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ABSTRACT

Aims. We describe a newly-developed magnetohydrodynamic (MHD) code with the capacity to simulate the interaction of any arbi-
trary perturbation (i.e., not necessarily limited to the linearised limit) with a magnetohydrostatic equilibrium background.
Methods. By rearranging the terms in the system of MHD equations and explicitly taking into account the magnetohydrostatic equilib-
rium condition, we define the equations governing the perturbations that describe the deviations from the background state of plasma
for the density, internal energy and magnetic field. We found it was advantageous to use this modified form of the MHD equations
for numerical simulations of physical processes taking place in a stable gravitationally-stratified plasma. The governing equations are
implemented in a novel way in the code. Sub-grid diffusion and resistivity are applied to ensure numerical stability of the computed
solution of the MHD equations. We apply a fourth-order central difference scheme to calculate the spatial derivatives, and implement
an arbitrary Runge-Kutta scheme to advance the solution in time.
Results. We have built the proposed method, suitable for strongly-stratified magnetised plasma, on the base of the well-documented
Versatile Advection Code (VAC) and performed a number of one- and multi-dimensional hydrodynamic and MHD tests to demon-
strate the feasibility and robustness of the code for applications to astrophysical plasmas.

Key words. methods: numerical – magnetohydrodynamcs (MHD) – plasmas – Sun: general

1. Introduction

Plasma embedded in magnetic field can often be described by
the equations of compressible magnetohydrodynamics (Alfvén
1942). Due to the highly non-linear nature and intrinsic com-
plexity of these equations, numerical simulations are often the
only way to obtain an in-depth knowledge about macroscopic
physical processes taking place in magnetised non-uniform
turbulent plasmas (e.g., Chan et al. 1982; Nordlund 1985;
Brandenburg 2003).

Various numerical schemes have been proposed for
MHD simulations and are circulating in the literature. The wide
range of methods is mainly down to their challenging imperfect-
ness: on the one hand, one has to care about the numerical stabil-
ity of a solution, whereas on the other hand, the solution has to
be physically correct. Without pretending to construct the only
perfect method to solve the MHD equations numerically, we aim
to find a technique that will allow us to perform simulations of
non-linear processes in a magnetised plasma with the presence
of external gravitational field.

In general, the numerical schemes working on a spatial do-
main may be divided into several types based on the way the
schemes keep up with numerical stability and resolve the physi-
cal processes within the domain. Riemann type solvers success-
fully exploit an analytical solution obtained locally (Roe 1981;
Dai & Woodward 1994). The need to develop a new Riemann
solver when additional physics is necessary (e.g., for new types
of wave modes) is often called to be the main disadvantage of
these numerical schemes (Nordlund & Galsgaard 1995). Total
variation diminishing (TVD) schemes (Harten 1983; van Leer
1979; Tóth 1996) aim at maintaining numerical stability of the
solution by preserving its monotonicity, however, these schemes

are often too diffusive, which results in the computational solu-
tion being smeared over the spatial domain (Tóth et al. 1998).

The possibility of controlled diffusion acting only on small
scales, introduced to assure numerical stability of a compu-
tational solution at the lowest possible spatial scales for tur-
bulent high Reynolds number plasma, has been demonstrated
and is used widely (Caunt & Korpi 2001; Stein & Nordlund
1998; Vögler et al. 2005; Vögler 2003; Nordlund & Galsgaard
1995). However, in the case of a stable, gravitationally-stratified
plasma, especially in regions of strong stable stratification that
occurs, for example, in the upper photosphere or at the transition
region of the Sun, this approach, as well as others, such as TVD
or Riemann solver based numerical schemes, introduce a small
but unavoidable large scale numerical diffusion. Consequently,
this diffusion often leads to the violation of the desired magneto-
hydrostatic equilibrium in the model and to the generation of an
unphysical flux tending to smear the background model (Boris &
Book 1973; Tóth 1996). Flux corrected transport (FCT) schemes
with strong anti-diffusion terms have shown a better behaviour
(Boris & Book 1973; Erdélyi & James 2004). However, due
to the larger and multi-dimensional numerical stencil (Zalesak
1979), these schemes may be more difficult for domain decom-
position for parallelisation purposes. Also, it has been reported
that some spurious oscillations may occur when using such a
scheme (Tóth 1996).

The inevitable diffusion may forbid the robust advancement
of the simulation of a non-linear phenomenon in gravitationally-
stratified plasma, causing MHD simulations of such a plasma
often to be referred to as “black art”. This is definitely not the
case for linear MHD simulations, since they mainly describe
small deviations from a stable background state (Khomenko &
Collados 2006; Parchevsky & Kosovichev 2007). Mixing the
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two approaches of hyperdiffusion and linearised MHD simula-
tions, and removing the linear limit requirement, we aim to con-
struct a novel method that will allow us to perform simulations
of both linear and non-linear processes in strongly-stratified me-
dia from fluids to magnetised plasmas.

We describe a numerical MHD tool that allows us to simu-
late the interaction of any arbitrary perturbation (not necessarily
limited to the linearised regime) with the background plasma
in magnetohydrostatic equilibrium. The MHD equations for
the perturbations of density, internal energy and magnetic field
strength are redefined by taking into account the magnetohydro-
static equilibrium condition. Hyperdiffusion and hyperresistivity
are implemented to achieve numerical stability of the computed
solution of the MHD equations. We found it advantageous to use
this, apparently more complex form of the MHD equations for
numerical simulations of processes in a stable gravitationally-
stratified plasma and implemented the method on the base of
the well-known Versatile Advection Code (VAC; Tóth 1996). A
number of standard tests are performed to demonstrate the feasi-
bility and robustness of the technique. The imminently planned
scientific application of the code is to use it in studies of propaga-
tion of (magneto)acoustic waves in the solar sub-photosphere in
the presence of time- and spatially-dependent background flows
or sound speed perturbations (Shelyag et al. 2006, 2007), and
conversion of linear to non-linear waves in the stratified solar
corona (Fedun & Erdélyi 2008).

The paper is organized as follows. In the next section we de-
scribe the modified MHD equations and their proposed numeri-
cal implementation. Numerical tests of the code are presented in
the third section of the paper. A range of future use of the method
is discussed briefly in the last section.

2. Equations and numerical methods

The governing equations of full ideal compressible MHD in their
conservative form are:

∂ρ

∂t
+ ∇ · (uρ) = 0, (1)

∂(ρu)

∂t
+ ∇ · (uρu − BB) + ∇pt = ρg, (2)

∂e

∂t
+ ∇ · (ue − BB · u + upt) = ρg · u, (3)

∂B

∂t
+ ∇ · (uB − Bu) = 0, (4)

pk = (γ − 1)

(

e −
ρu2

2
−

B
2

2

)

, (5)

and

pt = pk +
B

2

2
, (6)

where ρ is the density, u is the velocity vector, e is the total en-
ergy density per unit volume, B is the magnetic field vector, pk is
the kinetic gas pressure, pt is the total (magnetic + kinetic) pres-
sure, γ is the gas adiabatic index, and g is the external gravita-
tional field vector. In these equations, the magnetic permeability
of the plasma is set to unity. Equation (5) in the MHD system is
the equation of state of an ideal gas, which connects the inter-
nal energy of the gas to its kinetic pressure. There are no terms

of physical viscosity and magnetic resistivity included in the de-
scription, however they can be added to the system.

Without loss of generality we split the variables ρ, e, and B

into their background and perturbed components:

ρ = ρ̃ + ρb, (7)

e = ẽ + eb, (8)

and

B = B̃ + Bb, (9)

where the tilde denotes a perturbed quantity. We assume that the
background components of the variables ρb, eb and Bb do not
change in time.

Also, we assume a magnetohydrostatic equilibrium of the
background state of the magnetised plasma in the computational
domain with the presence of an external gravity field g:

∇pkb + ∇
B

2
b

2
− (Bb∇) Bb = ρbg. (10)

Equation (10), describing the magnetohydrostatic equilibrium,
is now scalarly multiplied by the velocity vector u:

⎛

⎜

⎜

⎜

⎜

⎝

∇pkb + ∇
B

2
b

2
− (Bb∇) Bb

⎞

⎟

⎟

⎟

⎟

⎠

· u = ρbg · u. (11)

Substracting Eqs. (10) and (11) from the equations of momen-
tum Eq. (2) and energy Eq. (3), and adding the diffusive source
terms D to the right-hand side of the equations (they are intro-
duced for numerical stability reasons and will be described be-
low), the system of MHD equations for an arbitrary perturbation
of density, energy, and magnetic field can be written:

∂ρ̃

∂t
+ ∇ ·

[

u (ρb + ρ̃)
]

= 0 + Dρ (ρ̃) , (12)

∂
[

(ρb + ρ̃) u
]

∂t
+ ∇ ·

[

u (ρb + ρ̃) u − B̃B̃

]

−∇
[

B̃Bb + BbB̃

]

+ ∇p̃t = ρ̃g + Dρv
[

(ρ̃ + ρb) u
]

, (13)

∂ẽ

∂t
+ ∇ ·

[

u (ẽ + eb) − B̃B̃ · u + up̃t

]

− ∇
[(

B̃Bb + BbB̃

)

· u
]

+ptb∇u − BbBb∇u = ρ̃g · u + De (ẽ) , (14)

∂B̃

∂t
+ ∇ ·

[

u(B̃ + Bb) − (B̃ + Bb)u
]

= 0 + DB

(

B̃

)

, (15)

where p̃t is the perturbation to the total pressure

p̃t = p̃k +
B̃

2

2
+ Bb B̃, (16)

or, in terms of perturbed energy density per unit volume ẽ,

p̃k = (γ − 1)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ẽ −
(ρb + ρ̃) u

2
− Bb B̃ − B̃

2

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (17)

and

p̃t = (γ − 1)

[

ẽ −
(ρb + ρ̃) u

2

2

]

− (γ − 2)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

BbB̃ +
B̃

2

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

· (18)
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Here ptb denotes the total background pressure

ptb = pkb +
B

2
b

2
, (19)

which, in terms of background conservative variables, gives

pkb = (γ − 1)

⎛

⎜

⎜

⎜

⎜

⎝

eb −
B

2
b

2

⎞

⎟

⎟

⎟

⎟

⎠

, (20)

and

ptb = (γ − 1) eb − (γ − 2)
B

2
b

2
· (21)

This form of the MHD equations, despite being perhaps more
complicated, is in fact much more convenient for numerical
purposes, since they do not govern the behaviour of the entire
plasma itself. Instead, they describe the interference of a per-
turbation with an exact equilibrium background state, and they
have no terms with background variables without having multi-
plied by velocity or its derivative. Also, it is straightforward to
see that the form of the equations with respect to the perturbed
variables ρ̃, ẽ, and B̃ remains unchanged. Thus, setting the back-
ground variables to zero, the equations turn into their canonical
form, which will be very useful for testing the code. Another
advantage of this form of the MHD equations is that there is a
certain amount of freedom in setting the background properly,
and less care might be taken about the numerical precision of
the background state, since the equations above do not have any
forces or fluxes inherited from the background. However, this
advantage has to be exploited carefully, since an improper non-
equilibrium background will still produce a numerical solution
that may not even be completely physical.

A fourth order central difference scheme is applied for the
spatial derivatives and second or fourth order Runge-Kutta time
advance scheme is implemented in the code. Central difference
schemes are conservative due to their symmetry, and conserve
the divergence of magnetic field ∇ ·B (Vögler et al. 2005). Also,
central difference schemes applied to hyperbolic equations al-
most always produce a spurious oscillatory behaviour, caused
by the accumulation of energy on scales smaller than the grid
cell size, and thus some additional stabilisation of the numerical
scheme is necessary.

Numerical diffusion and resistivity are often used to stabilise
computational solutions. The method has already proven its ro-
bustness and feasibility (Stein & Nordlund 1998; Caunt & Korpi
2001; Vögler et al. 2005). Even though it is described in detail in
the literature, we recall briefly the main points for completeness
and rewrite the method here in the terms we use to define the
system of MHD Eqs. (12)−(15).

The term D in the energy equation consists of three parts:

De = Ddiffusive
e + Dviscous

e + Dohmic
e , (22)

which describe thermal diffusion, viscous and ohmic heating of
plasma, respectively.

The hyperdiffusive terms for scalar quantities are written as
follows:

Dρ =
∑

i

∂

∂xi

νi (ρ)
∂

∂xi

ρ̃, (23)

Ddiffusive
e =

∑

i

∂

∂xi

νi (e)
∂

∂xi

ǫ̃ . (24)

The derivatives in Eqs. (23) and (24) are applied in a way that
the outer derivative is taken forward, while the inner derivative
is taken backward, and the viscosity coefficient is interpolated
backward on the grid cell interface. Thus, the diffusion terms
remain spatially centred. In Eq. (24), ǫ̃ is the thermal energy per-

turbation ǫ̃ = ẽ − (ρ̃ + ρb)u2/2 − B̃
2
/2.

The hyperviscous terms for vector quantities are more com-
plicated, i.e.:

Dρu = ∇ · τ, (25)

and

DB = −∇ × E. (26)

The hyperviscous and ohmic heating terms in Eq. (22) are set as
follows:

Dvisc
e = ∇ · (u · τ) (27)

and

Dohmic
e = ∇ · (B × E) . (28)

The viscous tensor τ is given by

τkl =
1

2
(ρ̃ + ρb)

[

νk (vl)
∂vl

∂xk

+ νl (vk)
∂vk

∂xl

]

, (29)

the vector quantity E is defined as

Ek = ǫklm

[

νl
(

B̃m

) ∂B̃m

∂xl

]

, (30)

where ǫklm is the Levi-Civita symbol, and the summation is over
l and m indices.

The derivatives in the expressions Eqs. (25)−(28) are such
that if the direction of the outer derivative is the same as the di-
rection of the inner derivative, then they are calculated using the
same principle as the derivatives in Eqs. (23)−(24). If the direc-
tion of the outer derivative is different from the direction of the
inner derivative, then both derivatives are evaluated using a sec-
ond order central difference scheme, and the viscous coefficients
are interpolated to the grid cell centres.

The viscous coefficient ν for the variable u in the ith direction
is expressed as

νi (u) = cu
2∆xivt

max
∣

∣

∣∆3
i
u
∣

∣

∣

max
∣

∣

∣∆1
i
u
∣

∣

∣

+ cu
1νs, (31)

where vt = va + vs is the sum of maximum Alfvén and sound
speeds in the domain, operators ∆3 and ∆1 are the forward dif-
ferences of the third and first order taken in the ith direction, and
∆xi are the spatial resolutions. The maxima are taken over five
grid cell stencils in the ith direction. Coefficients cu

1
and cu

2
can be

defined separately for each variable and are selected in the way
that the hyperdiffusion ensures numerical stability of the solu-
tion, and the solution is not influenced strongly by the diffusion.
The shock viscosity νs is defined in the following way:

νs = ∆x2
i |∇ · u| , ∇ · u ≤ 0,

νs = 0, ∇ · u > 0, (32)

and ensures that regions with strong compression remain re-
solved by the numerical scheme (von Neumann & Richtmyer
1950).



658 S. Shelyag et al.: MHD code for gravitationally-stratified media

Fig. 1. Standard Riemann shock tube problem
snapshot at time t = 0.2. The density, velocity,
thermal energy density per unit mass and pres-
sure are shown.

The time step is limited by the standard CFL condition
and by the hyperdiffusion time scale, given by the following
expression:

∆t =
k∆x2

max (ν)
· (33)

Here the coefficient k is an equivalent to the constant coefficient
of the CFL condition and is less than one to ensure the stability
of the solution.

The above outlined approach of variable separation also al-
lows the use of more simple boundary conditions than it was
necessary when the non-split variables have been implemented.
The “transparent” boundary condition for the energy perturba-
tion now does not contain the requirement of magnetohydro-
static equilibrium, and can be simply written as ∂ẽ/∂x = 0 at
the boundary. This boundary condition, in terms of the values of
the function defined on the grid, can be expressed as follows:

fN+i = fN−i, (34)

where N is the position of the last grid cell in the working part of
the domain, and the function is symmetrically copied from the
working part of the domain to the ghost cells. Two layers of the
ghost cells are necessary for the fourth-order central difference
numerical scheme used in the code.

Similar boundary conditions are introduced for the other
variables, however, in cases when a strong gradient of the back-
ground density, thermal energy, or magnetic field is peculiar to
the model, we found it reasonable to apply the boundaries writ-
ten for the primitive variables rather than for the conservative
ones to improve the robustness of the code. Also, it should be
mentioned that it is definitely possible and may even be neces-
sary to define some higher order boundary conditions for higher
precision calculations.

We use the MPI VAC code (Tóth 1996) as the basis for the
implementation of the above described procedure. This version
of VAC already has the MPI domain decomposition extension
which, however, needed to be expanded since the hyperdiffusion
and hyperresistivity modules require one additional grid cell to
be copied from each neighbouring subdomain due to a larger
7-point stencil applied there.

3. Numerical tests

In order to demonstrate the ability of the approach outlined in the
previous section to solve the equations of magnetohydrodynam-
ics accurately, we have performed a number of standard one-,
two- and three-dimensional hydrodynamic and magnetohydro-
dynamic tests and compare the output with known analytical so-
lutions or with results obtained earlier by alternative numerical
schemes.

3.1. Standard Riemann shock tube problem

The standard one-dimensional Riemann shock tube problem is
simulated as the first stage of testing (Sod 1978; Caunt & Korpi
2001). The initial conditions contain a discontinuity located at
x = 0.5 in this problem. To the left of the discontinuity, pressure
p1 = 1, density ρ1 = 1, whereas pressure and density to the
right of the discontinuity are p2 = 0.1, and ρ2 = 0.125, and
the compression ratio is 10. The adiabatic index γ is set to 1.4.
Magnetic field is set to zero. Density, velocity, thermal energy
density per unit mass, and pressure for time t = 0.2 are shown in
Fig. 1. The physical domain size is equal to unity, the resolution
is 256 grid cells in the direction of the shock wave propagation.

Figure 1 shows that the shock front is resolved with 3−4 grid
cells, however, some unavoidable smoothing in the contact dis-
continuity and the rarefaction wave is present. Despite this fact,
the amplitudes and the positions of the shock tube features are
correct and agree well with other tests shown in the literature
(e.g. Sod 1978; Caunt & Korpi 2001). Also, some small am-
plitude oscillations can be seen behind the shock front. These
oscillations do not grow in time since they are successfully sup-
pressed by the hyperdiffusion.

3.2. Strong shock tube problem

The strong shock tube test (Fig. 2) is more difficult for the nu-
merical scheme. This case differs from the weak Riemann shock
tube test described above by setting p1 = 10 and ρ1 = 10, thus
the compression ratio is now 100. Again, most of the shock fea-
tures are represented and resolved well with the simulation. The
shock front is smeared over 3−4 grid cells as in the previous

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809800&pdf_id=1
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Fig. 2. Strong shock tube problem snapshot,
taken at the time t = 0.12. Density, velocity,
thermal energy density per unit mass and pres-
sure are shown.

Fig. 3. Snapshot of Brio & Wu problem, taken
at the time t = 0.11. Density, velocity, thermal
pressure, and the y component of magnetic field
are shown.

case. Small scale oscillations are more pronounced, however, the
hyperdiffusion still ensures the stability of the model. It should
also be mentioned that this realisation of the hyperdiffusion has
resolved the high-energy plateau around x = 0.8 more success-
fully, which was the problem for some previous attempts (Caunt
& Korpi 2001).

3.3. Brio & Wu shock tube

Next, a test of the formation of magnetohydrodynamic shock
waves is performed. The initial condition has a discontinuity at
x = 0.5. Parameters to the left and right of the discontinuity are
set as: p1 = 1, p2 = 0.1, ρ1 = 1, ρ2 = 0.125, By1 = 1, By2 = −1,
Bx = 0.75. The adiabatic index γ is set to 2. The grid resolution
is set to 800 grid cells to precisely compare our results with the
original work of Brio & Wu (1988). Figure 3 shows density, ve-
locity in the direction across the discontinuity, gas pressure and
the component of magnetic field along the discontinuity taken
at t = 0.11. The slow compound wave at x = 0.475 and the

contact discontinuity at x = 0.55 are resolved well. The slow
shock at x = 0.65 is also well resolved within 3−4 grid points,
and the slow shock and the fast rarefaction wave at x = 0.85 and
x = 0.9 are noticeable. The amplitudes of the waves in the pre-
sented simulations are in perfect agreement with the amplitudes
given by Brio & Wu (1988).

3.4. Ország-Tang vortex

The Ország-Tang vortex (Ország & Tang 1979) is a more com-
plicated test often used to validate a full non-linear MHD solver
in two dimensions. A complex two-dimensional interaction of
various types of non-linear shock waves travelling at different
speeds and transition to the MHD turbulence regime imply rigor-
ous requirements for the resolution and stability of the numerical
scheme used to perform the test.

The horizontal and vertical dimensions of the domain are set
to unity, and the resolution of the simulation box is 256× 256 for
this test problem. The adiabatic index is set to 5/3, the density

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809800&pdf_id=2
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Fig. 4. Snapshot of the plasma density of the Ország-Tang vortex prob-
lem simulation at t = 0.5.

and gas pressure are constants, i.e., ρ = 25/36π and p = 5/12π,
the magnetic field Bx = −B0 sin(4πy); By = B0 sin(2πx); where

B0 = 1/
√

4π (the magnetic permeability is set to unity); the ini-
tial velocity is Vx = sin(2πy); Vy = sin(2πx). The boundaries of
the domain are periodic. Also, to validate the approach of split-
ting the variables into their background and perturbed compo-
nents, we assign the background variables to contain the density,
magnetic field, and magnetic and thermal energy, leaving only
the kinetic component of the total energy in the perturbed com-
ponent. Figure 4 shows the density snapshot at the time t = 0.5.
The features in the image show precise agreement with earlier
simulations by, e.g., Ryu et al. (1995), Dai & Woodward (1998)
or by Londrillo & Del Zanna (2000).

3.5. Strong explosion in 3D non-uniform media

Kontorovich & Shelyag (2002) have calculated analytically the
shape of a shock caused by a strong uniform off-centre explosion
in a non-uniform medium with background density dependence

ρb = C1/r
2 +C2. (35)

We have compared the numerical solution produced by the code
with the analytical solution, derived by Kontorovich & Shelyag
(2002). The numerical setup for the problem is as follows. A
three-dimensional box with physical size of 30003 light years
is resolved by 1923 grid cells. The explosion, represented by
adding 1048 J of thermal energy to the perturbed energy den-
sity variable ẽ, is located at 500 Ly off the centre of the den-
sity inhomogeneity, located in the centre of the simulation box.
In Eq. (35), the coefficient C2 represents the density of the in-
terstellar medium far from the density singularity, and is equal
to 10−22 kg/m3. The coefficient C1 characterises how the den-
sity increases towards the centre of the domain and is set in the
way that the density at the distance of 0.5 Ly from the centre
is equal to 10−21 kg/m3. The adiabatic index γ is 5/3. A snap-
shot of the three-dimensional shape of the shock front is shown
in Fig. 5. The two-dimensional cut through the axis defined by
the explosion point and the centre of the domain is shown in
Fig. 6. The data for Figs. 5 and 6 are taken at t ∼ 30000 years,
thus the figures can be directly compared with Fig. 3 in

Fig. 5. Strong shock front caused by the explosion with energy e =
1048 J in non-uniform media. The figure shows the shape of the shock
at the time t ∼ 30 000 years.

Fig. 6. Two-dimensional shape of the shock front. The explosion, which
caused the shock wave, is marked by cross at the point with the coordi-
nates (0,−0.5) in the figure.

Kontorovich & Shelyag (2002). The comparison shows a per-
fect agreement with the analytical solution.

3.6. Conversion of linear waves into non-linear waves
in the magnetised and stratified 3D solar atmosphere

Since we are planning to use the code presented here mainly
in applications to study the physics of the magnetically-coupled
solar interior, atmosphere and corona, we performed test sim-
ulations of conversion of linear waves into non-linear ones for
non-magnetic and magnetic models of the strongly-stratified
solar photosphere, chromosphere, transition region and corona
(Fedun & Erdélyi 2008). For these simulations, the background
density is taken from the VAL IIIC model (Vernazza et al.
1981) for the lower solar atmosphere that is extended towards
the solar corona using the model by McWhirter et al. (1975).
Then the (magneto−) hydrostatic equilibrium condition Eq. (10)
is applied to obtain the background pressure ptb. Next, the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809800&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809800&pdf_id=5
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Fig. 7. Snapshot of the vertical velocity structure of the simulation of
the wave propagation and conversion in the non-magnetic solar chro-
mosphere and corona taken at t = 230 s. Conversion of the linear waves
into non-linear ones is seen at the height above z = 2000 km.

background internal energy density eb is determined according
to Eq. (21). The physical size of the simulation domain is 8 Mm
in the vertical direction and 8−8 Mm in both horizontal direc-
tions. The resolution is 1024 × 128 × 128 grid points. A har-
monic acoustic driver is implemented just above the temperature
minimum level of the initial equilibrium. The driver acts verti-
cally with the period T = 30 s. The spatial extent of the driver is
a smoothed Gaussian ellipsoid with the vertical axis of 0.1 Mm
and horizontal axes of 3 Mm each.

The structure of the vertical velocity component is shown
in Fig. 7 as two orthogonal vertical cuts through the three-
dimensional computational domain. The snapshot captures the
propagation of linear acoustic waves generated by the driver in
the lower part of the non-magnetised solar chromosphere and
their conversion into non-linear waves in the upper region of the
model, caused by the decrease of the density and pressure there.

The vertical component of the velocity in the computational
domain taken along the intersection of the cuts in Fig. 7 is shown
in Fig. 8. The non-linear character of the wave propagation is
clearly observed above the transition region (z > 2 Mm) in
the figure. Also, note a change in the linear propagation of the
acoustic wave at the height z = 1.5 Mm that is caused by a par-
tial reflection of the upward-propagating waves from the tran-
sition region. The qualitative comparison of earlier studies in
one- (De Pontieu et al. 2004), two- (Erdélyi et al. 2007; Malins
& Erdélyi 2007) and the three-dimensional (Fedun & Erdélyi
2008), non-magnetic simulations with our test results shown
here are in a very good agreement.

Finally, for testing the code for MHD wave propagation in
a vertically-stratified plasma embedded in magnetic field, we
select the magnetic field configuration to be a straight vertical
cylinder with radius of 1.2 Mm. The strength of the magnetic
field imposed in the simulation is Bz

b
= 4 G, which corresponds

to plasma β = 0.29 at the upper layers of domain representing
the solar corona.

Figure 9 demonstrates that the magnetic field acts as an ex-
cellent waveguide for the magneto-acoustic oscillations gener-
ated by the photospheric driver in the model. In agreement with

Fig. 8. Vertical velocity profile, taken at the centre of the simulation box,
from the simulation of the wave conversion in the solar corona taken at
t = 230 s. The conversion of linear waves into non-linear occurs at
z = 2000 km.

Fig. 9. Snapshot from the simulation of the wave propagation and con-
version in magnetic solar chromosphere and corona taken at t = 209 s.
The magnetic field, which is sketched by a cylinder in the figure, acts
as a waveguide and suppresses the energy propagation outside the mag-
netic flux concentration.

previous simulations (e.g., Fedun & Erdélyi 2008), the magnetic
cylinder suppresses the propagation of the waves laterally out-
wards from the magnetic field region, thus causing larger ampli-
tudes of the vertical velocity profile (Figs. 9 and 10) generated
by the driver of the same amplitude as in the case of the non-
magnetic simulation (Figs. 7 and 8). Even a quick qualitative
comparison confirms this expectation clearly.

4. Discussion

We have presented a number of test simulations of the fully
non-linear MHD code developed on the basis of the well-known
VAC platform. The code, as presented here, is able to handle
all standard tests well, and the produced numerical solutions are
identical either to the known analytical solutions wherever such
solutions are available, or to known numerical results of other
authors.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809800&pdf_id=7
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Fig. 10. Vertical velocity profile taken at the centre of the simulation box
from the simulation of the wave conversion in the solar corona taken at
t = 209 s. The conversion of linear waves into non-linear occurs at
z = 2000 km.

The main advantage of the proposed numerical technique is
that the code allows us to simulate robustly the macroscopic pro-
cesses in gravitationally stratified (non−)magnetised plasmas.
Not all of the presented tests are realisable with conventional
numerical schemes. Particularly, the test with the strong shock
wave in non-uniform media was not possible due to the enhanced
numerical diffusion of the density inhomogeneity in the domain.
Because of the intrinsic robustness of the proposed re-written
equations derived for the perturbed variables, it is now achiev-
able to implement a more complicated, e.g., analytically-defined
magnetic field configurations such as potential or self-similar
magnetic fields (e.g. Gordovskyy & Jain 2007), or even to use
real magnetic structures extrapolated from the observational data
(for example, derived from MDI instrument of the SOHO satel-
lite; Marsh & Walsh 2006).

It should be pointed out that the code has no limitations
of simulation length in time imposed by complications orig-
inating from the upper boundary, as, for example, occurred
in similar simulations of the solar atmosphere of Hasan &
van Ballegooijen (2008), where up to the first 130 s our test com-
putations are in excellent agreement with their results. Neither
do we need to implement special procedures, as has been the
case in, e.g., Khomenko & Collados (2006), to treat the upper
boundaries.

Since we are planning to use the code mainly for the forward
modelling of helioseismological processes and for the coupling
processes in the solar interior, photosphere, and corona, we have
demonstrated the ability of the code to perform simulations of
linear and non-linear wave propagation in the strongly-stratified
solar atmosphere with the presence of magnetic field therein.
Strictly speaking, it might not be necessary to have a non-linear
MHD solver for helioseismological applications due to the lin-
ear nature of the solar acoustic modes, however, the code is able
to properly handle this kind of physical problem, and additional
filtering (Hanasoge et al. 2007) is not expected to be necessary
to produce forward simulated data with high signal to noise ra-
tios. Of course, when a magnetic coupling of the solar interior to
the corona is present, non-linearity is unavoidable.

Finally, we note that there are also foreseen encouraging
ways to expand the code due to its modular structure inherited

from VAC, which allows us to modify and add new physics
easily. To treat localised regions with strong stratification more
precisely, non-uniform and time-dependent mesh should be in-
cluded by using spatially and temporarily dependent weight co-
efficients in the finite difference representation of the derivatives
in the MHD equations. For more involved small-scale simula-
tions of the solar interior, atmosphere and corona, where the
ionisation flux is large and cannot be neglected anymore, the
equation of state should be expanded to incorporate the descrip-
tion of ionization processes in the plasma. Also, simplified con-
stant flux boundary conditions might be replaced with more in-
volved ones using, for example, the method of characteristics
(Rosenthal et al. 2002; Hansteen 2007).
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