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Abstract 

This study assessed the performance and diversity of microbial communities in multi-

stage sub-surface flow constructed wetland systems (CWs). Our aim was to assess the impact 

of configuration on treatment performance and microbial diversity in the systems. Results 

indicate that at loading rates up to 100g-BOD5/m2.day, similar treatment performances can be 

achieved using either a 3 or 4 stage configuration. In the case of phosphorus (P), the impact of 

configuration was less obvious and a minimum of 80% P removal can be expected for 

loadings up to 10g–P/m2.day based on the performance results obtained within the first 16 

months of operation. Microbial analysis showed an increased bacterial diversity in stage four 

compared to the first stage. These results indicate that the design and configuration of multi-

stage constructed wetland systems may have an impact on the treatment performance and the 

composition of the microbial community in the systems, and such knowledge can be used to 

improve their design and performance.  
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INTRODUCTION 

The operation of constructed wetland systems (CWs) relies on a combination of physical, 

chemical and biological processes in which microorganisms play an important role. However, 

their designs are generally based on information about chemical and physical parameters with 

only a limited number of studies such as Calheiros et al. (2009) and Truu et al. (2009) 

focusing on the composition of the microbial communities in these systems. Consequently, 

while the design of these systems has evolved, the increased knowledge acquired by engineers 

has not been accompanied by an equivalent growth in understanding of the microbial ecology 

of these systems. Hence there is still much left to be known concerning the identities and 

interactions of the microbial communities associated with the treatment processes and the 

impact of design and operational variables on these communities. Such knowledge helps to 

improve the engineering design and performance of constructed wetlands and other similar 

systems.  

Over the last decade, the emergence of molecular biological tools for studying microbial 

communities has made it possible to broaden our understanding of the vast diversity and 

interactions of microorganisms present in the complex environments of wastewater treatment 

systems. The availability of such molecular biological tools has resulted in remarkable 

insights in linking diversity and dynamics to treatment performance and process stability 

(Briones and Raskin, 2003). The ability to engineer CWs and other similar wastewater 

treatment systems to produce predictable and consistent community configurations has the 

potential to deliver more effective and efficient treatment systems. Recent studies have shown 

that it is possible to control the community diversity of a system by engineering its physical 

complexity (Harris et al. 2012). In this study, we assessed and compared the performance 

(based on loading and removal rates and impact of configuration) of two multi-stage sub-

surface flow CWs and also examined the microbial composition and diversity in one of the 

systems. Ultimately, we are interested in being able to design and operate CWs to foster the 

development of specific microbial communities that can accommodate desired functional 

processes and make their design and operation more efficient. In this context, our objectives 

were: (i) to evaluate the impact of configuration on the performance of multi-stage CWs and 

(ii) to gain an insight into the linkage between microbial community, treatment performance 

and design of the CWs by analysing the microbial composition and distribution in multi-stage 

CWs. 
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MATERIALS AND METHODS 

Systems design 

The experimental set-up consists of two multi-stage CWs operated in vertical sub-surface 

flow mode. The two systems, referred to henceforth as systems A and B, were set up on the 

UCD Lyons Research Farm located in Newcastle, Co. Dublin, Ireland to treat wastewater 

(after settlement) emanating from the farm. The farm holds about 2000 livestock units of 

sheep, pigs, cattle and horses. The farm wastewater is derived from all the activities on the 

farm and it undergoes primary sedimentation before being pumped to a holding tank. 

Table 1 gives the design summary for the two systems while figure 1 shows the field set-

up of the systems. System A was a four-stage system (all stages are equal) which was 

reconfigured to three stages after 11 months of operation while system B was initially 

configured as a four-stage system (all stages are equal) and then changed to a two-stage 

system after 4 months. System A was reconfigured (by linking the 1st and 2nd stages together 

to form one single stage) in order to increase the surface contact area and decrease the 

pollutant loading on the stage 1. Similarly, system B showed early signs of clogging and 

inconsistent performances even though it was achieving good pollutant removal rate. It was 

therefore decided to decrease the solids loading rate and stabilise its performance by 

increasing the contact surface area. This was achieved by linking the 1st and 2nd stages into 

one stage, and also linking the 3rd and 4th stages into one stage. Consequently, system B was 

reconfigured as a 2-stage system.  

The stages in each system were linked together using pipes connected to submersible 

pumps placed in each stage. The pumps were connected to a digital electronic timer which 

regulated the flow according to a programme schedule. Each stage in both systems was 

configured using 10mm gravel at the bottom up to a depth of 10cm as supporting layer. 

Dewatered alum sludge cakes were employed as the main wetland substrate for a depth of 

65cm and then 10cm of 20mm gravel to serve as distribution layer on the top. The use of the 

dewatered alum sludge in CW was based on the previous laboratory studies reported by Zhao 

et al. (2009a,b).The dewatered alum sludge cakes used were collected fresh from the 

industrial filter press of a drinking water treatment plant in Southwest Dublin, Ireland where 

aluminium sulphate is used as coagulant. The size/length (mean±SD) of the alum sludge 

cakes used was 7.25±1.48 cm. Common reed, Phragmites australis, was planted on top of 

each stage.  
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The systems were operated as subsurface flow using a tidal flow operation strategy. The 

tidal flow strategy allows the matrices of the systems to be filled with wastewater and 

completely drained afterward to enhance aeration (Babatunde, 2007). Wastewater from the 

farm activities was collected from the holding tank and pumped into a 10m3 tank. Appropriate 

dilution was then carried out to achieve desired concentration before the wastewater was 

gravity-fed into an underground tank with a ball-float valve control. The underground tank 

served as the influent tank from where the wastewater is pumped to the two systems. The 

concentration of influent wastewater to the systems was gradually increased in order to allow 

time for the system to stabilize and for the reeds to grow. Accordingly, the influent 

wastewater had a range of pollutant concentrations which were BOD5 (31-968 mg/L), COD 

(124-1634 mg/L), PO4-P (2.8-60 mg-P/L), TN (16-273 mg-N/L) and SS (25-633 mg/L). 

There were three cycles per day and each cycle consists of four hours of wastewater contact in 

each stage and four hours of rest during which wastewater is drained out (to the next stage) 

and the stage is left to rest. 

 

Wastewater analysis 

Wastewater samples were collected from the feed tank and from each stage of each of the 

two systems. The samples were analysed for COD (both total and soluble COD, (sCOD)), 

BOD5 (Lovibond OxiDirect apparatus, Lennox, UK), Total Phosphate (Ascorbic acid method, 

Clesceri et al. (1998)) PO4-P, Total Nitrogen (Persulfate method, Clesceri et al. (1998)), NH4-

N and SS. Except where indicated, all analyses were carried out using a Hach DR/2400 

spectrophotometer according to its standard operating procedures. From the water quality 

data, the pollutant loading rate (g/m2.day) was determined by multiplying the hydraulic 

loading rate (HLR, m3/m2.d) by the influent pollutant concentration (mg/L) while the 

pollutant removal rate (g/m2.day) was determined by multiplying the HLR by the difference 

in concentration between the influent and the effluent. 

 

Microbial analysis - sample collection and DNA extraction  

Alum sludge samples from stages 1 and 4 of system A, prior to reconfiguration, were 

collected from the top 5 cm of the sludge layer in each stage and transported in sterile tubes 

within an ice box to the laboratory. Duplicate DNA extractions were performed from 200 mg 

of each sample was extracted using the DNA soil kit as recommended by the manufacturer 

(Qiagen) and DNA samples were stored at -80 oC. 
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Construction of 16S rDNA clone libraries 

PCR amplification of the 16S rDNA gene was carried out in 50 µl reactions with GoTaq 

Flexy DNA polymerase (Roche) using primers 63F (5’-CAGGCCTAACACATGCAAGTC) 

and 1389R (5ƍ-ACGGGCGGTGTGTACAAG) as recommended by the manufacturer. The 

reaction mixture was preincubated at 95 oC for 5 min and subsequently subjected to 30 cycles 

of 94 oC for 30 s, 60 oC for 45 s, 72 oC for 120 s followed by an incubation at 72 oC for 7 min. 

PCR products were purified using the QIAquick PCR purification kit (Qiagen) as 

recommended by the manufacturer. DNA quantification was done by UVspectrophotometry 

in a NanoDrop Spectrophotometer (Thermo Scientific). PCR products obtained from 

replicated DNA samples were pooled. Clone libraries were constructed into the pDrive vector 

using the QIAGEN PCR cloning kit as per the manufacturer’s instructions and transformed 

into QIAGEN EZ competent cells (Qiagen). Insert- containing clones were selected in LB 

agar plates containing 100ȝg/ml ampicillin and 5-bromo-4-chloro-3-indolyl-b-D-

galactopyranoside (80ȝg/ml). 96 clones per library were screened by restriction fragment 

length polymorphism (RFLP) using MspI restriction enzyme (New England Biolabs, MA). 

Clones with different restriction profiles were sequenced using primer 63F at GATC-Biotech 

(Germany). Trimming of sequences to remove low quality ends was performed with 

DNABaser v4 (Heracle BioSoft S.R.L.). Sequences were deposited in the GeneBank under 

accession numbers KF990413 and KF990471  

 

Phylogenetic analysis of 16S rDNA sequences 

The nucleotide sequences were compared to entries in the GenBank data base at the 

National Center for Biotechnology Information using the programme BLASTN (Altschul et 

al. 1990). Chimeric sequences were detected and removed by ChimeraSlayer using the 

identify_chimeric_seqs.py pipeline implemented in QIIME 1.6 (Haas et al. 2011; Caporaso et 

al. 2010). Nucleotide sequences were aligned with the ClustalW2 software package 

(Thompson et al., 2002; Larkin et al. 2007). The phylogeny of the sequences was analyzed by 

calculating a distance matrix according to the Jukes-Cantor model (Jukes and Cantor, 1969) 

followed by the construction of a phylogenetic tree using the neighbour-joining method 

(Saitou and Nei, 1987) as implemented in the program Treecon (Van de Peer and De Wachter, 

1995). Matrices of genetic distances between sequences were generated with the DNADIST 

program of the Phylip package (Felsenstein, 1989). Rarefaction curves of numbers of 

observed OTUs and Shannon diversity, including their confidence intervals, were generated 
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by assigning operational taxonomic units (OTUs) at genetic distances of 2 and 16% with the 

DOTUR software using the furthest neighbour method (Schluss and Handelsman, 2005). 

 

 

RESULTS AND DISCUSSION 

Overall systems performance 

The loading and removal rates for systems A and B, respectively, both before and after 

reconfiguration are presented in Table 2 (a & b). Overall, system B was subjected to much 

higher loading over the duration of the field trials. The results also indicate that the removal 

rates obtained in both systems closely mirrored the loading rates irrespective of their 

configuration. Consequently, the highest removal rates were obtained in system B. This 

clearly demonstrates the impact of configuration and loading rates on treatment efficiency and 

removal rates achievable in CWs. Although it is often argued that CWs typically require a low 

HLR and a long hydraulic retention time (HRT) to achieve efficient pollutant removal, debate 

on the relationship between HLR and removal rates still continues for conditions with high 

HLR. This is partly due to a lack of criteria which defines what is meant by high or low HLR.  

Chang et al. (2007) reviewed HLRs used in CWs and noted that HLRs ranging from 0.14 

to 1.54 m3/m2.d have been considered to be very high. In comparison to the HLRs of 0.29 – 

0.56 m3/m2.d used in this study, the two systems can be considered to be operated at high 

HLR. Notwithstanding, the pollutant removal rates achieved were comparable to those 

obtained in other studies. Furthermore, the results presented in Table 2 indicate that the 

removal rates seemed to be proportional to the loading rates over time. For most of the 

pollutants, both systems required between two to three months from start up to achieve 

appreciable removal rates. Thereafter, the removal rates tend to follow the trend of the loading 

rates. The only exception was for P, and both systems showed efficient P removal as soon as 

they began to receive flow irrespective of their configurations, and even when vegetation was 

sparse and the microbial communities were just being established.  

In particular, P removal in both systems was much higher in comparison to the typical 

removal of 20-30% reported in many similar CWs (Brix and Arias, 2005). This confirms the 

excellent capacity of the alum sludge substrate used for P removal in the CWs. However, it 

should be noted that the systems have only been operated for a relatively short time (< 2 

years), and therefore, the adsorption capacity of the alum sludge was not exceeded. In a 

separate publication (see Zhao et al. 2009b), we have considered the adsorption proportion of 
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P removal in the system and estimated the life time of the systems with respect to P removal 

to be 9-40 years for domestic wastewater and 2.5 – 3.7 years for high P wastewater such as 

the animal farm wastewater used in this study. In practice, multi-stage treatment system is 

usually applied,  therefore, the lifetime can be expected to be longer. Furthermore, removal 

rates for TN were comparatively low for both systems especially during the start-up phase 

even though considerable NH4-N removal rates were achieved. On one hand, the 

comparatively lower removal rates obtained may be attributed to the relatively longer time 

required (compared to the time required to achieve high P removal) to establish high and 

stable nitrogen removal rates. This is corroborated by findings from a similar study 

investigating long-term nitrogen removal behaviour of a two-stage CWs, in which it was 

reported that increased and stable nitrogen elimination was obtained from the third year of 

operation (Langergraber et al. 2011, 2014). On the other hand, in CWs, the central pathway 

for nitrogen removal is nitrification followed by denitrification (Babatunde, 2007). This 

suggests that under conditions of high HLR used in this study, incomplete nitrogen removal 

may have occurred as evidenced by the high nitrification rates and poor total nitrogen removal 

rates (Babatunde et al., 2011a, b).  

 

Impact of configuration on removal rates 

In order to examine the effect of the different configurations on the performance of the 

systems, a plot of the loading versus removal rates was constructed for the different 

configurations (Figure 2). With respect to the removal of organics (BOD5 and COD), the plots 

show that a more stable treatment performance was achieved with system A especially with 

the 4 stages configuration. On the other hand, while higher removal rates were achieved in 

system B with the 2 stage configuration, the performance was less stable as evident by the 

considerable scatter of the points. Furthermore, the plots indicate that at loading rates up to 

100g-BOD5/m2.day, similar treatment performances were obtained for system A (both 3- and 

4-stage configuration) and system B (4-stage configuration only). This implies that for design 

purposes, similar treatment performances with respect to the removal of organic compounds 

can be achieved using a 3-stage configuration and at loading rates up to 100g-BOD5/m2.day. 

However, there are considerable differences in the treatment performances of the different 

configurations beyond the 100g-BOD5/m2.day. In all cases, system B with the 2-stage 

configuration had the highest loading rate and consequently the highest removal rate. 

However, it had the least stable performance.  
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Regarding nutrients removal, there was considerable variation in the performance of the 

different configurations for N and P removal. In the case of P, the impact of configuration was 

less obvious with respect to both TP and PO4-P.  For all configurations, a minimum of 80% P 

removal can be expected for loadings up to 10g–P/m2.day. However, system B in the  2-stage 

configuration proved less effective at loadings above 10g–P/m2.day, which suggests that 10g–

P/m2.day might be the effective loading rate for the systems. On the other hand, there were 

noticeable differences in the performance of the different configurations for N removal. For 

both TN and NH4-N, system B with the 2-stage configuration demonstrated to be the least 

effective. Furthermore, while system A in the 4-stage configuration proved to be efficient for 

NH4-N removal, it had a less stable performance for TN removal. This indicates that there 

was incomplete N removal in both systems irrespective of the configuration. 

 

Bacterial community analysis and linkage to treatment performance  

Given the differences in nutrient concentrations, resulting from removal along the different 

stages of System A, we hypothesized the presence of distinct bacterial communities in each 

stage. It should be noted that our investigation was focused on the first and last stages of 

system A before reconfiguration (i.e. stages 1 and 4) because they were expected to harbour 

the largest differences in the system. . 16S rDNA clone libraries were constructed from the 

first and last stages (i.e. stages 1 and 4) of system A. A total of 44 and 47 clones with 

different RFLP profiles were retrieved from the respective libraries and sequenced. The 

phylogenetic relationship among retrieved sequences was used to group them into Operational 

Taxonomic Units (OTUs) at different genetic distances. Bacterial diversity was estimated for 

each library at phylogenetic distances (PD) of 2 and 16% using the Shannon Index of 

diversity (H’). While the diversity at PD of 2% was slightly higher in the last stage, H’ = 3.39 

(95% CI 3.16 – 3.61), than in the first stage, H’ = 3.00 (95% CI  2.74  -  3.26),, the diversity at 

PD of 16% was considerably higher in stage 4 , H’ = 2.65 (95% CI 2.42 - 2.88), as compared 

to stage 1, H’ = 1.98 (95% CI  1.73 – 2.24). This is congruent with analysis of rarefaction in 

which the number of different related OTUs at a given genetic distance was recorded as a 

function of the number of analysed sequences (Figure 3). The sequencing of 44 different 

clones from stage 1 yielded 25 and 10 OTUs at genetic distances of 2 and 16%, respectively. 

In contrast, the sequencing of 47 clones from stage 4 produced 33 and 18 different OTUs at 

the above genetic distances. While the rarefaction curve at 16% difference in stage 1 is about 

to reach an asymptotic behaviour, this was not the case for stage 4. These results show that 

the bacterial diversity increased between the first and the last stages. This indicates that the 
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design and configuration of the CW determines the composition of the bacterial communities, 

and hence the performance of the treatment in each stage.  

Stage 1 was dominated by species belonging to the phyla Proteobacteria and 

Bacteroidetes, representing 72.7 and 25% of the total number of the sequenced clones, 

respectively. In addition, a single clone related to the phylum Chloroflexi was also retrieved 

(Figure 4). Although Proteobacteria and Bacteroidetes also accounted for the majority of 

species present in stage 4 (74.5% Proteobacteria and 8.5% Bacteriodetes of the sequenced 

clones), stage 4 was more diverse in composition, with species belonging to the phylum 

Acidobacteria (8.7%), and the Candidate division TM7 (6.5%) present (Figure 5). Based on 

the design and operation of the system, stages 1 and 4 have the same hydraulic loading rate 

but different organic and pollutant loading rates, with the highest loading rate occurring in 

stage 1. Consequently, there are a number of design induced differences in parameters 

affecting bacterial growth between the two stages, including differences in the concentrations 

and nature of electron donors and acceptors as well as differences in sources of carbon and 

nitrogen. These undoubtedly will have resulted in the development of different microbial 

communities in stages 1 and 4.The Proteobacteria were the most diverse phylum in both 

stages. However, proteobacterial diversity in stages 1 and 4 was not the same (Figures 4 and 

5). While  Ȗ-proteobacteria was the most diverse class in stage 1 (7 phylotypes representing 

50.5% of sequenced clones), Į-proteobacteria displayed greater diversity in stage 4 (15 

phylotypes representing 48.9% of the sequences). Within the Ȗ-proteobacteria in stage 1, the 

family Xanthomonadaceae was the most diverse accounting for 34.1% of the total number of 

bacterial species present. Species belonging to this family have been isolated from different 

soils such as arable, landfill, iron mines, hydrocarbon-contaminated soils, compost, river 

sediments and seashore sand. Therefore, the predominance of Xanthomonadaceae in stage 1 

might be explained by its relatively high pollutant loading in comparison to stage 4.   

Although ȕ-proteobacteria were present in both stages, there were differences in the 

diversity of -Proteobacterial species in the two stages. Results indicate that while 13.6% of 

the phylotypes corresponded to ȕ-proteobacteria in stage 1, only 6.5% of the phylotypes of 

stage 4 belonged to this class. Most interestingly, the phylogenetic affiliations of the members 

of this class in stage 1 are bacterial species previously isolated from water environments and 

wastewater treatment plants. Moreover, Rhodocyclales and Comamonadaceae, which are 

known to play roles in the denitrification in activated sludges (IWA, 2009) accounted for 

8.7% and 4.9% of the total diversity, respectively, in stage 1. In contrast, OTUs belonging to 

the ȕ-proteobacteria retrieved from stage 4 were related to an unclassified member of ȕ-
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proteobacteria and Polynucleobacter sp the last of which is commonplace in freshwater (Hahn 

et al. 2005).  

 

CONCLUSION 
The impact of different configurations on the treatment performance of two multi-stage 

constructed wetland systems (CWs) was assessed. Results showed that removal rates were 

proportional to loading rates over time in both systems. At loadings up to 100g-BOD5/m2.day, 

similar treatment performance was achieved for both the 3 and 4 stages configuration. In the 

case of P, a minimum of 80% P removal can be expected for loadings up to 10g–P/m2.day 

irrespective of the configuration. Analysis of the clone libraries of the first and last stage of 

the 4-stage CW suggested an increased bacterial diversity in the last stage and pointed to a 

link between nutrient removal and community composition. Future work, using community 

fingerprinting and deep sequencing using Next Generation Sequencing technologies, will 

provide a more comprehensive view of the linkage between design, treatment performance 

and microbial community of constructed wetlands. 
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Table 1 Design summary of the constructed wetland systems 
Parameter  System A  System B 
Net treatment 
area (m2) 

 3.42  2.34 

System 
configuration 
 

 

 4 stages connected in series 
(for the first 11 months) 
3 stages connected in series 
(onwards from the 11th  month, 
1st stage gravel filled) 

 4 stages connected in series 
(for the first 4 months) 
2 stages connected in series 
and with effluent recirculation 
(onwards from the 4th  month) 

Flow regime  Downward fill and drain  Downward fill and drain 
System 
hydraulic 
loading rate 
(m3/m2.d) 

 0.29 (4 stages) 
0.38 (3 stages) 
 

 0.32 (4 stages) 
0.56 (2 stages) 
 

Hydraulic 
retention time 
per stage (hrs) 

 4  4 

Media 
configuration 
(top to bottom) 

 0-10cm (distribution layer, 
20mm gravel); 10-75cm (main 
layer, dewatered alum sludge 
cakes);75-85cm support and 
drainage layer, 10mm gravel) 

 0-10cm (distribution layer, 
20mm gravel); 10-75cm (main 
layer, dewatered alum sludge 
cakes);75-85cm support and 
drainage layer, 10mm gravel) 
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Table 2a  Mean pollutant loading and removal rates (in g/m2.d) for system A 
  4-stage  3-stage 
Parameter Rate Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Jan Feb Mar Apr May 

BOD5 
 

loading nd 12.0 13.1 31.9 89.2 69.5 89.1 68.8 119.1 201.4 119.3  nd nd 204.7 215.3 39.9 
removal nd 7.5 7.1 21.8 70.6 48.2 64.9 37.9 87.6 149.8 89.0  nd nd 111.2 136.4 14.1 

                    
COD 

loading 207.6 140.1 102.0 141.1 109.8 189.3 200.4 285.0 376.3 202.3 207.6  nd 342.8 398.6 456.6 179.7 
removal 53.7 58.0 49.8 93.0 67.9 151.1 139.3 168.2 253.8 147.3 53.7  nd 116.7 270.3 305.1 97.3 

                   sCOD loading nd 166.8 67.3 57.0 82.9 65.7 109.4 119.9 183.1 304.1 108.6  nd 191.5 295.3 268.2 131.9 
removal nd 36.5 15.3 14.1 46.7 35.9 83.2 78.0 129.9 234.8 82.7  nd 71.4 175.7 172.9 64.2 

                   SS loading 92.1 72.3 41.7 33.6 29.3 29.8 42.1 49.6 66.7 100.5 78.3  nd 92.3 110.9 210.6 62.3 
removal 55.2 37.4 23.7 24.3 22.9 21.4 33.9 40.0 44.0 58.9 38.7  nd 33.1 64.5 125.0 24.3 

                   TP loading 4.7 4.8 3.1 2.8 nd 2.8 5.0 7.3 9.6 8.6 6.4  9.4 10.8 7.8 11.6 9.4 
removal 3.8 4.2 3.0 2.5 nd 2.6 4.7 6.8 8.9 7.2 4.9  7.9 9.4 6.9 9.9 7.9 

                   PO4-P loading 7.4 3.9 2.8 5.2 4.5 3.8 6.9 7.8 9.5 7.9 5.3  nd 7.6 8.0 8.8 10.3 
removal 6.1 3.5 2.6 4.8 4.3 3.5 6.5 7.5 9.2 6.9 3.8  nd 7.0 6.7 7.2 8.7 

                   TN loading 24.4 20.5 25.4 12.5 27.7 24.7 58.3 60.9 63.1 38.2 31.4  nd 45.0 47.4 70.4 38.0 
removal 2.9 0.9 11.6 4.4 17.4 15.1 38.3 22.8 24.5 27.9 17.0  nd 27.8 28.8 45.3 22.4 

                   NH4-N loading 23.7 21.0 11.0 13.4 18.6 17.6 37.2 47.1 51.1 31.6 26.5  nd 28.0 62.3 59.4 30.1 
removal 16.5 7.5 7.1 11.7 16.6 15.4 33.6 43.5 47.0 24.8 12.9  nd 16.0 27.1 36.9 11.2 

nd indicates no data 
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Table 2b  Mean pollutant loading and removal rates (in g/m2.d) for system B 
  4-stage  2-stage 
Parameter Rate Feb Mar Apr May  Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May 

BOD5 
 

loading nd 13.2 19.0 17.8  212.8 134.2 178.2 132.9 229.9 363.3 230.4 nd nd 301.7 317.3 58.8 
removal nd 9.0 9.5 4.6  103.0 67.9 105.3 56.6 104.2 249.2 175.3 nd nd 175.6 96.0 34.2 

                   
 
COD 

loading nd 202.3 161.6 145.2  298.4 212.1 365.6 387.0 550.4 726.6 390.6 nd 392.8 587.4 672.9 264.9 
removal nd 43.1 63.6 35.6  126.0 105.2 200.9 232.1 226.9 502.0 327.3 nd 332.4 404.0 345.8 170.2 

                   
sCOD loading nd 199.8 72.6 65.6  173.4 126.9 211.2 231.5 392.4 587.3 282.8 nd 264.9 435.1 395.2 194.3 

removal nd 50.2 27.0 7.5  65.7 48.3 98.5 130.1 206.4 459.9 221.8 nd 170.8 284.8 119.3 124.9 
                   
SS loading 101.6 79.7 50.2 41.7  65.2 65.5 81.2 95.8 128.9 194.1 151.2 nd 149.2 163.4 310.4 91.8 

removal 48.3 39.3 25.2 16.4  30.9 32.8 34.1 63.6 64.0 113.3 106.7 nd 114.2 67.5 220.4 40.9 
                   
TP loading 5.1 5.3 3.4 3.1  nd 5.4 9.7 14.1 18.6 16.6 12.4 nd 15.7 16.0 11.5 17.1 

removal 4.1 4.7 3.0 2.5  nd 3.7 7.0 11.7 14.3 13.2 10.2 nd 15.7 13.9 nd 15.0 
                   
PO4-P loading 8.2 4.3 3.1 6.5  9.2 7.4 13.3 15.0 18.4 15.3 10.1 nd 9.2 11.7 13.0 15.2 

removal 6.9 3.6 2.7 5.3  7.7 4.7 9.4 12.9 14.6 11.9 7.9 nd 6.3 10.0 12.2 12.3 
                   
TN loading 26.9 22.6 28.0 13.8  61.0 47.7 112.6 121.5 114.4 73.9 60.6 nd 91.7 55.5 103.8 56.0 

removal 1.3 2.1 15.0 5.8  27.6 24.8 32.2 34.3 37.9 52.7 42.7 nd 81.2 15.2 63.2 38.1 
                   
NH4-N loading 23.6 20.5 12.1 15.8  39.0 34.0 71.9 90.9 98.7 61.1 51.2 nd 119.1 164.0 156.3 79.1 

removal 14.0 6.1 6.5 12.6  18.2 17.3 24.6 61.3 53.3 44.7 37.7 nd 53.1 50.2 30.2 22.0 
nd indicates no data 
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Figure 1 The Multi-stage constructed wetland systems 
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Figure 2. Plot of loading vs removal rate for selected pollutants for the different configurations of 
systems A and B.  
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Figure 3. Analysis of rarefaction to compare the bacterial diversity associated to alum sludge media 
in the constructed wetland systems. 16S rDNA clone libraries were prepared from the first and last 
stages of the four-stage CWs. After sequencing, distance matrices were obtained with the 
DNADIST program of the Phylip package (Felsenstein, 1989). Rarefaction curves were generated 
by assigning operational taxonomic units (OTUs) obtained from stage one (black) and stage four 
(red)  at genetic distances of 2% (circles) and 16% (triangles) with the DOTUR software package 
(7). Broken lines show the 95% confidence intervals. 
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Figure 4. Phylogenetic relationships based on 16S rDNA gene sequences of uncultured bacteria 
associated with alum sludge media in the first stage of system A. Bootstrap values of 1000 
replicates are given at branch points. The bar represents 0.02 substitutions per site. 
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Figure 5. Phylogenetic relationships based on 16S rDNA gene sequences of uncultured bacteria 
associated to alum sludge in the fourth stage of system A. Bootstrap values of 1000 replicates are 
given at branch points. Bar represents 0.02 substitutions per site. 
 


