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SUPPLEMENTARY INFORMATION FOR 
“Savannas of Asia: evidence for antiquity, current day biogeography and an uncertain 

future”: Figures S1, S2, S3, Table S1, S2, S3 & Appendix 1 
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Figure S1 Map of the Asia showing regions covered by this study. Regions shown are those 
defined by the Taxonomic Databases Working Group (TDWG) level 2 regions (Clayton et al 
2016) with the exception of East Asia which is based on TDWG level 3 regions for southern 
China (Southeast China, Southwest China, Hainan Island). Key to colour codes for regions: Pink 
= South Asia (Indian subcontinent); Yellow = East Asia (southern China); Pale green = 
Continental Southeast Asia (Indochina); Dark green = Oceanic Southeast Asia (Malesia). 

  



 

 

Figure S2 C4 grass endemism and diversity in Asia as compared with other major savanna regions of the 
world. (a) C4 grass endemism per region versus total grass species per region. (b) Total C4 species per 
region as a function of region area in 1000s of km2. Regions are all based on the Taxonomic Databases 
Working Group (TDWG) level 2 regions (Clayton et al. 2016) (see Fig. S1, Supplementary Materials) 
with the exception of East Asia which is based on level 3 regions (Southwest China, Southeast China, and 
Hainan Island). Key to codes for regions: WIO = West Indian Ocean; SA = Southern Africa; Aus = 
Australia; Br = Brazil; Ase1 = Indochina (continental Southeast Asia); Ase2 = Malesia (oceanic Southeast 
Asia); Ae = East Asia (southern China); As = India. See Table S1 for further details.   



 

 

 

 

Figure S3 a) Observed distribution of savannas derived from vegetation maps for Africa (White 1983), 
Australia and South America (Lehmann et al 2011), and b) predicted distribution of savannas in the 
different continents using stochastic gradient boosting.  The distribution of savannas was modeled 
separately for each continent based on climate, elevation and edaphic parameters, using the observed 
distribution map for that continent.  

  



Table S1. Grass endemism and diversity as compared with other major savanna regions of the 
world calculated using TDWG regions (Clayton et al. 2016). Regions are all based on TDWG 
level 2 regions with the exception of East Asia, which is based on level 3 regions (see text). 
Size of regions were calculated using Eckert IV projections, following Vorontsova et al. 2016.  
Endemism of C4 grasses in the Asian TDWG regions (Fig S1, Supplementary Materials), was 
estimated using the GrassBase database (Clayton et al. 2016) combined with a database of C3/ 
C4 pathways for grass taxa (Osborne et al. 2014). 

 

Region 
 

Area 
 

Total grass species 
   

  
(1000 km2) 

 
Total C3 C3-C4 C4 Unknown Chloridoideae Andropogoneae 

Brazil 
 

8525.2 
 

1316 570 0 740 0 152 112 

Australia 
 

7722.0 
 

1373 561 3 809 0 280 162 

West Indian Ocean 
 

603.8 
 

612 189 1 396 26 134 95 

Southern Africa 
 

2682.0 
 

915 334 3 577 1 228 99 

Papuasia 
 

908.2 
 

479 198 1 280 0 54 102 

New Zealand 
 

269.4 
 

413 346 0 67 0 17 10 

           
East Asia (South China) 

 
2777.5 

 
1382 964 1 416 1 98 188 

South Asia  
(Indian subcontinent) 

 
4433.6 

 
1350 618 1 731 0 158 371 

Southeast Asia 1 (Indochina) 
 

1936.7 
 

804 291 1 508 4 106 254 

Southeast Asia 2 (Malesia) 
 

2133.8 
 

699 302 1 396 0 81 178 

           

    
Endemic species 

   

    
Total C3 C3-C4 C4 Unknown Chloridoideae Andropogoneae 

Brazil 
   

476 275 0 201 0 31 18 

Australia 
   

768 293 1 474 0 191 72 

West Indian Ocean 
   

279 125 0 128 26 46 23 

Southern Africa 
   

267 169 1 96 1 43 3 

Papuasia 
   

118 101 0 17 0 2 5 

New Zealand 
   

152 149 0 3 0 2 1 

           
East Asia (South China) 

   
680 605 0 75 0 17 33 

South Asia  
(Indian subcontinent) 

   
447 185 0 262 0 39 183 

Southeast Asia 1 (Indochina) 
   

202 109 0 90 3 15 62 

Southeast Asia 2 (Malesia) 
   

201 150 0 51 0 6 35 

             



Appendix 1: Methods for analysis of climate domains of Asian Savannas 
 
Stochastic gradient boosting is an ensemble method for fitting statistical models that combines 
the strength of traditional statistical methods (decision trees) with machine learning techniques 
(boosting; Hastie et al 2001; Friedman et al. 2000, Friedman 2001, 2002).  It works by iteratively 
building a number of small decision trees, each based on a random subset of the data, with each 
additional tree emphasizing observations poorly modeled by the existing collection of trees 
(Hastie et al 2001; Friedman et al. 2000, Lawrence et al. 2004, Elith et al. 2008).  Finally, 
observations are assigned a class based on the most common classification amongst the trees 
(Lawrence et al. 2004, Elith et al. 2008).  Gradient boosting is less sensitive to outliers and 
unbalanced data, is robust against overfitting, and has been shown to outperform many other 
classifiers (Friedman 2002, Lawrence et al. 2004). 
 
We used existing vegetation maps to model the occurrence of savannas on different continents as 
a function of climate, elevation and edaphic parameters.  For Africa, we used the continent-wide 
map developed by White (1983) to classify habitats as either savanna or non-savanna (see 
Sankaran et al. 2005), and for Australia and South America, we used the maps developed by 
Lehmann et al. (2011) (see Lehmann et al. 2011 for more details).  Climate data were derived 
from the WorldClim climate database (Hijmans et al., 2005, http://www.worldclim.org), which 
provides data on 19 bioclimatic variables for the time period 1950-2000 (Hijmans et al., 2005), 
and soil nitrogen and percent clay from the ISRIC-WISE derived soil properties database (Batjes 
2012, www.isric.org).  Potential evapotranspiration (PET) estimates were obtained from the 
Global Potential Evapo-Transpiration (Global-PET) database (http://www.cgiar-
csi.org/data/global-aridity-and-pet-database; Zomer et al 2007, Zomer et al. 2008).  All data were 
resampled to a resolution of 0.5o for our analysis. 
 
For each continent, we first generated a training dataset by systematically sub-sampling every 4th 
pixel to account for issues of spatial autocorrelation. These training datasets were used to build 
continent-specific boosting models, which were then used to predict the distribution of savannas 
across the entire continent. Our training data set included 2547 pixels for Africa (52.6% of which 
were savanna), 750 for Australia (15.2% savanna) and 1625 for South America (9.9% savanna).  
We evaluated the accuracy of the different models based on the fraction of savanna pixels 
correctly identified.  We evaluated two separate models, one including all 19 climate variables 
along with soil and elevation parameters as predictors, and the second which only included a 
subset of climatic predictor variables that were largely uncorrelated with one another along with 
soil and elevation parameters.   Model performance did not differ consistently between the two, 
and we only report results here from the model built using the subset of climatic predictors.  Our 
final set of predictor variables included mean annual temperature, annual temperature range, 
mean temperature of the driest quarter, mean annual precipitation, precipitation of the driest 
month, precipitation seasonality, potential evapotranspiration, soil N and clay contents, and 
elevation.  Finally, we used the models developed for each continent to individually predict the 
potential distribution of savannas in Asia.  Although our models were built using data sampled at 
a resolution of 0.5o, our predictions for Asia were based on climate and soil data sampled at 
resolution of 5 arc-minutes (approx. 9 km × 9 km).  All analyses were carried out using the 
‘caret’ package (Liaw & Wiener, 2002) as implemented in R (R Core Team 2015). 
 



Table S2.  Model performance in terms of classification accuracies for Africa, Australia and 
South America.  

 Africa Australia South America 
Overall Accuracy 
 

0.9028 0.9115 0.9529 

Kappa statistic 
 

0.804 0.6671 0.7347 

Fraction of non-
savanna pixels 
correctly classified 
 

0.8806 0.9572 0.9792 

Fraction of savanna 
pixels correctly 
classified 
 

0.9218 0.6821 0.7248 

Fraction of predicted 
non-savanna pixels 
that were actually 
non-savanna 
 

0.9064 0.9378 0.9686 

Fraction of predicted 
savanna pixels that 
were actually savanna 

0.8998 0.7611 0.8004 

 

Table S3.  Area (in 1000 km2) of Asia predicted to support savannas as a function of prediction 
probabilities based on models developed for Africa, Australia and South America. 

Predicted probability 
of being savanna 

Area (1000 km2) 
Africa Australia South America 

Medium (0.5 – 0.75) 1686.2 945.9 435.8 
High (0.75 – 0.9) 955.3 574.1 224.1 
Very high (>0.9) 1118.3 266.4 106.2 
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