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Abstract 

Due to its versatility, electron transfer dissociation (ETD) has become one of the most commonly 

utilized fragmentation techniques in both native and non-native top-down mass spectrometry. 

However, several competing reactions ʹ primarily different forms of charge reduction ʹ occur under 

ETD conditions, as evidenced by the distorted isotope patterns usually observed. In this work, we 

analyze these isotope patterns to compare the stability of ETnoD products, specifically noncovalent 

c/z fragment complexes, across a range of ubiquitin conformational states. Using ion mobility, we 

find that more extended states are more prone to fragment release. We obtain evidence that for a 

given charge state, populations of ubiquitin ions formed either directly by electrospray ionization or 

through collapse of more extended states upon charge reduction, span a similar range of collision 

cross-sections. Products of gas-phase collapse are however less stabilized towards unfolding than the 

native conformation, indicating that the ions retain a memory of previous conformational states. 

Furthermore, this collapse of charge-ƌĞĚƵĐĞĚ ŝŽŶƐ ŝƐ ƉƌŽŵŽƚĞĚ ŝĨ ƚŚĞ ŝŽŶƐ ĂƌĞ ͚ƉƌĞ-ŚĞĂƚĞĚ͛ ƵƐŝŶŐ 
collisional activation, with possible implications for the kinetics of gas-phase compaction. 
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Introduction 

In the past decade, electron transfer dissociation (ETD)[1] has been implemented in a variety of 

commercially available mass spectrometers, and has become increasingly important in top-down 

protein analysis under both native and denaturing conditions[2]. The main reason for this is the 

ability of ETD to induce backbone cleavage while preserving weak bonds, particularly noncovalent 

interactions. Multiple ion/ion reaction pathways are available under ETD conditions, including several 

forms of non-dissociative charge reduction (see Figure 1)[3-6], for which we introduced the term 

charge-reduction ETD (crETD). The most important contributions to crETD are non-dissociative 

electron transfer (ETnoD) and the proton transfer reaction (PTR). The third charge reduction channel, 

gas-phase adduction of a reagent anion, is typically sufficiently rare so that it can be disregarded. As 

before[7], we note that electron transfer followed by loss of a hydrogen atom by the protein, which 

has been proposed to occur to some extent in hypervalent ammonium radicals under ECD 

conditions[8-11], is not explicitly included in our approach, but contributes to the intensity of the PTR 

channel. 

PTR of an ESI-generated [M+nH]n+ precursor leads to an even-electron [M+(n-1)H](n-1)+ product, 

whereas ETnoD of the same precursor leads to an [M+nH](n-1)+ radical. Two types of such radicals 

exist: In the first, backbone cleavage occurred, but the resulting c and z fragments are held together 

by noncovalent interactions; in the second, the electron is accommodated e.g. in an aromatic side 

chain, and its presence does not lead to backbone cleavage. As they possess the same molecular 

formula, i.e. [M+nH](n-1)+, distinction of both types of ETnoD ion by mass alone is impossible. Upon 

application of supplemental (collisional) activation, however, the noncovalent interactions stabilizing 

the first type of ETnoD product are disrupted, leading to the release of c and z fragments. The second 

type, on the other hand, will not readily dissociate upon application of supplemental activation and 

will form only CID-type (b and y) ions when sufficiently activated[2]. The actual branching ratio 

between transfer of either a proton or electron during ion/ion interaction is believed to be mainly a 

function of properties of the reagent anion[12, 13]. We therefore assume this ratio to be constant for 

a given reagent, as well as the protein, its charge state, and conformation. For a structurally 

heterogeneous protein, it is conceivable that different conformations might have different 

reactivities toward proton and electron transfer, due to e.g. different degrees of electrostatic 

repulsion or intramolecular proton solvation. Indeed, it has been proposed by Clemmer and 

colleagues[14] that significantly different conformations (i.e. 20 ʹ 50% difference in collision cross-

section) of ubiquitin possess different reactivities in ion/neutral proton transfer, although Smith and 

colleagues have argued that any such effect is fairly minor[15]. For the fairly homogeneous, extended 

conformations used in our experiments, however, our assumption ʹ that subtle conformational 

differences within the highly charged states which we observe do not have a major effect on ion/ion 

reactivity ʹ seems plausible. Iƚ ŝƐ ŝŵƉŽƌƚĂŶƚ ƚŽ ŶŽƚĞ ƚŚĂƚ ƚŚĞ ͚ĂƉƉĂƌĞŶƚ͛ PT‘ͬETŶŽD ďƌĂŶĐŚŝŶŐ ƌĂƚŝŽ 

referred to in this work is the observed ratio based on ions which survive long enough to be 

detected. Crucially, we assume that virtually all PTR products will be detected (since these are 

stable), while the population of ETnoD ions will be depleted ʹ and the observed branching ratio thus 

distorted ʹ to some extent by conversion into ETD fragments. 

As PTR and ETnoD products differ by one hydrogen mass, they can in principle be distinguished 

relatively easily. In practice, however, both pathways co-exist, leading (especially after multiple 

reaction steps) to complex signals which consist of several overlapping isotope distributions. 
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Recently, we have presented software which, based on the precursor sequence and charge state, 

predicts the isotope distributions of all possible products (accounting for multiple reaction steps), 

ĂŶĚ ƐƵďƐĞƋƵĞŶƚůǇ ͚ĚĞĐŽŶǀŽůƵƚĞƐ͛ ETD spectra, thereby yielding the relative intensity of each 

product[7]. The intensities of the different types of products were shown to be sensitive to 

application of supplemental activation, in a manner which was easily rationalized through collision-

induced dissociation of noncovalent c/z fragment complexes. 

In the current work, using gentle ESI and the ion mobility (IM) capabilities of the Synapt G2 HDMS 

instrument, we investigate the relation between the apparent preference for either type of charge 

reduction ʹ which, as mentioned, is assumed to depend mostly on survival of ETnoD products ʹ and 

the collision cross-section (CCS) of the precursor and charge-reduced products. Further, we also 

study how this relation depends on the application of limited collisional activation (both pre- and 

post-ETD; before the ions enter the IM cell in each case). By varying acceleration voltages, we 

generate extended and (partially) collapsed drift-time species for 6+ ubiquitin, formed by charge 

reduction of the ESI-generated [M+8H]8+ precursor, and compare these to [M+6H]6+ ions directly 

generated by ESI. Regardless of the stage at which collisional activation was applied, a good 

correlation between average drift time (compactness) and apparent PTR/ETnoD branching ratio was 

found. This can be rationalized as the more compact structures of c/z complexes are stabilized to a 

greater degree by noncovalent interactions, even though they are formed by gas-phase collapse of 

more highly charged, extended structures on a millisecond timescale. This results in a reduced 

propensity for fragment release and more ETnoD ions reaching the detector, decreasing the 

observed PTR/ETnoD ratio. As such, this method, which can be applied to any high-resolution, ETD-

capable mass spectrometer, provides a new way of gaining insight into the global structure and 

dynamics of gas-phase protein ions. 

 

Experimental 

The MassTodon software used to analyze observed isotope distributions was developed in-house and 

described previously[7]. CCS calibration was performed using a standard protocol[16], but taking 

reference values for denatured ubiquitin from a more recent report[17]. Experiments were carried 

out on an ETD-capable hybrid quadrupole/ion mobility/time-of-flight mass spectrometer (Synapt G2 

HDMS, Waters, Wilmslow, UK). Ubiquitin (Sigma U6253, 8564.8 Da) was used at a concentration of 5 

µM in water/methanol (v/v) 50/50 with 0.1% formic acid added. The sample was introduced using 

nano-ESI via in-house prepared gold-coated glass capillaries, using a spray voltage of 1.0 kV and 0.20 

mbar nanoflow gas pressure. The glow discharge was tuned to provide an ETD reagent (1,4-

dicyanobenzene) current of approximately 2e6 counts/s for charge reduction, and was switched off 

to measure drift times of ESI-generated ions. Anions were accumulated in the trap T-Wave cell for 

100 ms with a refill interval of 1 s. Backing and source pressure were 2.8e0 and 1.8e-3 mbar, 

respectively. Sampling cone and trap DC bias were varied as described in the text. An outline of the 

instrument is shown in Supplementary Figure S-1. Pressure in the trap, He, IM, and transfer cell were 

7.4e-2 (gas flow 20 mL/min), 1.4e3 (140 mL/min), 2.5e0 (60 mL/min), and 3.7e-2 (4 mL/min) mbar, 

respectively. Standard values for IM wave height and velocity were 20 V and 500 m/s, respectively.  

To allow for more accurate determination of CCS values of ESI-generated ubiquitin charge states 4+ 

to 7+, additional experiments using IM wave height/velocity of 25 V / 700 m/s and 30 V / 1000 m/s 
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were performed. Since the aim of this work was to induce limited charge reduction rather than 

maximize fragmentation, the trap wave height, which controls the extent of ion/ion interaction[18, 

19], was kept relatively high, at 1.2 V. Trap wave velocity was 300 m/s.  

A minimum of three repeats were performed for all charge reduction experiments, and average 

branching ratios are reported. The method for estimating separate (apparent) branching ratios for 

both reaction steps is described in the Supplementary Information. Data processing was performed 

using both MassLynx (version 4.1) and the in-house developed MassTodon software. External m/z 

calibration was performed using cesium iodide clusters. 

 

Results and Discussion 

Previously, we compared the ETD fragmentation behavior of native and partially unfolded structures 

of large noncovalent complexes[20]. Partial unfolding in this case was induced prior to ETD and 

confirmed using IM. Fragment release from the fully folded complexes was found to require 

significant supplemental activation (applied in the transfer cell) in nearly all cases. For partially 

unfolded species on the other hand, fragments were released immediately after electron transfer 

(also confirmed using IM), without applying supplemental activation. Partially unfolded species 

release fragments more readily, due to a reduced presence of hydrogen bonds and salt bridges. 

Accordingly, this should deplete the ETnoD products, resulting in an apparent increase in PTR/ETnoD 

branching ratios. In the current work, we investigate whether a correlation exists between this 

branching ratio of a (charge-reduced) precursor and its arrival time in IM.  

The MassTodon software, which we developed previously for estimating this ratio, requires that 

isotopes of charge-reduced products be resolved, which is difficult in native ESI of large protein 

complexes[21]. We therefore focused our investigation on ubiquitin, a small (8.6 kDa), well-

characterized monomeric protein. Ubiquitin is known to adopt various conformations in the gas 

phase, particularly at intermediate charge states[14, 22, 23]. It was recently shown that the relative 

abundances of these conformations result at least in part from gas-phase activation[24]. Thus, we 

decided to systematically vary the sampling cone (activating the 8+ ESI-generated ion) and trap DC 

bias (activating the 6+ charge-reduced product) voltages under ETD conditions, whilst isolating the 

[M+8H]8+ ion in the quadrupole. The relative location where these potentials are applied within the 

instrument can be found in Supplementary Figure S-1. It should be noted that the cone voltage is 

applied before and the bias voltage after ETD, while both are applied prior to the IM cell. For each set 

of parameters, a minimum of three spectra was acquired and the PTR/ETnoD branching ratio 

calculated for each spectrum. The branching ratio for the first reaction step (8+  7+) is simply the 

ratio of the detected amount of PTR ([M+7H]7+) and ETnoD ([M+8H]7+) product and was consistently 

between 1.082 and 1.122 (±1.8% variability). The observed CCS distributions for the 7+ charge state 

(See Supplementary Figure S-2) are also nearly identical between experiments. Maximum likelihood 

estimation subsequently allowed determination of the apparent branching ratio for the second step 

(7+  6+) ƐĞƉĂƌĂƚĞůǇ͕ ďĂƐĞĚ ŽŶ ƚŚĞ ƌĂƚŝŽ ŽďƐĞƌǀĞĚ ŝŶ ƚŚĞ ĨŝƌƐƚ ƐƚĞƉ ĂŶĚ ƚŚĞ ĂŵŽƵŶƚƐ ŽĨ ͚Ϯ ǆ PT‘͕͛ ͚Ϯ ǆ 
ETŶŽD͕͛ ĂŶĚ ͚ŚǇďƌŝĚ͛ ƉƌŽĚƵĐƚ ƚŚĂƚ ĐŽŵďŝŶĞ ƚŽ ŵĂŬĞ ƵƉ ƚŚĞ ŽďƐĞƌǀĞĚ ϲн ƐƉĞĐŝĞƐ (See Supplementary 

Information). Interestingly, this second branching ratio varied between 1.066 and 1.423 (±16.7% 

variability), reflecting the much greater structural heterogeneity of the 6+ charge state. 
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Assuming ʹ as we will later show to be true ʹ that gas-phase unfolding and collapse lead to a small 

number of quite well-defined conformations, the CCS distribution of the 6+ charge-reduced ion can 

be meaningfully represented as a (weighted) average of these states. In Figure 2a, the apparent (7+ 

 6+) PTR/ETnoD branching ratio is plotted as a function of the weighted average of the CCS values 

of charge-reduced 6+ ions across all experiments. The observed isotope distribution of this ion in two 

of the spectra (i.e. two of the eleven data points in Figure 2a) is shown in Figure 2b, demonstrating 

that a deviation from the [M+6H]6+ ion generated by ESI is clearly visible even upon casual inspection. 

Two features of Figure 2a are striking: First of all, the quasi-linear trend is consistent with our 

hypothesis that more extended conformations are more likely to release fragments and therefore 

exhibit a higher branching ratio (less ETnoD surviving). Second of all, charge-reduced ions generated 

after cone activation are on average more compact than those generated by bias activation. 

In the following, we will look at the CCS distributions of the various charge(-reduced) states of 

ubiquitin in more detail. While charge reduction in the gas or droplet phase via ion/ion and 

ion/neutral chemistry has been performed before, the focus was on spectral simplification or 

deconvolution of overlapping signals in the m/z domain, rather than investigating the effect on gas-

phase ion structure[4, 6, 25-28]. Efforts to combine this approach with ion mobility have mostly 

focused on large, noncovalent complexes, and in these cases, little or no conformational change has 

generally been observed[5, 29-31]. 

Figure 3 shows CCS distributions of 6+ ubiquitin, generated either directly by ESI (panels a-b), or by 

double gas-phase charge reduction of the ESI-generated [M+8H]8+ precursor (panels c-d). In Figure 

3a, it can be seen that the trap DC bias voltage has a profound effect on the CCS distribution of the 

ESI-generated [M+6H]6+ ion: When this voltage is increased from 25 to 45 V, the protein fully 

converts from a conformation with a collision cross-section (CCS) of ca. 1560 Å² to a more extended 

form with a CCS of around 1830 Å² (+17%), with both conformations coexisting at intermediate bias 

voltages. Similar behavior occurs with increasing sampling cone (Figure 3b), but an intermediate 

conformation with a CCS around 1730 Å² is also observed, most likely due to the presence of residual 

solvent on the protein at this early stage of the ion transfer into vacuum. Charge states 7+ and 8+ 

show only the extended conformation (Supplementary Figure S-2). 

Our CCS values are larger than reported in a recent study[24]; however, that study used an IM 

calibration protocol[16] which relies on reference values measured in helium by the Clemmer 

group[14]. A reasonably good correlation is known to exist between CCS values measured in He and 

N2, particularly for peptides of the same charge state[16, 17, 32]. A comparison of reference values 

for different charge states of denatured ubiquitin obtained from a linear IM cell in both gases[14, 17] 

shows, however, not only that nitrogen values are systematically larger, but also reveals a much 

greater increase of CCS with charge in this gas, likely due to its greater polarizability[33]. Using the 

Clemmer CCS values for denatured ubiquitin (in helium) to calibrate our IM data, we obtain values 

for the 1560, 1730, and 1830 Å² species which are 15-20% smaller (1280, 1460, and 1580 Å², 

respectively). This matches what is referred to as the I(ntermediate) (ca. 1200 Å²), E(xtended)-2 (ca. 

1400 Å²), and E(xtended)-1 (ca. 1500 Å²) states in [24]. At the bottom of each panel in Figure 3, the 

lowest-energy (blue) CCS distribution is represented by a linear combination of these three 

(Gaussian) components. The fact that all twelve traces in Figure 3 can be adequately described as 

such linear combinations (Supplementary Figure S-3) validates our assumption of a small number of 

gas-phase conformations, for both ESI-generated and charge-reduced 6+ ubiquitin ions. 
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As CCS values for the C(ompact) state of ubiquitin (charge states below 7+) in N2 are not found in the 

most commonly used databases (i.e. those hosted by the Clemmer and Bush groups), we can report 

here that we find values of (1264±17), (1240±18), and (1231±20) Å² for the 6+, 5+ and 4+ ESI-

generated ions, respectively. Matching our other results, these values are again ca. 20% higher than 

reference values (ca. 1050 Å²) measured in helium[14, 34]. For the 6+ ion, this state was only 

observed if the sampling and extraction cone voltages were significantly lowered, to 8 V (minimum 

for ion transmission) and 1 V, respectively. Only the I, E1, and E2 states contribute significantly to the 

CCS distributions shown in Figure 3. 

Figure 3c shows that the extended 8+ ion (ca. 2000 Å², Supplementary Figure S-2e,f) collapses upon 

charge reduction to 6+. The resulting ion population spans the same CCS range as the ESI-generated 

[M+6H]6+ ion, but is largely trapped in intermediate states in the absence of post-ETD activation (blue 

trace). The fact that the more compact conformations are not observed in charge states above 6+ 

indicates that they are indeed formed by charge-driven gas-phase collapse rather than already being 

present in the quadrupole-selected 8+ precursor and merely undergoing charge reduction more 

efficiently than the extended conformers. This further supports our hypothesis that subtle 

conformational effects do not play a major role in determining the actual ion/ion reactivity. The 

relatively compact I state at ca. 1560 Å², which survives moderate activation in the ESI-generated 6+ 

ion (Figure 3a, orange trace), is absent in the charge-reduced case (Figure 3c, orange trace). This 

indicates that charge-induced compaction may well lead to structures of similar CCS, but with 

reduced stability towards unfolding compared to the ESI-generated structure (while 40 V of cone 

voltage correspond to higher activation for the 8+ precursor than the 6+ ESI ion, we expect the ions 

to be largely thermalized again by the time the ions reach the trap cell). 

A sufficient increase in bias voltage produces in both cases virtually identical CCS distributions, which 

represent extended conformations (red traces in Figure 3a,c). An increased cone voltage on the other 

hand (Figure 3d) leads to significant heterogeneity for the charge-reduced product at all cone 

voltages in the 40-100 V range, with a predominance of compact conformations. It appears that the 

structure of the 8+ precursor is already sufficiently disrupted, and the resulting extended form 

stabilized by charging, so that cone activation does not have any significant effect (Supplementary 

Figure S-2f,h). Consequently, the 6+ crETD products of this 8+ precursor also show similar CCS 

distributions, apart from a slight shift towards more compact states at higher cone voltages (Figure 

3d). Possibly, the increased internal energy of the [M+8H]8+ ions during desolvation disrupts some H-

bonds and salt bridges, leading to an extended conformation which has a low barrier for collapse due 

to charge reduction. It should be noted however, that although the entire ESI-generated ion 

population undergoes collisional activation due to an increased cone voltage, only the [M+8H]8+ ion is 

selected in the quadrupole and allowed to interact with the anions in the trap cell. 

The data presented so far are in agreement with the observed correlation between different arrival 

time distributions, characterized by average CCS values, and the extent of fragment release, reported 

as an apparent PTR/ETnoD branching ratio in Figure 2. It is conceivable however that the competing 

ETnoD and PTR reactions could lead to charge-reduced products with subtly different conformations, 

and that ion activation somehow biases the ratio between electron and proton transfer. However, it 

is counter-intuitive that transfer of either an electron or a proton would lead to such large CCS 

differences as observed in Figure 3. Additionally, both we and others have shown previously[7, 23, 

35] that charge reduction of high charge states of ubiquitin, using the PTR-specific reagent PDCH 
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(perfluoro-1,3-dimethylcyclohexane), leads to the same conformational heterogeneity for the 6+ ion 

as observed here. Similar results were also observed by Badman and colleagues for cytochrome 

c[36], although they speculated that the intermediate and compact conformations formed by charge 

reduction of extended, highly charged ions, were the result of refolding to similar conformations as 

those generated by ESI, whereas our results suggest a different pattern of noncovalent stabilizing 

interactions (i.e. salt bridges) Finally, while activation at the cone (i.e. before ETD) could theoretically 

change the preference for initial proton or electron transfer, for the bias voltage (downstream of the 

ETD cell) to affect the apparent PTR/ETnoD ratio, the same argument ŽĨ ͞depletion by 

ĨƌĂŐŵĞŶƚĂƚŝŽŶ͟ would have to be made as in our model. 

Rather than our hypothesis that gas-phase activation induces a structural change, with different 

conformations subsequently generated possessing different propensities for fragment release from 

noncovalent c/z fragment complexes, it could also be proposed that the change in CCS distributions 

observed in Figure 3c,d is the result of certain conformations being selectively depleted by 

dissociation. In Figure 3c, this would mean conversion of the more compact conformations to ETD 

fragments with increasing bias voltage, while leaving the more extended conformations largely 

unaffected. However, first of all, total conversion of ETnoD products to ETD fragments does not occur 

at the low activation voltages used here (particularly as the trap gas in this case is helium). Secondly, 

this would imply that the more compact conformation consists nearly exclusively of ETnoD product, 

which we have already ruled out in the previous paragraph. A similar argument can be made for why 

Figure 3d likely also shows mainly conformational transitions rather than the effect of selective 

dissociation. 

Having said this, it should be noted that some minor distortion of the observed CCS distributions is 

inevitable within our model, as by definition, we detect only the surviving ions and not the initially 

formed ion population. As survival rate differs between conformations, we expect that we 

underestimate the average arrival time somewhat, particularly for ion populations in which a 

significant portion occurs as extended conformations. However, this distortion is expected to be 

quite small for several reasons: First of all, a significant amount of PTR product is present, which does 

not fragment and for which we therefore do actually detect the initially formed population. Secondly, 

even for the most extended conformation of 6+ ubiquitin we observe that our data are consistent 

with dissociation of only a minority of the ETnoD ions. As such, while an increased abundance of 

extended conformation(s) might be attenuated somewhat by this effect, it will still be clearly visible 

in our data. 

As mentioned, the collapsed I state we observe is clearly less stable toward collision-induced 

unfolding than the similarly-sized ESI-generated [M+6H]6+ ion, as demonstrated by the complete 

depletion of this state with a minor increase in bias voltage. Interestingly, however, the apparent 

PTR/ETnoD branching ratios can be predicted (based on the deconvolution into Gaussian 

components) with an error of less than 5% (even less than 1% in most cases) across all experiments if 

one assumes that only the I, E2, and E1 states occur, and that these exhibit branching ratios of 0.797, 

1.076, and 1.479 respectively. This indicates that, despite reduced stability compared to the ESI-

generated ion, hydrogen bond and salt bridge formation during collapse make the compacted ion 

significantly more capable than the extended state of forming long-lived c/z fragment complexes. A 

possible explanation for this is that during collapse, groups with a tendency to form noncovalent 

contacts (e.g. charged groups) easily find interaction partners locally, without the global fold of the 



9 
 

protein being stabilized to a similar degree as in the native structure. This is in excellent agreement 

with results which were reported recently by Vachet and colleagues[37], who performed ETD in a 

quadrupole ion trap. This phenomenon could perhaps even provide insight into why, using ECD on 

FTICR instruments (somewhat harsh interface, ion residence time up to seconds), a rearrangement to 

a compact, salt-bridge stabilized, yet distinctly non-native structure is consistently reported when 

spraying ubiquitin from either acidified water/methanol solution[38], or native-like aqueous 

ammonium acetate[39]. 

These previous studies focused on the ExD fragmentation pattern of ubiquitin in order to infer 

structural information for the precursor, which was isolated in the quadrupole. Crucially, relatively 

low (< 7+) charge states were typically selected, occurring (according to our IM data as well as that of 

others[14, 16, 24]) in compact and intermediate conformations and resulting in a lack of observed 

fragmentation in certain regions ʹ mostly those spanned by salt bridges. Conversely, in our work, 

both the 8+ precursor isolated in the quadrupole, as well as the first (7+) charge-reduced state, occur 

fully in the extended state (Supplementary Figure S-2). Intensity ratios of the (ESI-generated) 8+, 

(charge-reduced) 7+, and (charge-reduced) 6+ ƐƚĂƚĞƐ ŽĨ ͚ŝŶƚĂĐƚ͛ ƵďŝƋƵŝƚŝŶ in our crETD spectra are 

around 20:5:1 (see Supplementary Figure S-4) ʹ in agreement with the exponential decrease 

expected from reaction kinetics. Therefore, the majority of the fragments originate from extended 

conformations. Since both ETD and collisional activation in our experiments occurred prior to entry 

of the ions into the ion mobility cell, distinguishing fragments released from the 6+ state by drift time 

alignment was obviously also not possible. As mentioned, instrument conditions were optimized for 

(limited) charge reduction rather than high fragmentation efficiency, and as a result, the intensities 

of even the most abundant fragments were another order of magnitude less than those of even the 

6+ charge reduction products. As such, the changes in intensities of individual fragments - due to 

changing propensity for fragment release from the 6+ charge-reduced state - are too small to be 

monitored with the same reliability as using our IM and isotope distribution analysis. However, it is 

still possible to estimate total fragment intensity in a consistent manner. Doing this for all our 

spectra, we observe that the relative total fragment intensity observed in our experiments follows a 

similar trend as the apparent PTR/ETnoD ratio (Supplementary Figure S-5). This is in agreement with 

our hypothesis that fragment release is the dominant factor determining apparent PTR/ETnoD ratio. 

A recent report showed a range of biologically irrelevant compact (collapsed) subpopulations in 

͚ŶĂƚŝǀĞ͛ IM-MS of several intrinsically disordered proteins[40]. Another study demonstrated a 

dramatic change in CCS of ubiquitin, cytochrome c, and myoglobin at intermediate charge states 

after noncovalent binding of a 264 Da crown ether ligand[41]. In this case, inhibiting the collapse of a 

single charge site onto the backbone was sufficient to prevent a much more dramatic disruption of 

ƚŚĞ ŶĂƚŝǀĞ ŚǇĚƌŽŐĞŶ ďŽŶĚ ŶĞƚǁŽƌŬ ĂŶĚ ƐƵďƐĞƋƵĞŶƚ ƵŶĨŽůĚŝŶŐ ŽĨ ƚŚĞƐĞ ͚ĨƌƵƐƚƌĂƚĞĚ͛ ;ŝ͘Ğ͘ ĞůĞĐƚƌŽƐƚĂƚŝĐ 
repulsion being barely canceled out by noncovalent stabilization) ions. Such studies, as well as our 

own results presented here, serve as a reminder that experimental determinants of ͚ŶĂƚŝǀĞ͛ 
conditions in MS need to be carefully examined. This is particularly true for small proteins, as these 

possess a comparatively high number of charges relative to the number and strength of noncovalent 

interactions stabilizing the native structure. As such, the occurrence of charge-driven processes is 

facilitated, potentially muddying the relation between structure in solution and in the gas phase. 
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Conclusion 

We have explored the conformational space occupied by ubiquitin during charge reduction ETD 

(crETD). The resulting (collapsed) states span the same range of collision cross-section values as ions 

of the same charge state generated directly by electrospray ionization; however, collapsed states are 

generally less stable toward collision-induced unfolding than the solution structure. Furthermore, we 

have described a method of estimating apparent branching ratios for competing reaction pathways 

under ETD conditions. Due to conformation-dependent depletion of noncovalent ETD fragment 

complexes, this ratio is strongly dependent on gas-phase ion structure, and a clear correlation with 

arrival time in ion mobility exists. This correlation indicates that, despite the limited stability of 

ĐŽůůĂƉƐĞĚ ŝŽŶƐ͕ ͚ůŽĐĂů͛ ƐƚĂďŝůŝǌŝŶŐ ŝŶƚĞƌĂĐƚŝŽŶƐ, leading to increased preservation of fragment 

complexes, are more prevalent in these compact states than extended ones. The observation that in-

source ion activation leads to increased collapse following charge reduction is surprising, and more 

in-depth work on the kinetics of charge-driven gas-phase refolding will be the focus of future 

research. 
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Figures 

 

 

Figure 1. Reaction pathways in double charge reduction of (ESI-generated) [M+8H]8+ ubiquitin. Ions 

ŽĨ ͚ŝŶƚĂĐƚ͛ ƵďŝƋƵŝƚŝŶ͕ ŝ͘Ğ͘ ƉƌĞĐƵƌƐŽƌ ĂŶĚ ƉƌŽĚƵĐƚƐ ŽĨ ĐŚĂƌŐĞ ƌĞĚƵĐƚŝŽŶ, are shown in black, while 

ion/ion reactions are shown in blue. Dissociation into c and z fragments (shown in red) can only occur 

ĨŽƌ ƌĂĚŝĐĂů ƐƉĞĐŝĞƐ ;ŶŽƚ ĨŽƌ ͚ƉƵƌĞ͛ PT‘ ƉƌŽĚƵĐƚƐͿ͕ ůĞĂĚŝŶŐ ƚŽ ĚĞƉůĞƚŝŽŶ ŽĨ ƚŚĞƐĞ ƐƉĞĐŝĞƐ ĂŶĚ ĂŶ ŝŶĐƌĞĂƐĞ 
in apparent PTR/ETnoD ratio. 
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Figure 2. (a) Apparent PTR/ETnoD branching ratio for the second (i.e. 7+  6+) charge reduction step 

([M+8H]8+ precursor selected in the quadrupole) versus average collision cross-section for the 

corresponding 6+ charge-reduced state. Blue dots indicate experiments in which the bias voltage was 

held constant at 25 V (varied sampling cone voltage); red dots indicate a constant cone voltage of 40 

V, with variable trap DC bias. (b) Isotope distributions for the 6+ charge-reduced product acquired 

with (blue) a sampling cone of 100 V and a trap DC bias of 25 V, or (red) a cone of 40 V and a bias of 

45 V. The dashed line shows the isotope distribution of the [M+6H]6+ ion generated by ESI, 

ĐŽƌƌĞƐƉŽŶĚŝŶŐ ƚŽ ĂŶ ͚ŝŶĨŝŶŝƚĞ͛ PT‘ͬETŶŽD ďƌĂŶĐŚŝŶŐ ƌĂƚŝŽ͘ NŽƚĞ ƚŚĂƚ ƚŚĞ ƌĞĚ ƚƌĂĐĞ approaches the 

dashed line more closely than the blue trace (i.e. higher percentage of ESI-like ions), in agreement 

with the plot shown in panel (a). 
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Figure 3. Collision cross sections for 6+ ubiquitin formed by either (a, b) electrospray ionization, or (c, 

d) charge reduction of ESI-generated [M+8H]8+ by using ETD. Time axes of arrival time distributions 

were converted to CCS as described in [16]. Data shown in panels (a) and (c) were acquired using a 

sampling cone voltage of 40 V and a trap DC bias of either 25 (blue), 35 (orange), or 45 V (red). In 

panels (b) and (d), the bias was kept constant at 25 V and a sampling cone voltage of 50 (blue), 60 

(orange), or 100 V (red) was applied. Colored text in panels indicates (cone voltage)/(bias voltage) for 

each trace. Gaussian components used in deconvolution of the lowest-energy (blue) trace in each 

panel are shown at the bottom at half-intensity. Values in parentheses are optimized apparent 

PTR/ETnoD ratios for each of these components, as described in the text. Weighted average CCS 

values (used to generate Figure 2) are indicated with green arrows in panels (c) and (d). 
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Supplementary Information 

To estimate the (apparent) branching ratio for the second (7+  6+) charge reduction step, we make 

use of a simple stochastic model. As mentioned in the main text, this ratio is directly measurable for 

the first (8+  7+) step.  Consider a cascade of PTR and ETnoD reactions (as shown in Figure 1) that 

occur m and n times, respectively, to generate a charge-reduced ion. In our specific example ʹ 

double charge reduction of an [M+8H]8+ ubiquitin ion ʹ obviously (m + n = 2), (0  m  2), and (0  n  

2). The observed abundance (calculated using MassTodon) of each charge-reduced product is 

denoted as mn. Assuming the behavior of ions to be independent and defining the probability of PTR 

and ETnoD as PPTR and PETnoD, respectively, the probability (L) of observing the information found in 

the spectrum is given by 

ܮ ൌ ෑ ሾሺ ்ܲோሻሺ ா்ܲሻሿఈ௦௩ௗ
ǡ  

Treating the above expression as a function of unknown parameters, i.e. the two probabilities, PETnoD 

and PPTR, we can calculate values for these parameters so as to maximize L. This general postulate, 

that the theoretically most probable events occur in nature, is referred to as the Maximum Likelihood 

principle and is commonly used in statistics. Taking into account that PETnoD + PPTR = 1 for charge 

reduction (equivalent to our assumption that other charge reduction pathways besides PTR and 

ETnoD can be neglected), the maximization results in estimates  

்ܲோ ൌ σ ǡσߙ݉ ሺ݉  ݊ሻߙǡ  

ா்ܲ ൌ σ ǡσߙ݊ ሺ݉  ݊ሻߙǡ  

As such, the (average) PTR/ETnoD branching ratio is provided by 

்ܲோா்ܲ ൌ σ ǡσߙ݉ ǡߙ݊  

Specifically for two-step charge reduction ETD of an [M+8H]8+ ion, and explicitly writing out product 

formulas in the indices of the  coefficients, this yields 

்ܲோா்ܲ ൌ ʹǤ ሾெାுሿలశߙ  ሾெାுሿలశߙሾெାுሿలశߙ  ʹǤߙሾெା଼ுሿలశ  
This formula yields optimized values for a two-step process, in which PPTR and PETnoD for both steps 
are equal. From this average value, combined with the (directly measurable) ratio for the first (8+  
7+) reaction step, the branching ratio for the second (7+  6+) charge reduction step can easily be 
calculated separately and this value is reported in the main text. 

 



18 
 

 

Figure S-1. Schematic overview of the Synapt G2 instrument used in this study, highlighting the 

location where sampling cone and trap DC bias voltages are applied, as well as where the ETD 

reaction occurs. The ion path is shown as a blue dotted line.  
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Figure S-2. Collision cross-sections for (a, b, c, d) 7+ and (e, f, g, h) 8+ ubiquitin formed by either (a, b, 

e, f) electrospray ionization, or (c, d, g, h) under ETD charge reduction conditions. The ([M+8H]8+ ion 

was selected in the quadrupole in all charge-reduction experiments, so note that the CCS 

distributions shown in panels (g) and (h) are not actually the result of charge reduction. Traces in 

panels (a, c, e, g) were acquired using a sampling cone voltage of 40 V and a trap DC bias of either 

(blue) 25, (orange) 35, or (red) 45 V. In panels (b, d, f, h), the bias was kept constant at 25 V and a 

sampling cone voltage of (blue) 60, (orange) 80, or (red) 100 V was applied. 
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Figure S-3. Comparison of experimental spectra (black, solid lines) shown in Figure 3 of the main text 

to the result of deconvolution into Gaussian components corresponding to the I(ntermediate), 

E(xtended)-1, and E(xtended)-2 conformational states of ubiquitin (color, dotted lines). 
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Figure S-4. Representative crETD spectrum of [M+8H]8+ ubiquitin, showing the extent of charge 

reduction and fragment release (sampling cone 40 V, trap DC bias 25 V; 10-fold magnification in the 

range between 200 ʹ 900 m/z). 
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Figure S-5. Relative total ETD fragment intensity (axis on left-hand side) observed under the eleven 

sets of (cone/bias) voltages displayed in Figure 2 of the main text versus average collision cross-

section for the corresponding 6+ charge-reduced state. Correlation between apparent PTR/ETnoD 

branching ratio (axis on right-hand side and shaded in gray) and CCS is displayed here as a gray 

dashed line to illustrate that fragmentation efficiency follows a similar trend. This is in agreement 

with our hypothesis that the conformation-dependent shift in isotope distribution is primarily due to 

differences in efficiency of fragment release. As in Figure 2, blue dots indicate experiments in which 

the bias voltage was held constant at 25 V (variable sampling cone voltage); red dots indicate a 

constant cone voltage of 40 V, with variable trap DC bias. 


