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a b s t r a c t

A shared genetic susceptibility between cutaneous malignant melanoma (CMM) and Parkinson’s disease
(PD) has been suggested. We investigated this by assessing the contribution of rare variants in genes
involved in CMM to PD risk. We studied rare variation across 29 CMM risk genes using high-quality
genotype data in 6875 PD cases and 6065 controls and sought to replicate findings using whole-
exome sequencing data from a second independent cohort totaling 1255 PD cases and 473 controls.
No statistically significant enrichment of rare variants across all genes, per gene, or for any individual
variant was detected in either cohort. There were nonsignificant trends toward different carrier fre-
quencies between PD cases and controls, under different inheritance models, in the following CMM risk
genes: BAP1, DCC, ERBB4, KIT, MAPK2, MITF, PTEN, and TP53. The very rare TYR p.V275F variant, which is a
pathogenic allele for recessive albinism, was more common in PD cases than controls in 3 independent
cohorts. Tyrosinase, encoded by TYR, is the rate-limiting enzyme for the production of neuromelanin, and
has a role in the production of dopamine. These results suggest a possible role for another gene in the
dopamine-biosynthetic pathway in susceptibility to neurodegenerative Parkinsonism, but further studies
in larger PD cohorts are needed to accurately determine the role of these genes/variants in disease
pathogenesis.
� 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Parkinson’s disease (PD) is characterized by the progressive loss
of postmitotic dopaminergic neurons, whereas cancer results from
uncontrolled cellular proliferation. Although PD and cancer are
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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distinct diseases, a relationship between PD and cancer is well
established. Epidemiological studies have shown that although
most cancers are less frequent in PD compared with the general
population (Bajaj et al., 2010; Becker et al., 2010; Catalá-López et al.,
2014; D’Amelio et al., 2004; Elbaz et al., 2002, 2005; Gao et al.,
2009a; Kareus et al., 2012; Olsen et al., 2005, 2006; Ong et al.,
2014; Wirdefeldt et al., 2014), cutaneous malignant melanoma
(CMM) is found at an increased incidence in PD (Bajaj et al., 2010;
Becker et al., 2010; Catalá-López et al., 2014; Kareus et al., 2012;
Ong et al., 2014; Wirdefeldt et al., 2014). This well-documented
association between CMM and PD is unexplained.

A genetic link between PD and CMM is supported by the
demonstration of significant reciprocal risks of PD and CMM in
cases and their relatives (Gao et al., 2009a, 2009b; Kareus et al.,
2012). Although some support for a somatic genetic link between
the 2 pathologies is provided by the role of Mendelian PD genes in
CMM biology (Cesari et al., 2003; Kim et al., 2005; Liu et al., 2011;
Matsuo and Kamitani, 2010; Millikin et al., 1991), there is
currently no direct evidence for shared genetic susceptibility be-
tween PD and CMM.

Some studies have assessed the reciprocal role of common
(minor allele frequency [MAF] > 1%) genetic variation in CMM and
PD. Recently, it has been suggested that the CMM-associated MC1R
variants p.R151C and p.R160W increase PD risk but their role still
remains unclear (Dong et al., 2014; Gao et al., 2009b; Lubbe et al.,
2016; Tell-Marti et al., 2015). Previous studies using genome-wide
association study variants associated with PD or CMM have failed
to show any genetic overlap (Dong et al., 2014; Meng et al., 2012).
More recently, rare de novo variants in the CMM risk gene PTEN
have been implicated in PD (Kun-Rodrigues et al., 2015), but the
role of rare coding variants underlying an association between PD
and CMM has not yet been fully evaluated. Because the role of
common genetic variation (variants with MAF >1%) has already
been substantially addressed, we focused our investigation into the
proposed shared genetic background between these diseases on
rare variants (MAF <1%) in known CMM genes in 2 large inde-
pendent PD case-control data sets as part of the International
Parkinson’s Disease Genomics Consortium.

2. Methods and materials

2.1. Genetic analysis

Using a systematic literature search, we identified susceptibility
genes for CMM (Supplementary Table 1). These included (1)
germline high-risk genes associated with familial CMM (e.g.,
CDKN2A, CDK4); (2) germline common moderate-risk genes (e.g.,
MC1R); (3) genes commonly somatically mutated (e.g., BRAF); and
(4) recently identified genes found to harbor rare somatic muta-
tions ascribed to CMM (e.g., TRRAP, DCC). Genes were selected based
on defined roles in inherited high-penetrance autosomal dominant
disease (n ¼ 2); an excess of somatic mutations (n ¼ 20); an excess
of common low-penetrance risk variants (n ¼ 3); or combinations
of these (n ¼ 4). All rare (MAF <1%) variants across these genes
were assessed for enrichment in PD cases compared with unaf-
fected controls.

We first assessed high-quality rare variant genotype data
derived from the NeuroX chip on 6875 PD cases and 6065 controls
(dbGaP Study Accession: phs000918.v1.p1). Briefly, the NeuroX
chip has approximately 240,000 preselected variants based on
standard Illumina exome content and over 24,000 custom content
neurologic disease focused variants (Nalls et al., 2015).

We next assessed whole-exome sequencing data on 1255 PD
cases and 473 controls from the International Parkinson’s Disease
Genomics Consortium. Briefly, sample libraries from cases and
controls were prepared using either Roche Nimblegen (cases, n ¼
334; controls, n¼ 40) or Illumina (cases, n¼ 921; controls, n¼ 433)
capture kits with paired-end sequencing performed on the Illumina
HiSeq2000. Reads were aligned using Burrows-Wheeler Aligner
(Li and Durbin, 2009) against the University of California Santa Cruz
(UCSC) hg19 reference genome. Variant calling and quality-based
filtering were done using Genome Analysis Tool Kit (GATK)
(McKenna et al., 2010). ANNOVAR (Wang et al., 2010) was used to
annotate variants with predicted impact of variants from the
following in silico tools: SIFT (Ng and Henikoff, 2001), PhyloP
(Pollard et al., 2010), PolyPhen-2 (Adzhubei et al., 2010), LRT (Chun
and Fay, 2009), MutationTaster (Schwarz et al., 2010), and GERPþþ
(Davydov et al., 2010).

Of the 29 identified CMM genes, only 24 were represented on
the NeuroX panel (Supplementary Table 1). Based on the annotated
MAF data from 1000 Genomes Project (http://www.1000genomes.
org/) and NHLBI GO Exome Sequencing Project (https://evs.gs.
washington.edu/EVS/), all rare variants (MAF < 1%) were extrac-
ted and assessed in PD cases and controls. We defined the potential
deleterious impact of variants using previously defined methods
(Fu et al., 2013; Tennessen et al., 2012) with variants classified as
damaging if �4 of the 6 in silico tools used predicted the change
deleterious. Variants and samples with >5% missing calls were
excluded during QC.

All exome generated FastQs were run through the same pipeline
and merged to generate high-quality genotype data. Damaging
variants were defined as stated above. The GATK recommended
filtering of variants, including the removal of variants with low
coverage (read depth<5), was implemented over and above the QC
stated above. Post QC, 28 of the 29 selected CMM genes were
covered by one or both captures methods (Supplementary Table 1),
and no difference between capture methods was observed with
majority of all exons represented and included in the analyses
(Supplementary Table 2).

Candidate variants were also assessed in high-quality exome
sequencing data generated from a CMM case-control cohort (CMM,
n ¼ 1298; Controls, n ¼ 684) to investigate any reciprocal risks for
CMM.

2.2. Statistical analysis

SNP-Set (Sequence) Kernel Association Test (SKAT) (Wu et al.,
2011) was used to test for association between the rare variants
in genes and PD (gene- and gene set-based), adjusting for covariates
including gender, coverage metrics and principal components
(1e4). Dominant and recessive models of inheritance for each CMM
gene were modeled and assessed using STATA (version 10; STATA,
State College, TX, USA) via logistic regression, adjusting for cova-
riates. For variants common to both cohorts, meta-analyses were
conducted using standard methods modeling fixed effects (Petitti,
1994). Cochran’s Q-statistic was calculated to test for heterogene-
ity (Phet) (Petitti, 1994), and the I2 statistic (Higgins and Thompson,
2002) was generated to quantify the proportion of the total varia-
tion caused by heterogeneity. Bonferroni’s correction was applied,
where applicable, to account for multiple testing.

3. Results

3.1. Rare variant screening and burden analysis

The NeuroX data contained 237 variants with �1 nonreference
allele after QC, including 215 (90.7%) nonsynonymous single
nucleotide polymorphisms (nsSNPs), and 17 (7.2%) loss of function
(LOF) variants (stop gains or losses, splice, frame- or nonframeshift
indels). About 554 variants with �1 nonreference allele were

http://www.1000genomes.org/
http://www.1000genomes.org/
https://evs.gs.washington.edu/EVS/
https://evs.gs.washington.edu/EVS/
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extracted from exome sequencing data, including 268 (48.4%)
synonymous, 269 (48.6%) nsSNPs, and 17 (3.0%) LOF variants. In the
NeuroX data, 207 rare (MAF<1%) variants were present in 23 of the
29 selected CMM genes, and 269 rare variants were observed in 25
genes in the exome.

When considering all the candidate genes at once, gene
setebased SKAT analyses in the NeuroX data did not identify any
significant difference in rare variation burden between PD cases
and controls for all variants, or for each individual variant class
(Table 1).

When considering all variation (including synonymous) within
each gene individually (Supplementary Table 3), no significant as-
sociations were seen in the NeuroX but nominally significant dif-
ferences were identified for AKT3 (Pskat ¼ 0.049) and BAP1 (Pskat ¼
0.004) in the exome cohort. A significant enrichment in KIT in the
NeuroX was detected for rare, damaging nsSNPs (Pskat ¼ 0.038) but
was not seen in the exome data (Pskat ¼ 0.571). A trend toward
associationwas seen for GRM (Pskat¼ 0.075) in the Neurox data, and
for ERBB4 (Pskat ¼ 0.055) and TYR (Pskat ¼ 0.065) in the exome data.
Although none survived correction for multiple testing, it does
suggest possible case-control differences.

3.2. Case-control rare variant enrichment analysis

Dominant and recessive models were applied to LOF and/or
nsSNPs variants within both PD data sets. Under a dominant model,
no significant enrichment of carriers of rare nsSNPs was detected in
the exome data. However, therewas a nonsignificant increase in the
number of carriers of dominant rare nsSNPs in 8 and 3 genes in both
cases and controls, respectively. Similar results were seen in the
NeuroX data, with 4/23 genes with suspected enrichment in cases
and 4/23 genes in controls (Table 2). An increased number of car-
riers of rare KIT nsSNPs was detected in controls in NeuroX (ORlog ¼
0.68, 0.48e0.97, Plogreg ¼ 0.035). The increased carrier frequency in
controls is not consistent with the SKAT analysis, which suggested
an increased burden of rare variants in cases. Two genes, MITF and
TP53, also had increased number of carriers of rare alleles in
Table 1
Gene setebased burden analysis for the types of rare variants observed across all
studied cutaneous malignant melanoma genes in the Parkinson’s NeuroX and exome
cohorts

Gene set tested NeuroX Exome

N Pskat N Pskat

All variation (incl. synonymous) 237 0.756 554 0.403
All variation (excl. synonymous) 224 0.724 286 0.790
All rarea 206 0.948 269 0.693
Germlineb 65 0.913 57 0.599
Somatic 197 0.665 255 0.795
All LOF variants 17 0.156 17 0.951
Rare LOF variants 16 0.321 16 0.999
All nsSNPs 215 0.839 269 0.682
Rare nsSNPs 198 0.963 253 0.586
All damaging nsSNPs 67 0.794 148 0.448
Rare-damaging nsSNPs 65 0.657 145 0.375
All damaging nsSNPs and LOFs 76 0.467 165 0.316
Rare damaging nsSNPs and LOFs 67 0.444 162 0.656

Gene setebased SKAT analysis assessing the burden of rare variants in all candidate
cutaneous malignant melanoma genes in Parkinson’s disease cases and controls in 2
large independent cohorts from the International Parkinson’s Disease Genomics
Consortium.
Key: incl., including; excl., excluding; LOF, loss of function; N, number of variants
assessed; nsSNPs, nonsynonymous single nucleotide polymorphisms; Pskat, p-values
generated from SKAT analyses, correcting for gender, coverage metrics and principal
components (1e4).

a Variants were classified as rare if their minor allele frequency was below 1%.
b If germline variants have been described to be associated withmelanoma then it

is labeled “Germline”.
controls compared to cases. Individual variant analysis within both
data sets showed that no single variant within these genes was
statistically enriched in controls (Supplementary Tables 4 and 5).

Two genes, MAP2K2 and PTEN, had enrichment of carriers of
dominant variants in cases in both cohorts, suggesting that these
variants could increase PD risk; although this analysis again relates
to very rare alleles. Despite this, on an individual scale, all observed
dominant variants within these 2 genes in both data sets also
appeared enriched in cases (Supplementary Tables 4 and 5).

Under a recessive model, although biallelic carriers of rare-
damaging variants within the exome data were only seen in DCC,
no significant difference was observed. In the NeuroX data, biallelic
carriers appeared enriched in 4 genes, including DCC and ERBB4,
although none reached significance (Table 3). No association with
PD was detected for any individual rare variant in either cohort.

3.3. Rare variant meta-analyses

The overlap between the NeuroX and exome data is limited to 70
variants. Meta-analyses revealed a single significant association
with the p.A421A/splice variant in DCC (ORmeta ¼ 0.87, 0.76e0.99;
Pmeta ¼ 0.047) but was not significant following correction for
multiple testing correction (Supplementary Table 6).

Although no other significant association was seen, several
variants were seen having ORs >2. The very rare p.V275F variant in
TYR (encoding Tyrosinase) appears to have the largest effect
(ORmeta ¼ 4.13, 0.72e23.62). Although this carrier frequency of this
variant was higher in cases than controls in both cohorts (NeuroX:
0.12% vs. 0.02%; exome: 0.08% vs. 0%), we had limited statistical
power (further suggested by very large CIs) to find a significant
association even on combining cohorts (9/8095; 0.11% vs. 1/6533;
0.02%), which is likely due to the rareness of the p.V275F variant.
This very rare variant was corroborated by Sanger sequencing in 5/5
samples available (Supplementary Fig. 1). To further explore the
role of p.V275F, we assessed carrier frequencies from an additional
cohort of 642 PD exomes as well as data from ExAc consortium as a
replication step (http://exac.broadinstitute.org/) (Supplementary
Table 7). Consistent with the other cohorts, there was an excess of
V275F carriers in cases compared to controls (0.16% vs. 0.02%).
Including this data, meta-analysis demonstrated that >5-fold
increased PD risk in p.V275F carriers (ORmeta ¼ 5.42, 1.44e20.41;
Pmeta ¼ 0.012) (Supplementary Fig. 2). p.V275F was also investi-
gated in CMM exome sequencing data, and no difference between
CMM cases and controls was observed (2/1298; MAF ¼ 0.08% vs. 1/
685; MAF ¼ 0.07%). Although preliminary, the data suggests that
the p.V275F variant may have a role in PD etiology.

3.4. Known melanoma variant analysis

Four and 5 variants definitively linked with CMM (germline or
somatically) were present in exome and NeuroX data respectively.
These variants were removed but had little effect on dominant and
recessive models for all genes (data not shown). Individually, none
of these variants were significantly associated with PD. Meta-
analyses of the 2 variants present in both cohorts (p.A1276G in
GRIN2A and p.E318K in MITF) were not found to influence PD risk.

4. Discussion

Epidemiological evidence has consistently suggested a shared
susceptibility to CMM and PD (Bajaj et al., 2010; Becker et al., 2010;
Catalá-López et al., 2014; D’Amelio et al., 2004; Elbaz et al., 2002,
2005; Gao et al., 2009a; Kareus et al., 2012; Olsen et al., 2005,
2006; Ong et al., 2014; Wirdefeldt et al., 2014). In this study, we
investigated the role of rare variants in 29 CMM genes in PD risk

http://exac.broadinstitute.org/


Table 2
Comparison of the number of cases and controls, who harbor dominant rare nonsynonymous variants in the studied cutaneous malignant melanoma genes in the NeuroX and
exome Parkinson’s disease case-control cohorts

Gene NeuroX Exome

Cases (n ¼ 6875) Controls
(n ¼ 6065)

OR 95% CI Ploreg Cases (n ¼ 1255) Controls (n ¼ 475) OR 95% CI Ploreg

Carriers Freq Carriers Freq Carriers Freq Carriers Freq

AKT3 1 0.0007 1 0.0021 1.28 0.08e20.76 0.864
BAP1 7 0.0010 10 0.0016 0.59 0.22e1.55 0.284 4 0.0031 2 0.0042 0.95 0.15e6.14 0.953
BRAF 3 0.0023 1 0.0021 1.64 0.16e16.60 0.675
CDK4 14 0.0020 8 0.0013 1.49 0.62e3.59 0.370 0 0 4 0.0084
CDKN2A 37 0.0054 42 0.0069 0.75 0.48e1.17 0.210 8 0.0063 3 0.0063 1.18 0.27e5.15 0.826
DCC 198 0.0288 193 0.0318 0.91 0.74e1.11 0.334 58 0.0462 27 0.0570 0.83 0.49e1.40 0.478
EPHA2 210 0.0305 199 0.0328 0.91 0.75e1.12 0.380 56 0.0446 21 0.0443 0.86 0.49e1.48 0.579
ERBB4 50 0.0073 41 0.0068 1.02 0.67e1.54 0.942 17 0.0135 9 0.0190 0.63 0.26e1.55 0.316
GNA11 1 0.0007 1 0.0021 0.18 0.01e3.97 0.278
GNAQ
GRIN2A 254 0.0369 237 0.0391 0.94 0.78e1.12 0.490 74 0.0589 20 0.0422 1.08 0.63e1.87 0.774
GRM3 12 0.0017 5 0.0008 2.13 0.74e6.10 0.161 6 0.0047 3 0.0063 0.78 0.18e3.34 0.741
HRAS 2 0.0015 0 0
KIT 55 0.0080 70 0.0115 0.68 0.48e0.97 0.035 19 0.0151 10 0.0211 0.61 0.27e1.40 0.241
MAP2K1 2 0.0015 0 0
MAP2K2 3 0.0004 1 0.0002 2.08 0.22e20.03 0.526 1 0.0007 0 0
MC1R 299 0.0435 254 0.0419 1.04 0.87e1.23 0.678 4 0.0031 1 0.0021 2.02 0.22e18.50 0.536
MDM2 15 0.0022 8 0.0013 1.52 0.64e3.61 0.339
MITF 37 0.0054 41 0.0068 0.77 0.49e1.21 0.258 10 0.0079 5 0.0105 0.89 0.28e2.86 0.846
NRAS 1 0.0007 0 0
PDGFRB 213 0.0310 178 0.0293 1.05 0.86e1.29 0.625 44 0.0350 17 0.0359 1.04 0.56e1.94 0.909
PTEN 2 0.0003 1 0.0002 1.63 0.15e18.19 0.693 1 0.0007 0 0
STK11 52 0.0076 51 0.0084 0.88 0.59e1.30 0.518 1 0.0007 0 0
TERT 70 0.0102 53 0.0087 1.14 0.79e1.63 0.487
TP53 4 0.0006 10 0.0016 0.36 0.11e1.16 0.087 5 0.0039 2 0.0042 0.57 0.09e3.68 0.552
TRRAP 49 0.0071 49 0.0081 0.87 0.58e1.30 0.505 38 0.0302 12 0.0253 1.07 0.52e2.21 0.846
TYR 28 0.0041 19 0.0031 1.32 0.74e2.38 0.348 25 0.0199 11 0.0232 0.93 0.43e2.01 0.856
XRCC3 16 0.0023 10 0.0016 1.39 0.63e3.08 0.418 2 0.0015 2 0.0042 0.54 0.07e4.20 0.553
ZNF831 105 0.0153 96 0.0158 0.97 0.73e1.29 0.840

The number of cases harboring rare damaginga dominant-acting variants were compared against that observed in the controls in both the Neurox and exome data sets.
Values in italics represent genes which have more carriers in controls than in cases.
Values in bold represent genes which have more carriers in cases than in controls.
Key: carriers, number of carriers of dominant rare damaging variants; CI, confidence intervals; Freq, frequency; n, number of samples; OR, odds ratio; Ploreg, p-values generated
from logistic regression, correcting for gender, coverage metrics, and principal components (1e4).
aDamaging variants are defined as all loss of function variants and those predicted to be deleterious by �4 of the 6 in silico tools used.
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using 2 large independent cohorts (exome-sequenced and SNP-
genotyped) of PD cases and controls. Although our study is un-
derpowered, as indicated by large confidence intervals, we have not
identified a definitive overlap in genetic susceptibility in this large
sample set. There was no increased burden of rare variants across
all genes in either cohort. Gene-based comparisons identified a
significant enrichment of rare, damaging KIT variants in cases in the
NeuroX, data but this did not withstand correction for multiple
testing. There was a trend toward enrichment of rare damaging
Table 3
Cutaneous malignant melanoma genes demonstrating suggestive enrichment of cases ha
exome Parkinson’s disease case-control cohorts

Gene Exome

Cases (n ¼ 1255) Controls (n ¼ 475) OR 95% CI Ploreg

Carriers Freq Carriers Freq

DCC 3 0.0024 1 0.0021 1.54 0.14e16.96 0.72
EPHA2 d d d d d d d

ERBB4 d d d d d d d

MITF d d d d d d d

The number of cases harboring biallelic (homozygous or compound heterozygous) rare d
Neurox and exome data sets.
Key: carriers, number of carriers of biallelic rare damaging variants; CI, confidence interv
from logistic regression, correcting for gender, coverage metrics, and principal compone

a Damaging variants are defined as all loss of function variants and those predicted to
variants in GRM in the NeuroX cases, and ERBB4 and TYR in exome
cases. There was no enrichment of rare nsSNPs in either cohort
under a dominant model; however, there was a trend toward
increased risk for MAP2K2 and PTEN; and a trend toward reduced
risk for MITF and TP53. Recessive biallelic carriers of DCC variants
appeared over-represented in both cohorts. Interestingly, biallelic
carriers of ERBB4 variants were seen in 4/6875 NeuroX cases and 0/
6605 controls (Supplementary Table 8). Dominant mutations in
ERBB4 have previously been shown to cause amyotrophic lateral
rboring biallelic rare damaginga variants under a recessive model in the NeuroX and

NeuroX

Cases (n ¼ 6875) Controls
(n ¼ 6065)

OR 95% CI Ploreg

Carriers Freq Carriers Freq

6 2 0.0003 1 0.0002 1.60 0.14e17.75 0.702
2 0.0003 1 0.0002 1.52 0.14e16.98 0.733
4 0.0006 0 0 d d d

1 0.0001 0 0 d d d

amaginga variants were compared against that observed in the controls in both the

als; Freq, frequency; n, number of samples; OR, odds ratio; Ploreg, p-values generated
nts (1e4).
be deleterious by �4 of the 6 in silico tools used.



S.J. Lubbe et al. / Neurobiology of Aging 48 (2016) 222.e1e222.e7 222.e5
sclerosis (OMIM #615515) (Takahashi et al., 2013) and therefore
represents an attractive candidate gene for neurodegenerative
disease in which recessive rare mutations may be linked to PD.
Numerous individual variants were more common in cases rather
than controls in either/both cohorts, with several genes showing
high odds ratios on meta-analysis, although none was statistically
significant.

Many rare moderate to high penetrant gene mutations cause PD
(e.g., LRRK2 and PARK2) or substantially increase PD risk (e.g., GBA)
(Lubbe and Morris, 2014; Sidransky and Lopez, 2012). We investi-
gated whether our results are modified by the presence/absence of
known PD-linked variants within LRRK2, PARK2, and GBA. Removal
of LRRK2, PARK2, or GBA variant carriers from both our dominant
and recessive models did not change the overall results. No known
PD mutations were found in any of the TYR p.V275F carriers.

Poor statistical power is an issue for all studies designed to
uncover the genetics of complex diseases. It is becoming more
evident that this is an issue for studies aimed at rare variant iden-
tification, and it has been proposed that studies such as this might
need in excess of 25,000 discovery cases before adequate power is
achieved (Zuk et al., 2014). Based on MAF ¼ 1%, the exome data set
only had 18.7% power to detect a 2-fold enrichment, and even lower
power for even rarer MAFs. The NeuroX platform has been suc-
cessfully used to identify several causative mutations in PD and
other neurodegenerative diseases (Ghani et al., 2015). Despite being
well powered to detect associations, the failure to replicate findings
using the NeuroX platform is likely due to the fact that variants are
preselected to focus specifically on genes/variants of interest to
neurological disease (Nalls et al., 2015) and may therefore not be an
accurate representation of variation across the CMM genes studied.

The very rare TYR p.V275F variant wasmore common in PD than
controls in 3 independent data sets but not in CMM. Although all
TYR p.V275F samples were successfully validated by Sanger
sequencing, another potential concern is that not all variants
investigated were confirmed by Sanger sequencing. This is partic-
ularly relevant to those genes which have a recognized pseudogene
(e.g., BRAF and PTEN); however, stringent removal of reads mapping
to other exonic locations would have restricted the inclusion of less
secure genotypes in our analyses. The use of different capture
methods in the exome data set represents a potential source of bias;
however, stringent QC limited reads and variants seen in both
captures across all samples thereby ensuring comparable high-
quality genotype data. In addition, any systematic genotype bias
should be present throughout the entire cohort as the same capture
method was used for both cases and controls. The ExAc data
represent samples collected for disease- and population-specific
genetic studies and may therefore contain individuals with undi-
agnosed PD, which is likely to reduce any case-control differences.
This suggests that our observed estimate may represent the lower
bound of the true association.

The identification of a number of PD cases with the rare TYR
p.V275F variant is of interest. Pigmentation genes contribute to
CMM risk and have recently been proposed to contribute to PD
(Double et al., 2010; Gao et al., 2009b; Herrero Hernández, 2009a,
2009b; Pan et al., 2011). The exact role of TYR and other pigmen-
tation genes in CMM has yet to be fully elucidated. TYR activity
correlates well with skin color with biallelic variants, including
p.V275F, causing recessive oculocutaneous albinism 1B (OCA1B,
OMIM #606952) due to reduced TYR activity. None of the carriers
were found to harbor additional OCA1B-associated mutations and
are unlikely to have albinism. Known to be expressed in the human
substantia nigra (Xu et al., 1997), tyrosinase is the rate-limiting
enzyme in neuromelanin production as well as being responsible
for the oxidation of L-tyrosine into L-DOPA during dopamine syn-
thesis (Fedorow et al., 2005; Pan et al., 2011). It has been proposed
that neuromelanin has neuroprotective effects by preventing the
accumulation of toxins (Zecca et al., 2003). So, reduced TYR activity
may contribute to the loss of neurons due to increased cell toxicity
independent of a-synuclein (Hasegawa et al., 2006). Dopamine
receptor activation has been shown to reduce dopaminergic neuron
death (Nair et al., 2003; Vaarmann et al., 2013). Therefore, reduced
dopamine production may predispose nigral neurons to apoptosis.
The observed enrichment of p.V275F in PD cases along with the
recent demonstration that rare variants in GCH1 are associatedwith
PD (Mencacci et al., 2014) provide further support for variation in
the dopamine-biosynthetic pathway as being relevant to neuro-
degenerative PD.

5. Conclusions

Evidence for a shared genetic background between CMM and PD
has been provided by epidemiological studies. Biological evidence
of an overlap between the 2 diseases is further suggested by the fact
that melanocytes and neurons of the substantia nigra are both
pigmented cells derived from the neural crest (Gilbert, 2000); as
well as that mitochondrial dysfunction is already implicated in both
diseases (Devine et al., 2011). Based on our study, the role of rare
variants in CMM genes in PD etiology appears limited. However, the
observed excess of carriers of the very rare TYR variant p.V275F in
PD cases in 3 independent cohorts suggests an involvement in
disease pathogenesis and strengthens previous proposals linking
pigmentation genes to PD. In addition, the prospect of unidentified
changes, genetic or epigenetic, in unknown genes conferring
increased risk for both diseases cannot be excluded and remains to
be further investigated.
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