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 ABSTRACT 

This research presents the optimized scheduling of demand response loads of a residential community of 
30 houses using a multi-objective multi-dimensional genetic algorithm (MOMD-GA) with a variable 
weighted objective function. Incorporating day ahead hourly real time pricing (RTP), the MOMD-GA 
attempts to present possible optimized dispatch patterns with their associated penalties and constraints 
(environmental, consumers and suppliers) thus providing system operators (SOs) and distribution network 
operators (DNOs) sufficient data for real time decision making. The variable weights for each considered 
component of the cost function is chosen to force the MOMD-GA towards exploring optimum solutions 
with lower environmental cost. Further shown are the trade-offs in selecting particular dispatch bias 
(consumer, supplier, environmental and optimized) and the impact of the various dispatch scenarios on 
the cost of overall electricity bill of the community.  

 

. 
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1 INTRODUCTION 

Traditionally, capacity has always been increased from the generation side to match anticipated 
increase in electricity demand. Anticipatory activities have included constructing bigger generation plants 
and increasing reserve capacity (redundancy) (Zhao et al, 2013) that seamlessly compensate for any 
sudden load increase. The associated costs and environmental issues have however altered significantly 
this perspective as demand is being forced to match supply via emerging policy and innovative 
technology measures. In constraining demand to match supply, attention has been shifted from the supply 
end to the demand side. Demand Side Management (DSM) are activities designed to influence customer 
use of electricity and could be incentive based (Wang et al, 2012; Chavali et al 2014) or price based (Wu 
et al, 2014; Wang et al 2015). When DSM activities are price based they are generally referred to as 
Demand Side Response (DSR) or Demand Response (DR). The shift in focus to the consumer side is 
based on the fact that they are the highest consumers of electricity and thus offer the best opportunity for 
the application of DSM techniques. 



 

 
Furthermore, additional impetus to the application of DSM techniques in the United Kingdom 

(UK) is derived from successes gained from the application of government energy efficiency programs. 
According to (Warren, 2014), the Energy Efficiency Commitment Phases 1 and 2 (EEC1) and (EEC2) 
programs which ran from 2002 – 2005 and 2005 – 2008 achieved energy savings of 86.8 TWh and 187 
TWh. Similarly, a carbon reduction of about 293MtCO2 was achieved via the Carbon Emissions 
Reduction Target (CERT) and Community Energy Saving Program (CESP) between 2008 – 2012. 

Utility companies in applying DSM techniques aim at introducing some form of flexibility to 
consumption (load). Hence, load could either be clipped for peak-to-average reduction (PAR) in demand, 
reduced via conservation, increased to meet excess generation, shifted/deferred based on prevailing grid 
constraints etc. With the planned roll out of smart meters in the United Kingdom, the need therefore arises 
for a decision support system that is capable of creating a platform for the aligning of participating 
interests from both consumers and suppliers. Furthermore, the constraints associated with the regulators 
(environmental) can also play a significant role in this proposed field. A multi-objective multi-
dimensional genetic algorithm (MOMD-GA) is thus proposed to optimize the various participating 
constraints and evolve solutions that could aid in decision making by system operators. 

 
 

2 REVIEW OF RELEVANT LITERATURE 

The application of DR mechanism to specific loads was investigated by (Chavali et al, 2012). Here, 
real time scheduling (RTS) of electric water heater (EWH), air conditioner (AC), clothes dryer (CD), 
electric vehicles (EVs), photovoltaic (PV) cell and battery was carried out to obtain reduced electricity 
costs and optimized operation for the appliances. In industrial applications, a DR energy management 
scheme was proposed by (Ding et al, 2014) for industrial facilities based on the state task network (STN) 
and mixed integer linear programming (MILP). The proposed scheme which aimed at maximizing the 
participation of distributed energy resources (DERs) also shifted demand from peak to off peak periods.  

A cooperative demand response (CDR) scheme was further proposed by (Ma et al, 2014) for 
industrial refrigerated warehouses. The proposed scheme formulated as a constrained optimization 
problem reduced electricity costs. Aside residential homes and industrial complexes like warehouses and 
factories, DSM schemes are also being exploited in internet data centres (IDCs) with positive results. In 
(Li et al, 2015), an electric demand management solution was proposed for minimizing the electricity 
costs of IDCs while (Yao et al, 2014) proposed a novel approach to enable the buffering of electrical 
energy in batteries in order to predictively minimize IDCs electricity cost.  

An agent based intelligent energy management system (IEMS) was presented by (Nunna and 
Doolla, 2012) for easy facilitation of electricity between the micro grids while supporting the 
participation of customers in demand response. The proposed IEMS was developed using a Java Agent 
Development Framework (JADE). In improving the flexibility of retail consumers participating 
voluntarily and equipped with smart meters, a coupon incentive-based demand response (CIDR) was 
developed by (Zhong et al, 2013). The proposed CIDR program in achieving flexibility anticipated future 
intermittent generation and price spikes.  

The possibility of synergizing demand response bids with smart grid constraints in real time was 
modeled by (Vlachos and Biskas, 2013) while (Arteconi et al, 2014) analyzed the influence of demand 
side control strategies on the performance of a thermally activated building system (TABS). A novel 
method utilizing the probabilistic approach was developed and used for the generation of residential 
energy consumption profile based on the energy demand contribution of each participating household 
appliance in (Gruber et al, 2014).  In reviewing the potential of demand response for Europe, an 
assessment was carried out by (Gils 2014). It was reviewed that system stability and renewable energy 
share could be enhanced through the use of demand side load management.  



 

While preceding works have focused solely on the consumer side via QoL and costs, this work 
takes existing research a step further by incorporating the needs/constraints of the supplier into the 
demand response mix and optimizing allocation within allowed environmental and economic constraints. 
A strong reason for this is the fact that flexibility being offered consumers could further be enhanced if 
suppliers could optimize their supply mix. Rather than having to anticipate consumer bids, a platform is 
envisaged that allows the user specify within a time zone the duration for the demand response appliances 
and the supplier the maximum generation for each time slot. The proposed multi-objective, multi-
dimensional genetic algorithm (MOMD-GA) then optimizes generation and dispatch taking into 
consideration the costs incurred by the consumer and supplier, carbon emission limits etc. This work thus 
contributes to existing scholarship on demand response optimization by incorporating supply constraints 
into the dispatch optimization and concurrently optimizing dispatch by seeking an optimal balance 
between consumer satisfaction (met through maximum time dispatch of participating loads), 
environmental constraints (carbon emissions reduction and maximization of dispatched generator) and 
costs (maximizing dispatch during low prices and overall lower electricity price) in a dynamic pricing 
(DP) scenario.  

The rest of the paper is described as follows: section 3 presents a brief description of the case study, 
section 4 presents the problem statement, and section 5 describes the proposed MOMD-GA and presents 
the cost component evaluation. The results are presented in section 6 with conclusions made in section 7. 

 

3 DESCRIPTION OF CASE STUDY 
 
Thirty (30) typical middle class British homes located within the same locality in the Yorkshire 

region are modeled and used for this research. A typical house is assumed to have 3 bedrooms (with their 
toilet facilities), 1 living room, a kitchen, a dining room and a hall way. The electrical equipment and 
power (kW) rating for each equipment is taken into consideration. In establishing the Table 1, a manual 
inspection of each considered electrical equipment was carried out. The Table 1 highlights the list of the 
basic electrical equipment considered and their equivalent power rating. Further provided in the Table 1 is 
the status of the load with respect to deferment (dispatchable – D or non dispatchable – ND). 

 
 

Table 1: Electrical equipment and power rating 
S/N Equipment Abbreviation Power (kW) Status 
1 Dish washer DW 1.20 D 
2 Cloth washer CW 0.50 D 
3 Cloth dryer CD 1.00 D 
4 Pumping machine PM 0.40 D 
5 Microwave MW 1.15 ND 
6 Cooker CK 2.15 ND 
7 Heater HT 2.00 ND 
8 Pressing iron PI 1.00 ND 
9 Fridge FRI 0.15 ND 
10 Freezer FRE 0.40 ND 
11 Air conditioning AC 1.00 ND 
12 Vacuum cleaner VC 0.20 ND 
13 Lighting LGH 0.06 ND 
14 Electric jug EJ 2.00 ND 
15 Toaster TST 0.75 ND 
16 Ceiling fan CF 0.075 ND 
17 Television TV 0.10 ND 
18 Personal computer PC 0.15 ND 



 

19 Laptop LT 0.075 ND 
20 Phone chargers PCH 0.025 ND 
21 Satellite decoders SDC 0.025 ND 
22 Luxury lighting LLGH 0.15 ND 

 
A generic and detailed load profile that captures the possible dispatch period (1 represents dispatch 

possible while 0 means no dispatch possible for that hour) common to all of the households under 
consideration is presented in the Fig. 1. It should be pointed out that the occupants of the houses are 
assumed to be majorly working class and thus have similar pattern of consumption. However, to create 
some real scenario, variability in electricity usage and duration is introduced. 

The classification of all the load in a household is done into the following classifications namely; 
Kitchen (DW, MW, CK, EJ and TST), others (CW, CD, PM, PI, VC and CF), entertainment (TV, DC, 
LT, PCH, SDC and LLGH), Heating, Ventilation and Cooling, HVAC (HT, FRI, FRE and AC) and 
lighting (LGH). The Fig. 2 shows the contribution of each load classification to the overall energy 
composition. 

 
 

 

Figure 1: The generic load profile showing possible dispatch period 

 
The problem presented by the case study under consideration is quite complex and multi-

dimensional as it incorporates economics, environment and satisfaction (QoL). From the economics 
perspective, there is a divergence as the following are to be considered in the optimization process. 

 
 Reducing to the barest minimum the cost of allocating participating DR loads to the benefit of the 

consumer. 
 Reducing/limiting the capacity of participating generator to the benefit of the supplier. This is 

achieved by penalizing allocations that do not utilize up to 70% of the activated generators capacity. 
 Minimizing carbon emissions by penalizing emissions from the diesel generators. This ensures that 

the renewable sources are completely utilized. 
 

From the environment point of view, the proposed algorithm in optimally allocating load, strives at 
reducing the carbon emissions from the diesel generators by employing a standard carbon factor as used 
in (Lau et al, 2014) and applying a cost on every kilogram of CO2 emitted. The satisfaction criterion is 
met by ensuring that all demand is met and that the cloth washer is always dispatched before the cloth 
dryer. This is ensured to create a level “field” that allows for comparison between allocation employing 
DR and allocation using the fixed price. 



 

Monetization is applied on all considered constraints (for unit sake) and normalized (after summing 
costs up) to determine the overall penalty for that particular allocation. The aim of the optimization is thus 
to provide options for dispatch decisions. In policy making this becomes even more important since 
dispatch could be altered in real time to either satisfy customers maximally (in order to 
encourage/stimulate higher electricity usage by reducing their electricity cost and following their pre-
defined dispatch order), or satisfy suppliers (to guarantee a return on their investments within a time 
frame by increasing electricity price beyond the suppliers spot price) or the environment (for emissions 
control). Furthermore, the preceding reasons could also be weighted appropriately based on the system 
operator or overall goal and applied in the dispatch. This variableness and flexibility in dispatch is a major 
novelty of the proposed MOMD-GA. 

 
 

 

Figure 2: The generic load profile showing possible dispatch period 

 
The fig. 3 presents the description of the case study showing the interconnections between the 

demand response loads and their source of electricity supply. 
 

4 PROBLEM STATEMENT 

The aim of the proposed MOMD-GA is to optimize the monthly residential cost cos ,t DP
DRe  to meet pre-

defined objectives. The objective function Z is thus defined in (1) as 
 

                                                       cos cos
DP FP

diff t tZ AP BE CS                                                                   (1) 

 
Where, 

, ,A B C  and0 ( , , ) 1A B C   

 
DP

diffP is the consumer bias variable that guarantees lowered reduction of the consumers’ monthly 

electricity bill. For maximized consumer bias, 1, 0A B C   . costE is the environmental bias variable 

that guarantees reduced emissions. This could come however at a higher electricity cost to the consumers. 

For maximized environmental bias 0, 1A C B   . cos
FP

tS is the supplier bias variable that guarantees 

higher per unit price for electricity beyond the suppliers’ spot price. This could be used in ensuring a 
quick return on investment (ROI) by suppliers on electricity projects. For maximized supplier bias 

0, 1A B C    



 

However, aside the bias methods described above, it is possible to vary the weights (A, B and C) 
and obtain solutions that meet several constraints. 

In dispatching the participating demand response loads therefore, we seek to vary intelligently the 
start position of each demand response load within the day to achieve full dispatch and pre-determined 
dispatch bias. In doing this, the following assumptions are made: 

 
1. The demand response loads are only constrained by the day limits. This means that the consumer 

ONLY specifies the length of operation and not the time of dispatch. 
2. Dispatched demand response loads operate in discrete numbers of 15 minutes’ cycle. 

 
 

H1

DR1 DR2 DR3 DR4

BLH1

H29

DR1 DR2 DR3 DR4

H30

DR1 DR2 DR3 DR4

Grid supply for non-DR loads

Information exchange layer

MOMD-GA
Fixed Electricity Price 

(Pounds/kWh) from utility
Dynamic Price 
(Pounds/kWh)

SUPPLY CONTROLLER

PV+Battery GEN 1 (1 kW) GEN 2 (3 kW)
GEN 3 (10 

kW)

Dynamic Price 
Computation 

Controller

Solar Irradiance 
(weather)

BLH29 BLH30

 
Fig.3.The proposed conceptual frame work incorporating MOMD-GA 

 
 

Thus, if 1 and 2 are the daily limits start and end times and ,p
  and ,

d
   are the dispatch time 

and duration for any demand response load 
 (where  is the demand response load number and  is 

the house number), then if ,
lim it
  is the maximum time for dispatch for any demand response load 

  

 
 

,
  

 
                                                                             1 30                                                                        (2) 
 
                                                                             1 4                                                                          (3) 



 

                                                                        , ,
lim 2it d
                                                                       (4) 

 

                                                               , , ,
1 lim 2p it d

                                                                  (5) 

 
The fig. 3 further illustrates the equations (2) – (5).  
 
Let 1 1 1 2 1 3 1 4 30 1 30 4{ , , , ,... ,... }DR DR DR DR DR DR DRP H H H H H H  be the kW rating of participating DR 

loads for the 30 houses. 
Let 1 1 1 2 1 3 1 4 30 1 30 4{ , , , ,... ,...y }DR DR DR DR DR DR DRdR y y y y y   be the respective duration (in hours) for 

each participating DR load. 
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1

( )
i j

h k
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Hence, 

                                                        
2 ,

2

1 1 1
1

( )
k i j

h h k

DRR DR
k i h k

j

T P kW
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
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Let 2 1 2 24{ , ,... }k st st stDP C C C  be the day-ahead dynamic electricity price in Pence/kWh for the 

case study. 
Let fP  be the fixed electricity price in Pence/kWh for the case study from an electricity vendor. 

                                                                 
_______

2kDP fP                            (10) 

 

                                          2 1 2 3 24{ , , ,... }stk st st st stCC HC HC HC HC              (11a) 

 

                                                    
30

, 1, 1,
1 1

[ ( * )]*Cst l k l k l stl
k

HC EDRR


            (11b) 

 
Let 2 1 2 3 4{ , , ,..., }kRES S S S S  and  

Let ( )lutil kW  be the capacity of the generator dispatched whose value is determined by ldeficit   

 

                                         
30

1, 1,
1 1

[( ( * )) ](kW)l k l k l l
k

deficit DRR S


                                (12) 

 



 

The dispatch of generator follows the rule: 

If  0 1, 1l ldeficit util kW      

     1 3, 3l ldeficit util kW     

     3 , 10l ldeficit util kW   

 
Assumption: 

( ) 10lMax deficit kW l  . 

The objective function Z as formulated in equation (1) is subject to the following: 
 
1. Maximizing 2kCutil to minimize the under-utilization of the diesel generators. 

2. Minimizing 2kCdeficit  to maximize he exploitation of the renewable energy sources. 

3. Minimize 2stkCC  which is an inherent property of MOMD-GA irrespective of the dispatch 

bias. 
4. Minimize 2stkPC to obtain an overall dispatch profile with the lowest associated cost. 

 
 

Where 

1,k l  is the fraction of 1,k lEDRR  to be dispatched for hour l  and 0 1l  . 

2kCutil  is the daily associated cost for matching ldeficit  with lutil and is computed as follows: 

| | 70%util
l lutil  , 5lCutil Pounds   

 

                                        
24

2
1

| | 70%util
k l l l

l

Cutil Cutil util


                                  (13) 

 

2kCdeficit  is the daily associated cost/penalty for carbon emissions. Its computation assumes a 

standard 20.68 /kgCO kWh of electricity consumed (Lau et al, 2014) and 20.14 /Pound kgCO. 

Thus,  
 
                                       

22 0.68*0.14* ( )
kk EDRRCdeficit T Pounds                                           (14) 

 

2stkCC  represents the associated electricity cost for the day with dynamic pricing. It is computed as 

 

                                           
24

2 ,
1

( )*0.01( )stk st l
l

CC HC Pounds


                         (15) 

 

2stkPC  represents the cumulative associated penalty allocated for any hourly dispatch ,lstHC  that 

has a higher overall value than its corresponding fixed price value.  
Thus,  

Given 
24

2
1

stk stl
l

PC PC l


   
30

1, 1,
1 1

( * )( ) 0k l k l stl
k

EDRR C fP l

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                                      1, 1,10%(( * )( ))stl k l k l stlPC EDRR C fP                (16) 

 

stlPC  is negative 1, 1,( * )( ) 0k l k l stliff EDRR C fP    and positive 

1, 1,( * )( ) 0k l k l stliff EDRR C fP    

 

5 MOMD-GA ALGORITHM 

The description of the MOMD-GA is shown in the Table 2 while the nomenclature description of 
the variables and subscripts used are shown in the Tables 3 and 4. 

 

Table 2: Algorithm description for MOMD-GA 

Input ( 2
cos, , , , CO

DR DR stl tP dR C fP e ) 

Start 
    Optimization part 
       Generate quarter hour time slot matrix hDRS   

       Generate bit equivalent matrix hDRBS  of hDRS   

                 Generate maximum transfer start point matrix maxtst  in XC   for each solution in hDRBS  

       Generate equivalent decoupling matrix dectst  

       Generate binary equivalent matrix binary
dectst  of decoupling matrix dectst   

               Perform crossover on binary
dectst  (see Ogunjuyigbe et al, 2015) 

               Perform mutation on binary
dectst  (see Ogunjuyigbe et al, 2015) 

       Initialize the dispatch/population matrix XC   

       Appropriately fill XC  based on equivalent and corresponding decimal values of binary
dectst  

    Cost computation part 
       Compute generator utilization cost 2kCutil  

       Compute CO2 emissions cost 2kCdeficit  based on per unit emission costs 

2
cos 2( / / )CO

te Pounds kgCO kWh  

       Compute daily associated cost 2stkCC  based on dynamic pricing  

       Compute 1over-reaching dynamic price penalty 2stkPC   

       Compute overall cost based on equation (1) 
    Matrix and parameter updating 

       If current cost 2,
overall
stk currentC  is smaller than preceding value 2,previous

overall
stkC , then preceding value is updated 

to 2
overall
stkC else previous value becomes current value. 

       Write to appropriate Excel files and plot respective graphs of supply, demand, dispatch etc. 
End 

                                                 
1 The over-reaching penalty is applied to any hourly allocation whose overall cost based on dynamic pricing 

exceeds the fixed price equivalent. The essence of this penalty is to force allocation to hours where the contribution 
of the renewable energy system (PV + battery) is high  



 

Table 3: Nomenclature description for variables 

1kDRR      Power demand per household (kW) 

1kEDRR    Energy demand per household (kWh) 

2kDRRT        Daily power demand for all households (kW) 

2kEDRRT       Daily energy demand for all households (kWh) 

stlC            Hourly electricity dynamic price (Pence/kWh) 

,st lHC        Hourly electricity cost for all households (Pence/Pounds) 

2kRES       Daily renewable energy source (RES) supply (kW) 

ldeficit      Hourly shortfall of RES in dispatching power demand  

lS              Hourly RES supply (kW) 

lutil           Generator capacity dispatched (kW) for hour l   

stlPC         Hourly over-reaching penalty (Pounds) 

1k iqd          Participating DR load i  for each household k1 

1k it             Maximized start position in XC  for each solution in hDRBS   

1BLHk      Base load for house 1k   
util
l            Hourly percentage utilization of lutil  (%) 

 

Table 4: Description of used subscripts 
1k             Index of each household 

2k            Index of each day 
l               Index of each hour 
i               Index of each DR load 

DRi         Demand response load i   
 

 

6 RESULTS 

The fig. 4a presents the different prices – average daily dynamic price, supplier’s spot price (which 
guarantees at worst case a ROI), fixed price (£0.1113 from SSE) etc. The day 1 spread of electricity 
expenditure for house 1 for the demand response loads only using the E. Bias (environmental bias), S. 
Bias (supplier bias), C. Bias (consumer bias) and Z. Bias (equally weighted constraints) is shown in the 
fig. 4b. It is observed that the different approaches dispatch the consumer loads based on their 
optimization goal. While the S. Bias expenditure for the day for hose 1 demand response loads is £1.06, 
E. Bias achieves an expenditure of £1.00. The C. Bias and Z. Bias both achieve expenditure of £0.09 and 
£0.29 respectively. The start time of dispatch for two selected demand response loads – dish washer and 
cloth washer for the different approaches is shown in the figs. 4c and 4d respectively. 

The monthly expenditure of all the houses combined using the different approaches is further 
presented in the Table 5. It is observed from the Tables 5 and 6 that all approach methods (except the C. 
Bias) guarantee the minimum income for the supply based on the quoted per unit price (SP) given by the 
supplier. Also worthy of note is the fact that the C. Bias approach does present the lowest expenditure for 
the consumers with the S. Bias approach guaranteeing the maximum profit for the supplier. The choice of 
the appropriate dispatch approach method is further enhanced by examining the environmental 
consequence (generator under-utilization, carbon emissions etc.) of the chosen dispatch approach.  



 

 
Figure 4: Daily (a) Pricing schemes, (b) electricity cost spread for house 1, (c) dish washer 

allocation and (d) cloth washer allocation for various pricing scenarios 
 

Table 5: Combined monthly electricity cost (Pounds) 
Cost evaluation approach (Pounds) 

.C Bias  .E Bias  .S Bias .Z Bias  
308.42 371.19 429.67 348.35 

 
 

Table 6: Estimated consumer expenditure (£) and supplier minimum revenue (£) using 
Fixed price (FP) and supplier spot price (SP) 

FP  0.1113  

SP  0.11 

Supplier income based on SP 346.47 
Consumer expenditure using FP 350.56 

 
 

7 CONCLUSION 

This paper has presented MOMD-GA which is aimed at not just reducing the electricity bill of the 
consumer but providing options for dispatch choice based on various constraints. As a policy support 
algorithm, MOMD-GA offers system operators and distribution network operators a platform to 
harmonize the needs of the consumers with the suppliers’ preferences and regulators constraints. A 
savings of about £42 (12% below fixed price expenditure) is obtained from the C. Bias approach while an 
extra income of about £83 (24% beyond spot price earnings) is obtained using the S. Bias approach. The 
E. Bias and Z. Bias approaches optimize dispatch and consumer monthly expenditure based on their 
intended purposes. While the C. Bias approach does not guarantee maximum accrual to the utility, it 
could however be used to encourage consumption from consumers with the deficit covered by the 
government in form of carbon rebates (reduced environmental penalties). 
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