations were carried out using a constant rotational 

speed of the base at 300 rpm for 25 s of process time. The elastic modulus of particles was 

reduced by two order of magnitude in order to speed up the simulations. This was considered 

to be appropriate since the motion of non-adhesive particles was of interest. It has been 

shown that varying elastic modulus to this degree is not influential on the flow patterns 

generated [22 - 23]. Coefficients of restitution and sliding friction of particles were measured 

experimentally using a high-speed video camera and the NanoCrusher® (Micro Materials, 

UK), at the University of Leeds, respectively. The particle and simulation properties are 

summarised in Tables 1 and 2, where particle size follows a normal distribution. 

2.2.1 Implementation of Clumped Spheres 

X-ray tomography (XRT) is used to provide three-dimensional (3D) information on the 

granule structure. A Phoenix Nanotom© CT scanner (GE Measurement and Control, US) was 
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used to obtain the 3D structure of a single corn seed in the 7.1 – 8.0 mm sieve-cut, as shown 

in Figure 4, followed by the generation of clumped spheres by the ASG2013 software 

(Cogency, South Africa) as shown in Figure 5. In order to investigate the effect of accuracy 

of shape representation, the clumped spheres were generated using 5, 10, 15 and 20 spheres, 

with volume errors of 0.1, 0.3, 0.1 and 0.2%, respectively, compared to the actual volume of 

the scanned corn seed. The clumped spheres are generated by populating the geometry of the 

particle, obtained from XRT, with suitable spheres (the number of spheres is defined by the 

user) by means of a random selection process. Once the spheres are generated, an iterative 

optimisation process adjusts the solution until the distance between the mesh surface and the 

clumped spheres surface is minimised [24]. The number of spheres and amount of overlap 

used in the assembly controls the roughness of the particles, where the larger the number of 

spheres and overlap, the smoother the surface of the particle. 

3 Results and Discussion 

3.1 Experimental Particle Velocity Distributions 

The measured radial and tangential velocity distributions of particles in the cell located after 

the baffle forming the bed surface are shown in Figures 6a and 6b, respectively, for 1250 

particles over a period of 6 seconds (approximately 10,000 velocity samples). The total 

number of bins (11) and bin size that are used for generating the velocity distributions in this 

work are kept constant to aid the comparison. The radial and tangential velocity distributions 

of the particles have peak values at -0.55 and 0.39 m/s, respectively.  The positive values in 

tangential and radial velocities indicate that the particles are moving anti-clockwise and 

towards the vessel wall, respectively.  
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3.2 Effect of the Rolling Friction Coefficient on Simulated Velocity 

Distributions 

The predicted radial velocity distributions of spherical particles after the baffle are shown in 

Figure 7, where the rolling friction coefficient is varied from 0.01 to 0.3. The motion of 

particles is not sensitive to small values of rolling friction (i.e. 0.01 – 0.05).  Once the rolling 

friction value of 0.05 is exceeded, the motion of the particles becomes more sensitive to the 

selected value. In the case of the tangential velocity of the particles after the baffle (Figure 8), 

the peak and span of the distribution remain relatively constant when changing the particle-

particle rolling friction coefficient, suggesting the tangential motion of the particles after the 

baffle is not influenced by varying the particle-particle rolling friction coefficient.  

The predicted radial velocity distributions of spherical particles in the measurement cell 

located before the baffle are shown in Figure 9. It is clear that the radial motion of particles in 

this case is sensitive for the entire range of investigated values of rolling friction. The 

magnitude of the radial velocity corresponding to the mode of the distribution decreases as 

the rolling friction is increased. It is most unlikely that the contacts between the particles have 

a shear component, therefore an increase in the rolling friction restricts the particles from 

rolling on each other and hence reduces the particle velocity. However, looking at the 

tangential velocity distribution of particles located before the baffle, as shown in Figure 10, 

the motion of particles is not sensitive to values of rolling friction coefficient in the range of 

0.01 – 0.1.  This suggests that using the current experimental setup (i.e. baffle angle and 

clearance gap), particles-particle rolling friction coefficient is more influential on the radial 

motion of the particles in the coater than the tangential motion.   

Comparing the tangential velocity distribution of particles in the measurement cells located 

before and after the baffle, the motion of particles is more sensitive to the value of rolling 
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friction before the baffle than after. This is due to the fact that there are more inter-particle 

contacts before the baffle than after, as shown in Figure 11. 

3.3 Clumped Spheres 

The predicted radial velocity distributions of particles, as represented by a number of 

clumped spheres in the measurement cells located after and before the baffle, are shown in 

Figure 12. The radial velocity of the particles is almost independent of the number of spheres 

used (for 5 – 20 spheres). A similar trend is also obtained for the tangential velocity 

distribution of the particles, as shown in Figure 13. This clearly shows that the motion of 

particles is not sensitive to the number of spheres used to represent the particle shape in the 

DEM simulations of the seed coater in this study, as long as the general particle shape is 

represented. In this case five spheres was sufficient to represent the particle shape, however it 

remains to be seen if fewer clumped spheres can achieve this without the artificial use of the 

rolling friction.  Moreover, the least number of clumped spheres can be used to accurately 

simulate this system in order to speed up the calculations. 

3.4 Comparison of Experimental Results and Simulation Predictions 

The effectiveness of both methods is investigated by comparing the simulation predictions 

and experimental results. As there is no change in the tangential and radial velocity of 

particles when the number of clumped spheres is increased, the experimental results are 

compared for the simplest case, where the seeds are represented by five clumped spheres. The 

radial and tangential velocity distributions of particles in the measurement cell located after 

the baffle are shown in Figure 14. In the case of radial velocity, the rolling friction 

coefficients of 0.01 and 0.3 provide a poor match to the experiments, whilst a rolling friction 

coefficient of 0.1 gives a reasonably good match. It can be seen that the DEM simulation of 

the seed coater using clumped spheres gives reasonably accurate prediction of the motion of 
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particles. However, there is a slight lack of agreement on smaller values of magnitude of 

radial velocity and larger values of tangential velocity of the particles. This could be due to 

the fact that some of the particles being tracked in the experiments were near the base of the 

coater; hence they tended to have larger tangential and smaller radial velocities. Moreover, it 

is clear that by using the rolling friction method, the motion of particles can be suitably 

simulated by DEM using a rolling friction coefficient of 0.1 (see the similarity between the 

velocity distributions using rolling friction coefficients 0.1 and experimental results in Figure 

14). However, the value of this parameter is unknown a priori, so there is lack of 

predictability by this method.  

It should be noted that the radial and tangential velocities of particles before the baffle could 

not be measured experimentally due to the complexity of particle motion. However, since the 

motion of particles is not sensitive to the number of clumped spheres after the baffle and the 

simulation parameters are measured experimentally without any calibration, an assumption 

can be made that the velocity distribution of the particles before the baffle using the clumped 

sphere method is representative of experiments. Based on this assumption, a rolling friction 

value between 0.05 – 0.1 can be used in the DEM simulations of the seed coater to accurately 

represent the experimental behaviour as shown in Figure 15. Average radial and tangential 

velocities of 0.58 and 0.42 m/s, respectively, are obtained for both methods of particle shape 

representation, respectively; however, the span of the distribution is slightly larger for the 

rolling friction method than the clumped sphere method. With the methodology established 

here the next step of addressing the quality of mixing can be addressed confidently using the 

clumped sphere method. 
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4 Conclusions 

The DEM results indicate that for simulating particle motion in rapid shear coaters, e.g. in the 

rotary batch seed coater investigated in this study, the motion of non-spherical particles can 

be simulated using clumped spheres or by controlling rolling friction. In the case of 

artificially changing the rolling friction of spherical particles, a reasonable agreement is 

found for both tangential and radial velocities for a narrow range of the chosen values. 

However, the motion of particles is slightly more sensitive to the value of rolling friction 

before the baffle, where there are more inter-particle contacts than after the baffle. It is also 

shown that the motion of particles can be predicted using the clumped sphere method. The 

number of spheres used to represent the particle shape is not critical for the range 

investigated. The work reported here suggests that clumped spheres provide a satisfactory 

representation of particle shape for rapid shearing systems with short collisional contacts. A 

small number of clumped spheres can provide a reasonable agreement with experimental 

results. Manipulating the rolling friction coefficient of single spheres can also provide results 

that closely match experiments to the clumped sphere method, but its most suitable value is 

unknown a priori, hence the approach is empirical rather than predictive. 
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Figure 1 Geometry of vertical rotating drum coater 

 

 

Figure 2 Particle tracking for obtaining tangential and radial velocity distributions of particles 

in the measurement cell located after the baffle; a) shows the region where the particle 

trajectories are analysed, b) detection of particles in the cell and c) is representation of track of 

the particles throughout the whole video 



18 
 

 
Figure 3 Measurement cells in DEM simulations for two positions in the vessel, one after 

(red) and another before (blue) the baffle 

 

   
 

Figure 4 (Colour online) Three-dimensional structure of a corn seed obtained from XRT. 

 

 

(a) (b) (c) 
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Figure 5 Representation of Corn Seeds in DEM using (a) five, (b) ten, (c) fifteen and (d) 

twenty spheres 

(a) 

 
(b) 

 
 

Figure 6 Experimental tangential (a) and radial (b) velocity distributions in the measurement 
cell located after the baffle. 
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Figure 7 Predicted radial velocity distribution of particles in the measurement cell located 
after the baffle using rolling friction method 

 
Figure 8 Predicted tangential velocity distribution of particles in the measurement cell 

located after the baffle using rolling friction method 
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Figure 9 Predicted radial velocity distribution of particles in the measurement cell located 

before the baffle using rolling friction method 

 

 
Figure 10 Predicted tangential velocity distribution of spherical particles in the measurement 

cell located before the baffle using rolling friction method 
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Figure 11 Comparison of number of inter-particle contacts in the measurement cells located 

after and before the baffle for the simulation of rolling friction coefficient of 0.1. 
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(a) 

 
(b) 

 
  

Figure 12 Predicted tangential velocity distributions of particles in the measurement cells 

located (a) after and (b) before the baffle using the overlapping spheres method 
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(a) 

 
(b) 

 
 

Figure 13 Predicted radial velocity distribution of particles in the measurement cell located 
(a) before and (b) after the baffle using the overlapping sphere method 
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(a) 

 
(b) 

 
 

Figure 14 Comparison of experimental results and simulation predictions for the 
measurement cell located after the baffle: (a) radial velocity; (b) tangential velocity 
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(a) 

 
(b) 

 
 

Figure 15 Comparison of tangential and radial velocity distribution of particles using clump 
sphere and rolling friction methods in DEM simulations: (a) radial velocity; (b) tangential 

velocity 
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Table 1 Properties of particles and walls used in DEM simulations 

Property Seeds Walls (steel) 

Particle diameter (mm) 7.5 ± 3% - 
Shear Modulus (GPa) 0.01 70 
Density (kg/m3) 1163 7800 
Poisson’s Ratio (-) 0.25 0.3 

 

Table 2 Contact properties used in DEM simulations 

Property Particles-Particle Particle-Wall 

Coefficient of Sliding Friction 0.3 0.3 
Coefficient of Rolling Friction* 0.01 – 0.3 0.01 
Coefficient of Restitution 0.6 0.69 
*Using the model of Zhou et al. [29]   

 


