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Abstract 

This paper presents the application and calibration of the recently proposed Restricted 

Stochastic User Equilibrium with Threshold model (RSUET) to a large-scale case-study. The 

RSUET model avoids the limitations of the well-known Stochastic User Equilibrium model 

(SUE) and the Deterministic User Equilibrium model (DUE), by combining the strengths of the 

Boundedly Rational User Equilibrium model and the Restricted Stochastic User Equilibrium 

model (RSUE). Thereby, the RSUET model reaches an equilibrated solution in which the flow 

is distributed according to Random Utility Theory among a consistently equilibrated set of 

paths which all are within a threshold relative to the cost on the cheapest path and which do 

not leave any attractive paths unused. 

Several variants of a generic RSUET solution algorithm are tested and calibrated on a large-

scale case network with 18,708 arcs and about 20 million OD-pairs, and comparisons are 

performed with respect to a previously proposed RSUE model as well as an existing link-

based mixed Multinomial Probit (MNP) SUE model. The results show that the RSUET has very 

attractive computation times for large-scale applications and demonstrate that the threshold 

addition to the RSUE model improves the behavioural realism, especially for high congestion 

cases. Also, fast and well-behaved convergence to equilibrated solutions among non-universal 

choice sets is observed across different congestion levels, choice model scale parameters, and 

algorithm step sizes. Clearly, the results highlight that the RSUET outperforms the MNP SUE in 

terms of convergence, calculation time and behavioural realism. The choice set composition is 

validated by using 16,618 observed route choices collected by GPS devices in the same 

network and observing their reproduction within the equilibrated choice sets generated by 

the RSUET model. Relevantly, the RSUET model is very successful in reproducing observed 

link counts.  
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1 Introduction and Motivation 

As the need for large-scale transport models has increased in recent years in coincidence with 

the development of metropolitan, regional and national models worldwide, the need for 

computationally efficient and behaviourally realistic traffic assignment models stands tall.  

Most traffic assignment models adopt variants of either the Deterministic User Equilibrium 

model (DUE, Wardrop, 1952) or the Stochastic User Equilibrium model (SUE, Daganzo and 

Sheffi, 1977) framework. The DUE has been widely applied in large-scale applications, mainly 

because of its computational attractiveness in that it distinguishes implicitly between 

potentially used routes and definitely unused routes, thereby circumventing the 

computationally intractable enumeration of the universal choice set. However, the drawback 

of the DUE is that it is based on an assumption of perfect traveller rationality and choice of 

only minimum cost paths, an implausible assumption especially in cases where there exist 

paths with costs only slightly greater than the minimum. The SUE removes this non-realistic 

assumption via the adaptation of Random Utility Maximisation (RUM) models. Under the 

commonly adopted assumptions on the perception errors, RUM models suffer from the 

theoretical need to allocate flow to all available alternatives (paths), no matter how non-

sensible they may be (Watling et al., 2015). This not only constitutes a behavioural limitation, 

but also poses some distinct challenges for the theoretical consistent integration of state-of-

the-art RUM models into practical large-scale traffic assignment problems. Moreover, the 

universal choice set may consist of millions of routes for each OD-pair and hence it becomes 

intractable to enumerate and assign traffic to the universal choice set. Consequently, SUE is 

usually calculated on a subset of the universal choice set in real-life applications, and this 

induces a theoretical inconsistency with the underlying model framework. The generation of 

the subset is not trivial, as the SUE does not provide any conditions/requirements to help 

distinguishing between relevant and irrelevant routes. Rather, the issue of sampling the 

choice sets in such a way that they are composed of all relevant alternatives, while leaving out 

non-relevant alternatives, is left to the modeller (Bovy, 2009; Prato, 2009). 

The limitations of the DUE and SUE models have led to the development of alternative models. 

The Boundedly Rational User Equilibrium (BRUE) model relaxes the assumption of perfect 

rationality in the DUE, allowing for the use of some non-optimal paths within an excess cost 

within some often relative Ǯindifference bandǯ to the cost of the minimum cost path. A recent 

review (Di and Liu, 2016) covers the BRUE from its original formulation (Mahmassani and 

Chang, 1987) to its most recent mathematical formulation (Di et al., 2013). The BRUE model 

assumption implies the possibility to obtain solutions using non-optimal paths, and typically 

the result is a space of possible flow solutions for possible path sets rather than a unique flow 

solution for a unique path set.  

More recently the Restricted Stochastic User Equilibrium model was proposed (RSUE, Watling 

et al., 2015), which removes the need to use all paths in SUE. The RSUE allows to determine 

consistently unused alternatives from the equilibrium conditions while allocating flow among 
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used paths according to Random Utility Theory. Thus, a SUE-style flow solution is found, 

however among an internally equilibrated and consistent non-universal choice set.  

Motivated by the BRUE and RSUE, Watling et al. (2016) proposed the Restricted Stochastic 

User Equilibrium with Threshold (RSUET) model that combines the advantages of these two 

approaches, in terms of the behavioural realism they add. From the BRUE model, it uses the 

notion that there might be a tolerance on how large detours/deviations from the optimal 

equilibrium cost that route travellers would consider, and that routes outside the tolerance 

would not be used. From the RSUE model, it uses the possibility to integrate random utility 

theory (for splitting traffic between used alternatives) with the possibility to exclude some 

unreasonably costly routes from the equilibrated choice set in a consistent way. In this way, 

the RSUET model can be viewed as either a stochastic version of the BRUE model or a 

bounded rationality inspired version of the RSUE model. 

The RSUET model is motivated not only from a behavioural perspective, but also from the 

need of traffic assignment models to be applicable to large-scale studies. The implicit 

treatment of the choice set plays a paramount role. Whereas the issue of distinguishing 

between used and unused paths are left to the modeller in the SUE, he/she can use the 

conditions underlying the RSUET model to ensure that the choice sets are consistently 

generated as the algorithm iterates and that they are equilibrated upon termination of the 

algorithm. This determination of the choice sets induces also some additional advantages 

compared to SUE approaches. Firstly, path-based approaches can be consistently applied. This 

allows the use of state-of-the-art choice models such as the path-size logit (Ben-Akiva and 

Bierlaire, 1999) and a more flexible specification of the cost function such that path-based 

reliability measures can be included. Secondly, simulation can be avoided in the generation of 

paths and allocation of flow. This not only improves computation time but also removes the 

stochasticity in the outputs, which may have a major implication in project appraisals for 

large-scale models (Manzo et al., 2015; Rich and Nielsen, 2015). Thirdly, convergence in both 

the allocation of flow among used paths and the generation of the final choice sets can be 

consistently evaluated. Watling et al. (2016) devised a companion generic solution method to 

the RSUET exploiting these advantages, where the algorithm is an extension of the algorithm 

presented for the RSUE (Rasmussen et al., 2015a).  

Watling et al. (2016) demonstrated the applicability of the RSUET algorithm on the Sioux Falls 

network, but did not pursue to demonstrate efficient and consistent large-scale applicability. 

The present paper contributes by demonstrating this by presenting the tests of the novel 

model framework and solution algorithm for a large-scale application, and using a dataset 

consisting of observed routes collected by GPS devices to validate and calibrate the model, 

thereby demonstrating one possible utilisation of the increasingly available large-scale data 

sources on individual behaviour. 

The remainder of the paper is structured as follows. Section 2 introduces the notation and 

restates the RSUET model and the solution algorithm proposed in Watling et al. (2016). 
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Section 3 introduces the different specifications of the algorithm and the evaluation criteria 

used in the present study. Section 4 presents the large-scale case-study and the results of the 

numerical tests, including the calibration of the parameters and the evaluation of the model 

performance at various network congestion levels. Last, section 5 draws the main conclusions 

and outlines future research directions.  

2 Notation and Model Definition  

Consider a network as a directed graph consisting of origin-destination (OD) pairs m (m=1, 2, ǥǡ M) and links a (a=ͳǡ ʹǡ ǥǡ A). Define the demand for OD-pair m as dm composing a non-

negative M-dimensional vector d, where dm refers to element number m in d.  

Define the index set Rm of all simple paths (without cycles) for each OD-pair m and the 

number Nm of paths in Rm. The union of the sets Rm is defined as R and the route index sets are 

constructed so that R α ȓͳǡʹǡǥǡN}, where ܰ ൌ σ ܰ௠ெ௠ୀଵ . Denote the flow on path r  Rm 

between OD-pair m as xmr and let x be the N-dimensional flow-vector on the universal choice 

set across all M OD-pairs, so that the notation xmr refers to element number ݎ ൅ σ ܰ௠௠ିଵ௞ୀଵ  in 

the N-dimensional vector x. The convex set of demand-feasible non-negative path flow 

solutions G is given by: 

ܩ  ൌ ൛ܠ א ାே܀ ׷  σ ௠௥ே೘௥ୀଵݔ ൌ ݀௠ǡ ݉ ൌ ͳǡʹǡ ǥ ǡ  ൟ    (1)ܯ

where ܀ାே denotes the N-dimensional, non-negative Euclidean space.  

Denote the flow on link a (a=1,2,...,A) as fa and let ܎ ൌ ሺ ଵ݂ǡ ଶ݂ǡ ǥ ǡ ௔݂ǡ ǥ ǡ ஺݂ሻ be the A-dimensional 

link flow-vector where fa refers to element number a in f. Next, define Ɂamr equal to 1 if link a 

is part of path r for OD-pair m and zero otherwise. Then the convex set of demand-feasible 

link flows is: 

ܨ  ൌ ൛܎ א ା஺܀ ׷ ௔݂ ൌ σ σ ௔௠௥ ήߜ ௠௥ݔ ǡ ܽ ൌ ͳǡʹǡ ǥ ǡ ǡܣ ܠ א ே೘௥ୀଵெ௠ୀଵܩ ൟ  (2) 

In vector/matrix notation, let f and x be column vectors, and define  as the AN-dimensional 

link-path incidence matrix. Then the relationship between link and path flows may be written 

as f = ǻx . It is then assumed that the travel cost on path r for OD-pair m is additive in the link 

travel costs of the links used: 

 ܿ௠௥ሺܠሻ ൌ σ ௔௠௥ߜ ή ሻ஺௔ୀଵܠ௔ሺȟݐ              (r  Rm; m α ͳǡʹǡǥǡM; Gx )    (3) 

Define t(f) (t : R+
A  R+

A) as the vector of generalised link travel cost functions, and c(x) (c : 

R+
N  R+

N) as the vector of generalised route travel cost functions. The relationships between 

path and link flows, and between link and path costs, then become: 

܎  ൌ ȟܠ   and   ܋ሺܠሻ ൌ ȟ்ܜሺȟܠሻ     (4) 
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For SUE-style models, Umr denotes the random utility for path r between OD-pair m:  

 ܷ௠௥ ൌ െߠ ή ܿ௠௥ሺܠሻ ൅ ݎ௠௥      ሺߦ א ܴ௠ Ǣ ݉ ൌ ͳǡʹǡ ǥ ǡ  ሻ       (5)ܯ

where ૆ ൌ ሼߦ௠௥ ׷ ݎ א ܴ௠ǡ ݉ ൌ ͳǡʹǡ ǥ ǡ  ሽ are continuous random variables following someܯ

given joint probability distribution, and   > 0 is a given parameter. The following functions 

are then defined as the probability relations: 

 ௠ܲ௥൫܋ሺܠሻ൯ ൌ Prሺെߠ ή ܿ௠௥ሺܠሻ ൅ ௠௥ߦ  ൒  െߠ ή ܿ௠௦ሺܠሻ ൅ ௠௦ǡߦ ݏ׊ א ܴ௠ሻ 

     ሺݎ א ܴ௠ Ǣ ݉ ൌ ͳǡʹǡ ǥ ǡ  ሻ   (6)ܯ

These relations express the probability that path r between OD-pair m will have a perceived 

utility greater than or equal to the utilities of all alternative paths in the universal set of routes 

for that OD-pair, when the random utilities are െߠ ή ሻܠሺ܋ ൅ ૆ and the generalised path travel 

costs are c(x). for any non-empty subset ෨ܴ௠of ܴ௠ (m α ͳǡʹǡǥǡM), define also:  

 ௠ܲ௥൫܋ሺܠሻȁ ෨ܴ௠൯ ൌ Pr൫െߠ ή ܿ௠௥ሺܠሻ ൅ ௠௥ߦ  ൒  െߠ ή ܿ௠௦ሺܠሻ ൅ ௠௦ǡߦ ݏ׊ א ෨ܴ௠൯ 

     ൫ݎ א ෨ܴ௠ ك ܴ௠ Ǣ ݉ ൌ ͳǡʹǡ ǥ ǡ  ൯ (7)ܯ

That is to say, whenever such a subset is not specified, Pmr refers to the universal set. The 

definition of the RSUET model is then as follows (Watling et al., 2016). 

Definition: Restricted Stochastic User Equilibrium with Threshold (RSUET( ,))  

The route flow x  G is a RSUET( ,ȳ) if and only if for all r  Rm and m α ͳǡʹǡǥǡM: 

௠௥ݔ  ൐ Ͳ ֜ ݎ א ෨ܴ௠ ר ௠௥ݔ ൌ ݀௠ ή ௠ܲ௥൫܋ሺܠሻห ෨ܴ௠൯ ר ܿ௠௥ሺܠሻ ൑ ȳ൫ሼܿ௠௦ሺܠሻǣ ݏ א ෨ܴ௠ሽǢ ૊௠൯ (8)  

௠௥ݔ  ൌ Ͳ ֜ ݎ ב ෨ܴ௠ ר ܿ௠௥ሺܠሻ ൒ Ȱ൫ሼܿ௠௦ሺܠሻǣ ݏ א ෨ܴ௠ሽǢ ૆௠൯   (9) 

where Ȱ and π are exogenously defined functions which uniquely defines an Ǯexternal reference costǯ and a threshold value ȋǮinternal reference costǯȌ per OD movement, 

respectively. 

Watling et al. (2016) proposed a corresponding generic solution algorithm, and demonstrated 

its applicability to the Sioux Falls network. The algorithm consists of an initialisation step 

identifying an initial feasible flow solution, followed by 5 sequential steps which are iterated 

until convergence: (i) column generation phase; (ii) restricted master problem phase; (iii) 

network loading phase; (iv) threshold condition phase; (v) convergence evaluation phase. In 

the column generation phase, the choice sets are grown in a systematic way that ensures the 

fulfilment of the second RSUET condition (9) at convergence, and thus that no attractive paths 

are left unused. The search for paths may be done in several ways, but Watling et al. (2016) suggest to use a single shortest path search for the RSUETȋminǡ πȌ and a k-shortest path search for the RSUETȋmaxǡ πȌ. The restricted master problem phase allocates flow among the 

set of used paths according to the underlying choice model, to ensure that the part of the first 
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RSUET condition (8) concerning the flow allocation are fulfilled at convergence. The flow 

allocation can be done by using traditional path-based SUE allocation methods, or, using the 

cost transformation functions introduced in Rasmussen et al. (2015a), by DUE methods. The 

network loading phase loads route flows to the network to obtain the resulting link flows, link 

costs and route costs. The threshold condition phase identifies and removes any paths which 

violate the threshold condition and redistribute the flow among the remaining paths. Thereby 

the second part of condition (8) is fulfilled at convergence, ensuring that no unattractive paths 

are used. Lastly, the convergence evaluation phase uses a two-part gap measure and checks 

whether any violating paths have been removed to consistently evaluate whether the 

algorithm has converged to a solution fulfilling the underlying RSUET conditions.  

3 Application of the RSUET Model to large-scale problems 

The application of the RSUET model requires decisions about various specification and 

algorithmic details as described in the following.  

3.1 Algorithm specification 

The tests presented in the present paper focused on the RSUET(min, ȳ) formulation rather 

than the RSUET(max, ȳ). This was because (i) the corresponding RSUE(min) formulation was 

found promising in Rasmussen et al. (2015a), (ii) it ensures at least the minimum cost path to 

be used, but does not induce all paths with cost below the most costly used route to 

necessarily be used (e.g., multiple variants of routes repeatedly getting on and off motorways 

at ramps), and (iii) the RSUET(max, ȳ) is a lot more computationally demanding than the 

RSUET(min, ȳ) (Watling et al., 2016). In relation to the computational requirements, then if z 

refers to the number of zones (origins), then the max-formulation requires z2 k-shortest path 

searches to cover all OD-pairs, as opposed to z searches for the single shortest path method of 

the min-formulation. Additionally, the k-shortest path search algorithm has a calculation 

complexity of ( ( log( ) ))mO k V V V A     for each search, as opposed to ( log( ) )O V V A   for the 

single shortest path search method (see Rasmussen et al., 2015a)1.   

Given the min-formulation of the Ȱ-function, the column generation phase was based on single 

shortest path searches (see Watling et al., 2016). The implementation allowed the evaluation 

of two approaches in the restricted master problem phase. The first approach (referred to as 

the Path Swap variant) utilised the cost transformation functions introduced in Rasmussen et 

                                                        
1 We implemented and did some initial tests of the k-shortest path algorithm. While managing to improve the 
computation time considerably compared to a first ‘non-optimised’ implementation, it still took approximately 2 
seconds to compute the k=100 shortest paths between Rome and Copenhagen in the TransTools road network for 
passenger cars (Rich et al., 2009). This has roughly the same size as the Danish National Transport Model network, and 
the calculation time is about 100,000 times longer than the time required to compute the single shortest path between 
the same OD-pairs. Consequently, we did not manage to reach sufficiently low computation time levels to facilitate 
implementation in the iterative RSUET(max, ȍ) algorithm, and believe that there is a need for further research to make 
the RSUET(max, ȍ) operational for large-scale cases. 
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al. (2015a) to identify an auxiliary solution using the pairwise path-swapping strategy 

described in Carey and Ge (2012). See Rasmussen et al. (2015a) for more information on the 

integration of the path-swapping strategy and the cost transformation functions. The second 

approach (referred to as the Inner Logit variant) identified the auxiliary solution by directly 

using the closed-form MNL or PSL choice probability expressions.  

The implementation facilitated the use of the Method of Successive Weighted Averages for the 

step-size strategy (MSWA, Liu et al., 2009). While being pre-defined, the MSWA allows giving 

more weight to auxiliary flow patterns found in later iterations, defining the step-size ɀn at 

iteration n as:  

௡ߛ  ൌ ௡೏ଵ೏ାଶ೏ାǤǤǤା௡೏      (10)  

where dη0 is a real number.  

The tests of the RSUET(min, ȳ) all utilise the threshold condition ȳ൫ሼܿ௠௦ሺܠሻǣ ݏ א ෨ܴ௠ሽǢ ૊௠൯ ൌȳ൫ሼܿ௠௦ሺܠሻǣ ݏ א ෨ܴ௠ሽǢ ߬௠൯ ൌ ߬௠ ή min ሼܿ௠௦ǣ ݏ א ෨ܴ௠ሽ for each m=1, 2,..., M. The implementation 

steps were outlined in Watling et al. (2016): (i) paths could only be removed from iteration 15 

onwards; (ii) at most one violating path could be removed from the choice set for each OD-

pair in each iteration; (iii) flows on violating paths were redistributed among the remaining 

paths according to the flow distribution on these. This setup is referred to as the RSUET(min, 

ήmin) in the remainder of the paper. 

3.2 Evaluation criteria 

The MNL and PSL RSUET(min, ήmin) solution algorithms have been evaluated in various 

ways. Firstly, convergence was evaluated by using the two-part convergence measure 

proposed in Rasmussen et al. (2015a), consisting of a first part measuring the convergence to 

satisfy the underlying choice model among the used routes and a second part measuring the 

convergence to fulfil the criteria on unused routes: 

 ܴ݈݁Ǥ ௡௎௦௘ௗ݌ܽ݃ ൌ σ σ ௫೘ೝǡ೙ήቀ௫೘ೝǡ೙ήୣ୶୮൫ఏή௖೘ೝሺܠ೙ሻ൯ି௖ǁ೘ǡౣ౟౤ሺܠ೙ሻቁೝאೃ෩೘ಾ೘సభ σ σ ௫೘ೝǡ೙ή௫೘ೝǡ೙ήୣ୶୮ ൫ఏή௖೘ೝሺܠ೙ሻ൯ೝאೃ෩೘ಾ೘సభ    (11) 

 ܴ݈݁Ǥ ௡௎௡௨௦௘ௗ݌ܽ݃ ൌ σ ௗ೘ή൫୫୧୬׊ೝאೃ೘ǡೣ೘ೝಭబ൫௖೘ೝሺܠ೙ሻ൯ି୫୧୬׊ೝאೃ೘൫௖೘ೝሺܠ೙ሻ൯൯ಾ೘సభ σ ௗ೘ή୫୧୬׊ೝאೃ೘ǡೣ೘ೝಭబ൫௖೘ೝሺܠ೙ሻ൯ಾ೘సభ   (12) 

where ǁܿ௠ǡ୫୧୬ሺܠ௡ሻ ൌ min׊௥אோ෨೘൛ݔ௠௥ǡ௡ ή expሺߠ ή ܿ௠௥ሺܠ௡ሻሻൟ. 

It is important to note that the two gap-measures proposed above have been developed solely 

for closed-form logit-type choice models in the RSUE and RSUET. They can thus not be used to 

evaluate convergence of solution algorithms of a link-based multinomial probit (MNP) SUE or 

a mixed MNP SUE. There is not an equivalent consistent measure available for such 

algorithms, and most applications evaluate the convergence by using Ǯstabilityǯ measures that 
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do not evaluate the convergence to equilibrium directly, but rather the stability in solutions 

from iteration to iteration. One such measure is the link flow stability, weighted by flow and 

length: 

௡ݕݐ݈ܾ݅݅ܽݐܵ  ൌ σ ௙ೌ ǡ೙ሺܠሻή௟ೌήห೑ೌǡ೙ሺܠሻష೑ೌǡ೙షభሺܠሻห೑ೌǡ೙ሺܠሻಲೌసభ σ ௙ೌ ǡ೙ሺܠሻή௟ೌಲೌసభ ൌ σ ௟ೌήห௙ೌ ǡ೙ሺܠሻି௙ೌ ǡ೙షభሺܠሻหಲೌసభ σ ௙ೌ ǡ೙ሺܠሻή௟ೌಲೌసభ   (13) 

Moreover, it is also important to evaluate whether the different model setups generate route 

choice sets of reasonable sizes containing relevant routes and leaving out non-sensible routes. 

This evaluation can be performed by computing the overlap between any observed route 

rRobs and any corresponding generated route ݏ א ෨ܴ  as follows (Ramming, 2002): 

 ௥ܱ௦ ൌ ௅ೝೞ௅ೝ ൌ σ ఋೌೝήఋೌೞή௟ೌಲೌసభσ ఋೌೝή௟ೌಲೌసభ   (14) 

where Lrs is the sum of length of overlapping elements between the observed path r and the 

generated path s. The overlap measure (14) can be computed for each generated path s for 

observation r, and let ܱ୫ୟ୶ ሼ௥ሽ denote the highest overlap among the paths generated for 

observation r. Then the coverage using an overlap-threshold ɉ (e.g. 80%) can be computed as 

(Ramming, 2002): 

ሻߣሺݒ݋ܥ  ൌ σ ூ൫ைౣ౗౮ ሼೝሽஹఒ൯ೝאೃ೚್ೞȁோ೚್ೞȁ   (15) 

where )ȋβȌ is an indicator equal to 1 when the criteria is fulfilled and zero otherwise.  

Combining the development in the choice set size and coverage, an efficient algorithm should 

generate a few routes inducing a high coverage level within the first few iterations. The size of 

the choice sets should then stabilise, indicating that all relevant routes have been generated. 

Bekhor and Prato (2009) sought to combine these two components by proposing an efficiency 

index measure accounting for both behavioural consistency (coverage) and computational 

efficiency (choice set size). The measure thus supplements the two-part analysis above, and 

the efficiency index (EI) of an algorithm can be computed as: 

ܫܧ  ൌ ଵȁோ೚್ೞȁ ή σ ቄቂܫ൫ܱ୫ୟ୶ ሼ௥ሽ ൒ ൯ߣ ൅ ቀͳ െ ே෩ೝିோೝ೐೗ǡೝே෩ೝ ቁቃ ʹൗ ቅ ൌ ଵଶ ή ሻߣሺݒ݋ܥ ൅ ଵଶήȁோ೚್ೞȁ ή௥אோ೚್ೞσ ோೝ೐೗ǡೝே෩ೝ௥אோ೚್ೞ   (16) 

where ܴ௥௘௟ǡ௥ is the number of relevant routes of observation r and ෩ܰ௥  is the number of used 

routes for the OD-pair corresponding to observation r. The number of relevant routes is 

difficult to specify in real-life large-scale networks, but this study used ܴ௥௘௟ǡ௥=2 for all 

observations as this was also used in Bekhor and Prato (2009). Additionally, counts of 
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observed flows on links in the case-study area could be used to analyse the realism of the link 

flow distribution generated by the different algorithm variants.  

Finally, the computational burden of the algorithms should also be evaluated. Other studies 

have found that the computational efforts required per iteration may vary greatly across 

different algorithm specifications and choice models (e.g., Rasmussen et al., 2015a). It is 

therefore important to not only evaluate the convergence as a function of the number of 

iterations, but also consider the computational burden per iteration when evaluating the 

performance of an algorithm. Therefore, the evolvement of the computation time per iteration 

across the algorithm variants and reported convergence etc. was also evaluated as a function 

of computation time rather than iteration number. 

3.3 Specification of choice function and parameters 

The model was implemented as a multi-class model that allows distinguishing between 

different trip purposes and vehicle classes (categories). The utility (cost) function considered 

several variables, and the cost of alternative r on OD movement m was specified as: 

 ܿ௠௥ሺܠሻ ൌ ி௥௘௘்்ǡ௠ߚ ή ሻܠி௥௘௘்்ǡ௠௥ሺݐ ൅ ஼௢௡௚்்ǡ௠ߚ ή ሻܠ஼௢௡௚்்ǡ௠௥ሺݐ ൅ ௟ǡ௠ߚ ή ݈௠௥ ൅ ௠௥ߝ   (17) 

where ߚி௥௘௘்்ǡ௠, ߚ஼௢௡௚்்ǡ௠ and ߚ௟ǡ௠ are the respective parameters associated with the free-

flow travel time, congestion travel time and driving distance for the category associated with 

OD movement m. The distributed error term ߝ௠௥ expresses unobserved components and 

perception errors. The time-variables are measured in minutes, whereas all variables 

associated with length are measured in kilometres. 

For the link-based MNP SUE and mixed MNP SUE, the error-term and (relevant only for the 

mixed MNP SUE) parameters associated to travel time were simulated from the gamma and 

the log-normal distribution, respectively. The parameters were simulated at the OD-level to 

account for taste heterogeneity across individuals, whereas the error-term was simulated at 

the link level per OD-pair. The mean of the error-term was zero, and the variance was 

specified as proportional to the mean cost (using scale parameter Ⱦmɂ) to ensure consistent 

aggregation from link- to path-level (see Nielsen and Frederiksen, 2006). 

The choice function consisted of an additional term for the PSL RSUET(min, ήmin)-

application, seeking to account for the effect of path overlapping. The term  , lnPS m mrPS   

was added to the cost function (17), where ,PS m  was a non-positive OD-specific parameter 

and PSmr was defined as proposed by Ben-Akiva and Bierlaire (1999): 

 ܲܵ௠௥ ൌ σ ௟ೌ௅೘ೝ ή ଵσ ఋೌ೘ೖೖאೃ෩೘௔א୻೘ೝ   (18) 
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where la and Lmr are measures of impedance on link a and on route r on OD movement m, and 

can either be measured as distance or cost (la=ta(f) and Lmr=cmr(x)ሻ. Distance was used as a 

measure of impedance in the present application. 

The values of the parameters used in the cost function (17) were transferred directly from the 

multi-class link-based mixed MNP SUE model applied in the Danish National Model. No re-

calibration was done to fit these to each of the RSUET solution algorithms tested, as the issue 

of parameter estimation and how this might be done in a consistent way for the RSUET 

framework is beyond the scope of this paper2.  

Neither the parameters nor the error-terms are simulated in the RSUET(min, ήmin) applicationǤ This not only Ǯremovesǯ the need for simulationǡ but also requires less parametersǡ 
as variances do not have to be specified. However, there was a need to specify the scale 

parameter Ʌm, the threshold values m, and the step-size parameter d. The path-size parameter ߚ௉ௌ also needed to be specified when applying the PSL choice model.  

4 Case-study and Numerical Results 

The present study uses a case-study covering the Danish Zealand Area to evaluate the RSUET 

model framework and demonstrate the applicability of several variants of the solution 

algorithm. A main objective has been to evaluate how large an impact the addition of the 

threshold condition has on the computation time as well as the equilibrium solution for 

different configurations of the model and for different network conditions (congestion levels). 

Among others, the evaluation has used real life observed data to assess the realism of the 

solutions. 

4.1 Network, demand and observed data 

The case network covers the eastern part of Denmark (primarily Zealand) with approximately 

2.5 million inhabitants. The network consists of 12,451 links corresponding to 18,706 one-

directional links in the network graph being a geographically limited subset of the network 

used in the Danish National Transport Model. The demand also stems from the Danish 

National Transport Model, and the demand matrices includes a total of 3.2 million daily trips 

categorised into 19 different user classes and three vehicle types (car, van and lorry) with 

approximately 20 million OD-cells in total (Nielsen & Pedersen, 2016). The network and 

demand is the same as used in Rasmussen et al. (2015), which verified that levels and the 

locations of congestion are realistic. 

A total of 16,618 GPS traces from car trips within the study area were utilised to perform a disaggregate evaluation of the algorithmsǯ ability to reproduce observed route choicesǢ the 
origin and destination of each trip were added to the network and corresponding trips were 

                                                        

2 For a discussion on calibration and estimation issues for the RSUE, see Watling et al. (2015). 
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appended to the demand matrix (with zero demand to not cause additional congestion in the 

network). The GPS data stem from two data-sources: 554 observations were collected in a 

person-based data collection in which travellers carried the GPS unit with them during all 

their travels (across modes of transport, see Rasmussen et al., 2015b). The remaining 16,064 

observations were collected in a vehicle-based data collection among a sample of employees 

of the Municipality of Copenhagen. While the second source is richer in the number trips, the 

first also contains information on the personal characteristics of the car drivers. 

4.2 Software implementation and configuration 

The solution algorithm outlined in section 2 was implemented into the C#-based Traffic 

Analyst software package (Rapidis, 2015) that also implements solutions to the link-based 

MNP SUE and the mixed MNP SUE models (Nielsen et al., 2002).  

Several variants of the implemented algorithm were tested on different configurations of the 

network demand. It was found that performing 100 iterations was sufficient to induce ܴ݈݁Ǥ ௡௎௦௘ௗ݌ܽ݃  as well as ܴ݈݁Ǥ ௡௎௡௨௦௘ௗ݌ܽ݃  to reach a value below 1.3ή10-3 and 1.0ή10-12, 

respectively, for all applications. The analyses have been performed by using both the Path 

Swap as well as the Inner Logit variants for the determination of the auxiliary flow solution in 

the restricted master problem phase of the solution algorithm. Both approaches showed the 

same overall patterns, however the results of the Inner Logit variant are the only one 

reported because of the faster convergence.  

4.3 Threshold and choice set composition 

Routes were only allowed to be removed from a choice set if it contained at least ෩ܰ௠௜௡=2 

routes. Subsequently, it was verified that this did not give rise to unreasonably large 

fluctuations in flows when removing a route for any OD-pair. In order for the flows to stabilise 

in the initial iterations before removing any routes, routes were only allowed to be removed 

from iteration Kmin=15 onwards. 

4.3.1 Determination of threshold from revealed choices 

The threshold specifies the maximum route cost relative to the cheapest used path. Its value 

was specified by analysing the choice of non-optimal paths in real-life observed route choices 

and on the basis of a comparison between costs on observed paths and costs on the 

corresponding minimum cost path. Figure 1 illustrates the cumulative share of observations 

as a function of the ratio between the cost on the observed path (path obtained from GPS 

data) and the cost on the minimum cost path between the corresponding locations. The 

observed paths were constituted by the 16,618 routes obtained from the GPS data. For each 

GPS trip, the cheapest path was found by performing a shortest-path search in the congested 

network between the origin and destination of the corresponding GPS trip. It can be seen, for 

example, that 71% of the observed paths were less than 5% longer than the corresponding 

optimal path.  
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Figure 1 Ȃ Cumulative share of observations as a function of the ratio between the cost on the observed path r 

and the cost on the corresponding minimum cost path cr, min (x) The distribution of the Ǯnon-optimalityǯ of the observed routes is assumed to be 
representative of how (relatively) expensive paths have to be in order for the travellers not to 

consider and use them. The threshold was specified by using a 95% interval induces a choice 

of ɒ=1.2 (i.e. the relative cost on 95% of all observed paths is within this threshold), which has 

then been used in the remainder of the paper. 

4.3.2 Example of route exclusion, threshold condition 

1,989 unique routes were removed by the threshold condition when using =1.2, d=4 and the 

MNL choice model with Ʌ=0.2. Note, however, that the same unique path may have been 

generated and subsequently excluded several times during the iterations of the solution 

algorithm. This section presents an example of an OD movement (commercial business trip 

undertaken in van), for which a previously generated route was removed by the threshold 

condition at equilibrium. 

Figure 2 illustrates the four unique routes generated for the same OD-pair, where each of 

these has been the most attractive at some iteration of the solution algorithm. Table 1 reports 

the corresponding equilibrium cost components, generalised cost and route flow share on 

each of these. All four routes were however not included in the equilibrated choice set, as flow 

was only distributed among paths 1, 2 and 4. Path 3 is considerably more expensive than the 

others (32%), and the threshold condition therefore removed it from the final choice set. 
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Figure 2 Ȃ Example of excluded route: 4 paths generated, but 3 utilised at convergence,  

MNL RSUET(min, ͷǤ͸βmin), Zealand application 

Table 1 Ȃ Specification of cost components, generalised costs, relative costs as well as flows at equilibrium. MNL 

RSUET(min, ͷǤ͸βmin), Zealand application. l1r, tFreeTT, 1r and tCongTT, 1r refer to the length, free-flow travel time and 

congested travel time of route r, respectively. c1r(x) and c1,min(x) refer to the cost on route r and the minimum 

cost across the used routes, respectively 

Path Category ID l1r [km] tFreeTT, 1r(x) [min] tCongTT, 1r(x) [min] c1r(x) c1r(x)/c1,min(x) Flow [%] 

1 6 13.80 12.85 16.39 81.40 1.01 32.23 

2 6 13.61 13.42 15.40 81.82 1.02 29.64 

3 6 18.02 17.09 20.24 106.07 1.32 - 

4 6 14.43 13.64 16.44 80.56 1.00 38.13 

4.4 Step-size strategy 

The step-size parameter d specifies the Ǯtrustǯ in the auxiliary solution and may thus influence 
the convergence speed (Rasmussen et al., 2015a). Posing a higher trust in the auxiliary 

solution may also lead to higher fluctuations in the path-flows between iterations, which may 

possibly cause additional/other paths to be attractive. The choice of d may thus influence not 

only the convergence speed, but also the solution in terms of the composition of the choice 

sets. The converged solutions should however all be RSUET solutions.  
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If the model parameters ɒ and Ʌ are kept constant (ɒ=1.2, Ʌ=0.2), the convergence measures 

for the flow distribution (11) and the choice set composition (12) can be directly compared 

across d-values for the RSUET and RSUE. Figure 3 and Figure 4 illustrate the convergence 

pattern of the MNL RSUET(min, 1.2ήmin) for different step-size strategies.  

 
Figure 3 Ȃ Relative gap measure (12) for convergence of choice set composition as function of computation time, 

Zealand application. MNL RSUET(min, 1.2βmin) for various values of step-size parameter d as well as the MNL 

RSUE(min) with d=4. All with Ʌ=0.2. Notice the log-scale on the vertical axis 
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Figure 4 Ȃ Relative gap measure (11) for convergence of flow distribution among routes in the choice set as a 

function of computation time, Zealand application. MNL RSUET(min, ͷǤ͸βmin) for various values of step-size 

parameter d as well as the MNL RSUET(min) with d=4. All with Ʌ=0.2. Notice the log-scale on the vertical axis 

Initially, some fluctuations can be seen in both convergence measures. This is due to the 

introduction of new paths to the choice set Ȃ for ܴ݈݁Ǥ ௡௎௡௨௦௘ௗ݌ܽ݃  the increases arise because 

some currently unused paths become attractive to introduce into the choice set, and for ܴ݈݁Ǥ ௡௎௦௘ௗ݌ܽ݃  the increases arise due to the need to redistribute flow towards equilibrium in a Ǯnewǯ choice set consisting of also the path recently introduced. The choice set composition 

converged fast for all step-sizes, however with d=0 (MSA) being somewhat slower. Also the 

distribution of the flow among the paths in the choice set converged to a stable low level of 

approximately 1.0-3.5ή10-7, except for low values of d (d=0 and d=2) which were far from 

reaching this level at termination. Using d=4 caused the fastest convergence, as the final 

choice sets were generated within less than 30 minutes and the flow distribution converged 

within 35-40 minutes of calculation time. Consequently, the analyses presented in the 

remainder of the paper have been done using d=4. 

The convergence pattern of the RSUETȋminǡ ͳǤʹήminȌ was identical to that of the 
corresponding RSUE(min) application during the first 15 iterations and seemed reasonable 

since Kmin=15. From iteration 15 onwards the convergence pattern was also very similar, 

converging to almost identical values of the relative gap measures. This is because only a very 

small share of the routes was removed by the threshold condition (e.g. 1,989 routes across 

1,621,201 OD-pairs in the case of d=4). Consequently, Figure 3 and Figure 4 do not report the 

results for other applications of the RSUE(min) than the one using d=4. 
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The relative gap associated with the distribution of flow among paths did not seem to 

converge to zero, but rather stabilised at approximately 1-3.5ή10-7. The stabilization to a very 

small non-zero value is not an indication of the algorithm not converging, but rather an issue 

arising due to the limitations of the computer used3. 

4.5 Scale parameter 

The scale parameter reflects the dispersion in the perception of costs among drivers: a low value reflects large variation in the perception error of drivers ȋwith complete Ǯrandomǯ 
allocation in the extreme case of Ʌ0), and a high value reflects small variation in the 

perception error of drivers (with the limit of DUE when Ʌλ). Several different values of the 

scale parameter were tested, each application using the same value across all OD movements, 

i.e. Ʌm=Ʌ for mεͷǡ͸ǡǥǡM. The relative gap measures were used to verify that all tests converged 

within reasonable computation time. The convergence measures can however not be 

compared across applications, as the scale parameter influences the relative gap measure. 

Therefore, a series of alternative analyses was performed to evaluate the performance of the 

solution algorithm for different values of the scale parameter. This also facilitated the 

comparison to the link-based MNP SUE and mixed MNP SUE solution methods.  

1,169 observed daily link counts were available, and these were distributed throughout the 

case-study area. Figure 5 reports the Root Mean Square Error (RMSE) between the modelled 

and observed link counts (normalised by range of observed flows). In general, very high 

correspondence was observed (all normalised RMSE<0.052), demonstrating that the 

RSUE/RSUET applications are successful in distributing the flow in a way that matches the 

observed counts. Noting the tight range of the vertical axis it can be seen that only minor 

differences are seen between corresponding RSUE/RSUET applications, and the best 

normalised RMSE was obtained when using Ʌ=0.2. It is prevailing that both MNP SUE 

applications performed worse than all RSUE/RSUET applications in reproducing link counts, 

even though prior studies have invested large efforts into calibrating the MNP SUE models to 

the case study.  

                                                        
3 The relative gap is computed using exponential functions of the costs, which causes very small deviations to be 
amplified into large numbers. We performed a disaggregate analysis of the changes in flow and costs on routes between 
iterations when d=4, which showed that the average/maximum change in absolute cost and flow on the paths across all 
OD movements is a very low 2.9∙10-12/2.3∙10-10 for cost and 6.2∙10-12/1.0∙10-9 for flow. These numbers are at the 
limit of the accuracy of computation of real numbers in the C# software used, and the non-zero gap measure can be seen 
as a consequence hereof. 
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Figure 5 Ȃ Correspondence between modelled and observed daily link flows for various RSUE and RSUET 

configurations as well as the MNP SUE and mixed MNP SUE. Iteration 100, Zealand application 

The analysis above showed good performance of the RSUE/RSUET on an aggregate level, by 

showing that these distribute flow in a way that reproduces link counts accurately. Moving to 

a disaggregate level, the models should also be able to reproduce rational real-life route 

choices. Their ability to do so was evaluated by comparing with 16,618 observed route 

choices collected via GPS, under the hypothesis that the observed routes should be 

represented in the corresponding choice sets generated. The coverage measure captures this, 

and this constitutes an important measure to use in the calibration of especially the scale 

parameter, as the scale parameter represents the heterogeneity in route choice. Figure 6 

reports the coverage measure as a function of the overlap threshold ɉ, and shows a decreasing 

coverage with increasing ɉǡ as expectedǤ Alsoǡ it can be seen that the Ǯrelativeǯ performance of 

the different Ʌ values was somewhat the same across ɉ valuesǤ 

 

Figure 6 Ȃ Coverage as function of overlap threshold ɉ for various scale parameters in MNL RSUET(min, ͷǤ͸βmin), 

iteration 100. Zealand application 
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Table 2 reports various characteristics of the solution generated, including the coverage 

obtained at iterations 25 and 100 when using a 80% overlap threshold. In general, high 

coverage levels were produced for all Ʌ. It can be seen that adding the threshold on the 

relative costs does not seem to reduce the coverage for any of the chosen Ʌ. This indicates that 

the paths removed by the threshold condition are in general non-relevant. Furthermore, the 

coverage seems to increase with increasing scale parameter. This increase is probably related 

to the larger fluctuations in flow in the initial iterations caused by the larger scale parameter; 

more weight is put on differences in costs ȋcloser to DUEȌǡ leading to more Ǯextremeǯ auxiliary 
flows and thereby also larger fluctuations. These fluctuations cause more routes to be 

generated (seen through larger average choice set sizes) but also more routes to violate the 

threshold at equilibrium (and thus be removed, see Table 2). The number of paths removed 

was however at a very low level, considering that the network contains 1.6 million OD-pairs. 

Table 2 Ȃ Coverage, choice set size, efficiency index and number of routes removed (when relevant) for various 

scale parameters in MNL RSUET(min, ͷǤ͸βmin) and the MNL RSUE(min). The relevant measures are also reported 

for the MNP SUE and the mixed MNP SUE. Zealand application 

  
Coverage, ɉ=0.8 Choice set size 

Efficiency index Excluded paths 

  
Ite 25 Ite 100 Min. Avg. Max. ɅαͲǤͲͷ 

RSUE 0.8431 0.8431 1 2.364 10 0.9859 - 

RSUET 0.8431 0.8431 1 2.367 10 0.9859 1165 ɅαͲǤͳ 
RSUE 0.8452 0.8452 1 2.484 10 0.9733 - 

RSUET 0.8452 0.8452 1 2.484 10 0.9734 1180 ɅαͲǤʹ 
RSUE 0.8487 0.8487 1 2.696 13 0.9541 - 

RSUET 0.8487 0.8487 1 2.695 12 0.9543 1989 ɅαͲǤͷ 
RSUE 0.8535 0.8535 1 2.968 14 0.9335 - 

RSUET 0.8535 0.8535 1 2.967 13 0.9338 3784 ɅαͳǤͲ 
RSUE 0.8548 0.8548 1 3.059 13 0.9162 - 

RSUET 0.8548 0.8548 1 3.057 13 0.9165 4640 

MNP SUE 0.8959 0.8959 1 14.894 100 0.6540 - 

mixed MNP SUE 0.8959  0.8959 1 25.365 100 0.5460 - 

 

 

The MNP SUE and mixed MNP SUE produced coverage levels which were considerably better 

than those of the RSUE and RSUET applications. This was however at the cost of generating 

large choice sets, which continued to grow without any clear tendency towards stabilisation. 

An average size of 37.0 routes was seen at iteration 200 for the mixed MNP SUE. The RSUE 

and RSUET on the other hand produced choice sets having a very computationally reasonable 

size, and which are equilibrated. The equilibrated choice sets were generated within a few 

iterations, which is also indicated by non-changing coverage from iteration 25 to iteration 100 

(Table 2). The flow distribution also converged within a few iterations, highlighting that there 

is no need to perform many iterations to obtain an equilibrated RSUE/RSUET solution. 
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An efficient solution algorithm should produce a high coverage level while generating choice 

sets which are computationally attractive by containing only (a few) relevant routes. The 

efficiency index (16) captures this, and the RSUE/RSUET solution algorithms reached 

efficiency indexes ranging from 91.7% to 98.6%. The index for the RSUET is slightly better 

than the index generated by the corresponding RSUE formulations. This is due to the (slightly) 

smaller choice sets. The RSUE/RSUET solution algorithms generated significantly higher 

efficiency indexes than the MNP SUE and mixed MNP SUE. This highlights the weakness of the 

MNP SUE approaches, namely that they generated their high coverage levels at the cost of 

generating large choice sets. 

The convergence pattern cannot be directly compared across Ʌ-values, as mentioned earlier. 

In order to facilitate comparisons, the measures reported in Table 2 were supplemented by 

analyses of the link flow stability and the ability to reproduce observed link counts. This also 

facilitated the comparison to the MNP SUE and the mixed MNP SUE. It is however important 

to note that stability in link flows does not necessarily induce that an equilibrated solution has 

been found.  

Figure 7 illustrates a very fast link flow stabilisation across iterations for all RSUE/RSUET 

applications. The effect of adding the threshold can clearly be seen, especially when Ʌζ0.2, 

through a destabilisation of link flows at iteration 15 (~20min of computation time). Using 

Ʌ=0.1 or Ʌ=0.2 induces the best link flow stability. The stability of the MNP SUE and the mixed 

MNP SUE was considerably lower, indicating that convergence was not yet reached at 

iteration 100. This was also suggested by continuously increasing choice sets and is 

furthermore supported by a maximum relative deviation in link flow between iterations 99 

and 100 of a very high 18.8%. This value was considerably lower for all the RSUET(min, ͳǤʹήminȌ applicationsǡ eǤgǤ ʹǤͳͶή10-5 % when Ʌ=0.2.  
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Figure 7 Ȃ Link flow stability across iterations, Zealand application. Notice the log-scale  

Summarising, all tested values of Ʌ produced good results for all evaluation criteria used. The best link count 

correspondence was however seen when using Ʌ=0.2, and the analyses in the remainder of the paper have 

adopted this value.  

4.6 Path overlap correction 

The MNL choice model fails to account for path overlapping. Accordingly, this study applied 

also the PSL choice model to investigate the impact of accounting for this. This involved the 

specification of the parameter associated to the path-size correction factor. The identification 

of the optimal parameter value is not a one-dimensional problem, as e.g. the choice of a path-

size parameter may influence the optimal value of Ʌ and vice versa. The study did not seek to 

solve the resulting multidimensional optimisation problem. Rather, the PSL RSUET(min, 

1.2ήmin) was applied for both d=0 and d=4, using Ʌ=0.2 and ߚ௉ௌǡ௠ ൌ ௉ௌߚ ൌ െ͵. This parameter 

setting is assumed to be reasonable; section 4.5 found good performance when using Ʌ=0.2 in 

the corresponding MNL RSUET, and Rasmussen et al. (2015a) tested different values of ߚ௉ௌ 

for the PSL RSUE(min) on the same network (also using Ʌ=0.2, but with d=2) and found best 

performance when ߚ௉ௌ ൌ െ͵.   

Equilibrated solutions were found, with convergence patterns almost identical to the pattern 

of the corresponding MNL application (and therefore not reported here). The same choice sets 

were generated across the choice models for almost all OD-pairs. This is supported by a 
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difference in average choice set size of 0.001 and 0.002 routes when comparing 

corresponding applications across choice models for d=0 and d=4, respectively. The high 

similarity of choice sets seems reasonable, as the same path generation technique was used in 

the solution algorithm for the two choice models (deterministic shortest path search). The 

choice set composition however varied in a few cases. This was a consequence of the different 

flow distribution across the two choice models (due to the correction for path overlapping), 

which (in some cases) caused other routes to be attractive.  

The similarity of the choice sets also led to almost identical coverage levels. Accounting for 

path overlapping does not improve coverage, but allows the distribution of flow among routes 

in the choice sets to be more behaviourally realistic. 

Figure 8 reports the computation time per iteration of the application of the MNL and PSL 

RSUET(min, ͷǤ͸βmin) solution algorithms.  The computation time increased during the first 

iterations of the MNL RSUET(min, ͷǤ͸βmin) applications due to the path-based approach: the 

choice sets were generated within the first iterations, and storing an increasing number of 

paths in-memory and (re)distributing flow between these requires increasing memory and 

computational effort. The final choice sets were, generally, generated within the first 5-10 

iterations when d=0 and d=4, and computation times per iteration stabilised from this point 

on.  

The computation times in the initial iterations of the MNL and PSL applications were 

different: the computation time of the MNL was strictly increasing until a certain level, 

whereas the computation time of the PSL increased rapidly in the initial iterations and then 

reduced to the level of the corresponding MNL application. This is directly linked to the 

computation of the path-size correction factors. Since these were based on overlap in length, 

they only need to be recomputed when a route is added to or removed from the choice set. 

The choice sets were formed in the initial iterations, and the path-size correction term thus 

had to be computed for many paths in these (the choice set changed for many OD movements 

and the correction terms had to be recomputed for all routes in each of these choice sets). 

This is computationally expensive (especially as the number of routes in the choice sets 

grows) and explains the steep increase in computation time in the initial iterations. After a 

few iterations (iterations 4 and 6 for d=0 and d=4, respectively) new routes were generated 

for fewer OD movements, and fewer path-size correction terms thus had to be (re)computed. 

This reduced the computational effort. After the final choice sets were (more or less) 

generated at iteration 11, no further recalculation of path-size correction terms was needed. 

Therefore, the computation time reduced to that of the corresponding MNL formulation.  
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Figure 8 Ȃ Computation time per iterations for the MNL as well as PSL RSUETȋminǡ ͳǤʹήminȌ with dαͲ and dαͶǤ 
Zealand application 

4.7 Stability to congestion level 

The analyses above showed that the tested variants of the solution algorithm provide fast 

convergence to a stable solution which fulfils the RSUET(min, ͷǤ͸βmin) conditions. However, 

good performance in the Zealand application does not guarantee good performance when 

applied to other case-studies. One of the typical major challenges for solution algorithms is to 

also provide nice convergence patterns in high congestion real-life cases. The tested variant of 

the proposed solution algorithm with d=4 was applied to a variety of scaled versions of the 

original demand matrices (the scale-factors tested are 1.25, 1.5, 1.75 and 2.0). This was done 

to test the robustness towards the general congestion level in the network. Figure 9 illustrates 

the volume-capacity ratio in the network links for the different demand levels. 
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Figure 9 Ȃ Network congestion at various demand levels. Cumulative share of links as function of volume to 

capacity ratio, Zealand application 

4.7.1 Convergence 

Figure 10 and Figure 11 report the convergence measures for varying demand when 

performing 100 iterations. There was a clear tendency for slower convergence as the demand 

increased, in terms of both the number of iterations needed as well as the calculation time. 

However, a nice convergence pattern was seen for all the tested levels of demand. The travel 

times in the network fluctuated more in the initial iterations due to the larger demand which 

caused the choice set composition to require more iterations to converge and larger choice 

sets to be generated. The higher fluctuations and travel time differences in the network also 

caused the distribution of flow among paths to require more iterations to converge for 

increasing demand levels, but even the highest congestion case (demand scale-factor 2.0) 

converged nicely once the final choice sets were generated. Longer calculation time to 

converge for increasing demand level is however not only due to the need for more iterations. 

The calculation time per iteration also increased, due to the larger choice sets and hence more 

paths to store in memory and assign traffic between. Consequently, the average calculation 

time per iteration was approximately 90/105/130/145/180 seconds for scale parameters 

1.0/1.25/1.5/1.75/2.0, respectively. 
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Figure 10 Ȃ Development of relative gap (12) measuring convergence of the choice sets for various values of the 

factor scaling the demand, MNL RSUET(min, ͳǤʹήminȌ with dαͶǡ Zealand application 

 

 
Figure 11 Ȃ Development of relative gap (11) measuring convergence of the distribution of flow between paths for various Ǯscaledǯ demandsǡ MNL RSUETȋminǡ ͳǤʹήminȌ with dαͶǡ Zealand application 
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4.7.2 Choice set size, route exclusion and cost distribution 

Section 4.7.1 showed that more iterations were required for the choice set composition to 

converge when increasing the demand. This indicates that more routes Ȃ larger choice sets Ȃ 

were generated as the demand increased, as verified by Figure 12. The average choice set size 

grew larger and required more iterations to stabilise when increasing the demand, but after 

iteration 13-30 (depending on demand level) no major changes of the average and maximum 

choice set size occurred. Furthermore, it can be seen that the choice sets had a very 

reasonable and computationally attractive size across all demand levels. For some movements 

only one route was generated, even for a very high demand (the minimum choice set size was 

equal to 1 for all demand levels, and is thus not reported in Figure 12). This also seems 

justifiable, since for some movements, such as e.g. neighbouring zones in rural areas, only one 

alternative may be reasonable, even at a high congestion level. Even doubling the demand 

does not cause congestion on some (primarily rural) roads, as suggested by Figure 9. 

 

 
Figure 12 Ȃ Choice set characteristics for various values of the factor scaling the demand, MNL RSUET(min, ͳǤʹήminȌ with dαͶǡ Zealand application 
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thus not remove many routes4, at termination only 1,989 unique routes had been generated 

and removed again from the choice sets5. The corresponding numbers were 10,744, 34,519, 

85,478 and 160,192 routes when the demand scale factor was 1.25, 1.5, 1.75 and 2.0, 

respectively. The threshold condition thus removed more paths as the network congestion 

increased, and one route was, on average, removed for each tenth OD movement when using a 

scale factor of 2.0. At this demand level the maximum number of unique paths removed for a 

single OD movement was 4 (this OD movement had 9 used paths in the resulting choice set at 

equilibrium). The increase in the number of paths removed for increasing demand seems reasonableǡ as link travel times fluctuate much more and thereby the route costs more Ǯeasilyǯ 
violate the threshold condition. The larger fluctuations in link travel times occur due to (i) the 

larger demand on OD-level, causing more flow to be reassigned in each iteration, and (ii) 

higher sensitivity to flow changes in the travel time functions when the general flow level is 

higher. One would therefore expect a larger variation on the relative costs among the routes 

left in the choice set at equilibrium. This is verified by Figure 13, where e.g. 7% of the routes were more than ͶΨ more costly than the corresponding cheapest path in the Ǯunscaledǯ caseǡ 
whereas it was 27% of the routes in the case where the scale-factor was equal to 2.0. 

 
Figure 13 Ȃ Distribution of relative costs at convergence (iteration 100). Share of routes as a function of relative cost to the cheapest route in the corresponding choice setǤ MNL RSUETȋminǡ ͳǤʹήminȌ dαͶ for varying values of 

the factor scaling the original demand, Zealand application 

                                                        

4 Note on implementation: Paths to be removed are not discarded/flushed from memory but rather flagged as ǮinactiveǯǤ This is done because these might again become attractive in a later iterationǡ and Ǯreactivatingǯ an 
inactive path requires far less computational effort than assigning a new route to memory. 

5 The same unique route may however have been introduced and subsequently removed again several times as 

the algorithm progressed. 
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5 Conclusions  

The study tackles the challenge of obtaining equilibrated RUM flow solutions among choice 

sets which do not leave attractive paths unused and contain only attractive paths in large-

scale problems. Several variants of the RSUET solution algorithm proposed in Watling et al 

(2016) were applied on the large-scale Zealand network and compared to real life observed 

route choice data, link counts and an existing MNP-based SUE model. 

The study found well-behaved and extremely fast convergence patterns to equilibrated 

solutions satisfying the underlying conditions across different scale parameters, step-sizes, 

and congestion levels. Comparisons to observed routes and observed link flows verified that 

the composition of the choice sets and the distribution of flow are very reasonable.  

The effect of adding the threshold was investigated under different conditions. It was found 

that the threshold condition did not cause any of the 16,618 observed paths to be removed. 

This documented that paths violating the threshold were not used of any real car drivers in 

the specific case, which seems to be a strong argument for adding a threshold to SUE models. 

Moreover, the importance of the threshold increased as congestion increased. A comparison 

to two commonly adopted simulation-based SUE algorithms clearly highlighted the benefits of 

the RSUE/RSUET by showing that the SUE algorithms (i) generated choice sets which 

continued to grow in size without showing signs of stabilisation, and (ii) did not stabilise in 

link flows nearly as fast as the RSUE/RSUET, indicating much slower convergence. 

Numerous different specifications of the threshold can be formulated, but the focus of the 

present study was on a formulation which specifies the threshold as relative to the cost of the 

least costly used route(s). The rationale is that there must be a limit to how large detours 

travellers find reasonable. The RSUET model thereby provides a very behaviourally realistic 

interpretation of the mechanism which distinguishes attractive and non-attractive paths. 

Many other models do not provide such a plausible interpretation, for example models based 

on random walk with loops (e.g., Fosgerau et al., 2013) or simulation-based models, where the 

draws may induce the use of highly unattractive paths (e.g. multinomial Probit as in Sheffi, 

1985). The algorithm of Dial (1971) does have a behavioural interpretation of the mechanism, 

namely that only efficient paths are used. The approach is however quite different from that of 

the present paper in that paths are not explicitly enumerated and it is only applicable for MNL 

choice models. Also, efficient paths correspond to paths including only links that take the 

traveller further away from the origin and closer to the destination, which induces the risk of 

excluding some potentially attractive paths (e.g., Si et al., 2010). 

If reformulated for dynamic rather than static assignment, the RSUET model framework and 

solution methods fit especially well in combination with disaggregate activity-based models. 

The activity-based models operate at an individual level and, when the utility functions 

become individual-based, this removes the need to account for taste heterogeneity in the 

assignment model and thereby enables the application of the proposed RSUET solution 
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methods. Not only this allows a rich and consistent specification of the utility function that can 

improve significantly the behavioural realism, but also the extremely fast convergence of the 

RSUET solution algorithm allows for low computation times in the integrated model 

framework. An additional benefit is the absence of stochasticity in the output of the model as 

simulation is avoided. While the solution algorithm fits particularly well with individual-based 

approaches, they can also be used to approximate mixed logit models and, thereby, represent 

taste heterogeneity. This can be done by generating quantiles of the distribution of the 

preferences Ȃ e.g. of the value-of-time Ȃ and then consider each of these as separate user 

classes in the solution algorithm (parameters specified as mean value for the corresponding 

quantile). 

The current paper has thus demonstrated the applicability and behavioural realism of several 

variants of the RSUET model and solution methods in a highly complex network. The 

algorithm managed to reproduce link counts and observed routes and converged extremely 

fast to an equilibrated solution fulfilling the underlying conditions, even in large-scale case-

studies and for high-demand cases. 
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