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To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find 262	

associated loci, we assembled a custom imputation reference panel from whole genome-263	

sequenced ALS patients and matched controls (N = 1,861). Through imputation and 264	

mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 265	

2,579 cases and 2,767 controls in an independent replication cohort, we fine mapped a 266	

novel locus on chromosome 21 and identified C21orf2 as an ALS risk gene. In addition, 267	

we identified MOBP and SCFD1 as novel associated risk loci. We established evidence 268	

for ALS being a complex genetic trait with a polygenic architecture. Furthermore, we 269	

estimated the SNP-based heritability at 8.5%, with a distinct and important role for low 270	

frequency (1–10%) variants. This study motivates the interrogation of larger sample 271	

sizes with full genome coverage to identify rare causal variants that underpin ALS risk. 272	

 273	

ALS is a fatal neurodegenerative disease that affects 1 in 400 people, death occurring within 274	

three to five years1. Twin-based studies estimate heritability to be around 65% and 5–10% of 275	

ALS patients have a positive family history1,2. Both are indicative of an important genetic 276	

component in ALS etiology. Following the initial discovery of the C9orf72 locus in GWASs3–
277	

5, the identification of the pathogenic hexanucleotide repeat expansion in this locus 278	

revolutionized the field of ALS genetics and biology6,7. The majority of ALS heritability, 279	

however, remains unexplained and only two additional risk loci have been identified robustly 280	

since3,8. 281	

 282	

To discover new genetic risk loci and elucidate the genetic architecture of ALS, we genotyped 283	

7,763 new cases and 4,669 controls and additionally collected existing genotype data of 284	

published GWAS in ALS. In total, we analyzed 14,791 cases and 26,898 controls from 41 285	

cohorts (Supplementary Table 1, Supplementary Methods). We combined these cohorts 286	

based on genotyping platform and nationality to form 27 case-control strata. In total 12,577 287	

cases and 23,475 controls passed quality control (Online methods, Supplementary Tables 2–288	

5). 289	

 290	

For imputation purposes we obtained high-coverage (~43.7X) whole genome sequencing data 291	

from 1,246 ALS patients and 615 controls from The Netherlands (Online methods, and 292	

Supplementary Fig. 1). After quality control, we constructed a reference panel including 293	

18,741,510 single nucleotide variants. Imputing this custom reference panel into Dutch ALS 294	

cases increased imputation accuracy of low-frequency genetic variation (minor allele 295	
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frequency, MAF 0.5–10%) considerably compared to commonly used reference panels: the 296	

1000 Genomes Project phase 1 (1000GP)9 and Genome of The Netherlands (GoNL)10 (Fig. 297	

1a). The improvement was also observed when this reference panel was used to impute into 298	

ALS cases from the UK (Fig. 1b). To benefit from the global diversity of haplotypes, the 299	

custom and 1000GP panels were combined, which further improved imputation. Given these 300	

results, we used the merged reference panel for imputation of all strata in our study. 301	

 302	

In total we imputed 8,697,640 variants passing quality control in the 27 strata and separately 303	

tested these for association with ALS risk by logistic regression. Results were then included 304	

in an inverse-variance weighted fixed effects meta-analysis, which revealed 4 loci at genome-305	

wide significance (p < 5 × 10–8) (Fig. 2a).  The previously reported C9orf72 (rs3849943)3–5,8, 306	

UNC13A (rs12608932)3,5 and SARM1 (rs35714695)8 loci all reached genome-wide 307	

significance, as did a novel association for a non-synonymous variant in C21orf2 308	

(rs75087725, p = 8.7 × 10–11, Supplementary Tables 8 and 10–13). Interestingly, this variant 309	

was present on only 10 haplotypes in the 1000GP reference panel (MAF = 1.3%), while our 310	

custom reference panel included 62 haplotypes carrying the minor allele (MAF = 1.7%). As a 311	

result, more strata passed quality control for this variant by passing the allele frequency 312	

threshold of 1% (Supplementary Table 9). This demonstrates the benefit of the merged 313	

reference panel with ALS-specific content, which improved imputation and resulted in a 314	

genome-wide significant association.  315	

 316	

Linear mixed models (LMM) can improve power while controlling for sample structure11, 317	

particularly in our study that included a large number of imperfectly balanced strata. Even 318	

though LMM for ascertained case-control data has a potential small loss of power11, we 319	

judged the advantage of combining all strata while controlling the false positive rate, to be 320	

more important and therefore jointly analyzed all strata in a LMM to identify additional risk 321	

loci. There was no overall inflation of the linear mixed model’s test statistic compared to the 322	

meta-analysis (Supplementary Fig. 2). We observed modest inflation in the QQ-plot (ȢGC = 323	

1.12, Ȣ1000 = 1.01, Supplementary Fig. 3). LD score regression yielded an intercept of 1.10 324	

(standard error 7.8 × 10–3). While the LD score regression intercept can indicate residual 325	

population stratification, which is fully corrected for in a LMM, the intercept can also reflect 326	

a distinct genetic architecture where most causal variants are rare, or a non-infinitesimal 327	

architecture12. The linear mixed model identified all four genome-wide significant 328	
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associations from the meta-analysis. Furthermore, three additional loci that included the 329	

MOBP gene on 3p22.1 (rs616147), SCFD1 on 14q12 (rs10139154) and a long non-coding 330	

RNA on 8p23.2 (rs7813314) were associated at genome-wide significance (Fig. 2b, Table 1, 331	

Supplementary Tables 14–16).  Interestingly, the SNPs in the MOBP locus have been 332	

reported in a GWAS on progressive supranuclear palsy (PSP)13 and as a modifier for survival 333	

in frontotemporal dementia (FTD)14. The putative pleiotropic effect of variants within this 334	

locus suggests a shared neurodegenerative pathway between ALS, FTD and PSP. We also 335	

found rs74654358 at 12q14.2 in the TBK1 gene approximating genome-wide significance 336	

(MAF = 4.9%, OR = 1.21 for A allele, p = 6.6 × 10–8). This gene was recently identified as an 337	

ALS risk gene through exome sequencing15,16.  338	

 339	

In the replication phase, we genotyped the newly discovered associated SNPs in nine 340	

independent replication cohorts, totaling 2,579 cases and 2,767 controls. In these cohorts we 341	

replicated the signals for the C21orf2, MOBP and SCFD1 loci, with lower p-values in the 342	

combined analysis than the discovery phase (combined p-value = 3.08 × 10–10, p = 4.19 × 10–
343	

10 and p = 3.45 × 10–8 for rs75087725, rs616147 and rs10139154 respectively, Table 1, 344	

Supplementary Fig. 4) 17. The combined signal for rs7813314 was less significant due to an 345	

opposite effect between the discovery and replication phase, indicating non-replication. 346	

Although replication yielded similar effect estimates for rs10139154 compared to the 347	

discovery phase, this was not statistically significant (p = 0.09) in the replication phase alone. 348	

This reflects the limited sample size of our replication phase, which is inherent to the low 349	

prevalence of ALS and warrants even larger sample sizes to replicate this signal robustly.  350	

 351	

There was no evidence for residual association within each locus after conditioning on the top 352	

SNP, indicating that all risk loci are independent signals. Apart from the C9orf72, UNC13A 353	

and SARM1 loci, we found no evidence for associations previously described in smaller 354	

GWAS (Supplementary Table 17). 355	

 356	

The associated low-frequency non-synonymous SNP in C21orf2 suggested that this gene 357	

could directly be involved in ALS risk. Indeed, we found no evidence that linkage 358	

disequilibrium of sequenced variants beyond C21orf2 explained the association within this 359	

locus (Supplementary Fig. 5). In addition, we investigated the burden of rare coding 360	

mutations in a set of whole genome sequenced cases (N = 2,562) and controls (N = 1,138). 361	

After quality control these variants were tested using a pooled association test for rare variants 362	
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corrected for population structure (T5 and T1 for 5% and 1% allele frequency, 363	

Supplementary methods). This revealed an excess of non-synonymous and loss-of-function 364	

mutations in C21orf2 among ALS cases that persists after conditioning on rs75087725 (pT5 = 365	

9.2 × 10–5, pT1 = 0.01, Supplementary Fig. 6), which further supports that C21orf2 366	

contributes to ALS risk. 367	

 368	

In an effort to fine-map the other loci to susceptibility genes, we searched for SNPs in these 369	

loci with cis-eQTL effects observed in brain and other tissues (Supplementary methods, 370	

Supplementary Table 18)18. There was overlap with previously identified brain cis-eQTLs 371	

for five regions (Supplementary Fig. 7, Supplementary Table 19, Supplementary Data 372	

Set 1). Interestingly, within the C9orf72 locus we found that proxies of rs3849943 (LD r2 = 373	

0.21 - 0.56) had a brain cis-eQTL effect on C9orf72 only (minimal p = 5.27 × 10–7), which 374	

harbors the hexanucleotide repeat expansion that drives this GWAS signal. Additionally, we 375	

found that rs12608932 and its proxies within the UNC13A locus had exon-level cis-eQTL 376	

effect on KCNN1 in frontal cortex (p = 1.15 × 10–3)19. Another overlap was observed in the 377	

SARM1 locus where rs35714695 and its proxies had the strongest exon-level cis-eQTL effect 378	

on POLDIP2 in multiple brain tissues (p = 2.32 × 10–3). Within the SCFD1 locus rs10139154 379	

and proxies had a cis-eQTL effect on SCFD1 in cerebellar tissue (p = 7.71 × 10–4). For the 380	

MOBP locus, rs1768208 and proxies had a cis-eQTL effect on RPSA (p = 7.71 × 10–4).  381	

 382	

To describe the genetic architecture of ALS, we calculated polygenic scores that can be used 383	

to predict phenotypes for traits with a polygenic architecture20. We calculated the SNP effects 384	

using a linear mixed model in 18 of the 27 strata and subsequently assessed their predictive 385	

ability in the other 9 independent strata. The analysis revealed that a significant, albeit 386	

modest, proportion of the phenotypic variance could be explained by all SNPs (Nagelkerke r2 387	

= 0.44%, r2 = 0.15% on the liability scale, p = 2.7 × 10–10, Supplementary Fig. 8). This 388	

finding adds to the existing evidence that ALS is a complex genetic trait with a polygenic 389	

architecture. To further quantify the contribution of common SNPs to ALS risk, we estimated 390	

the SNP-based heritability using three approaches, all assuming a population baseline risk of 391	

0.25%21. The variance explained by all SNPs using GCTA-REML estimated heritability at 392	

8.5% (SE 0.5%). Haseman-Elston regression yielded a very similar 7.9% and LD score 393	

regression estimated the SNP-based heritability at 8.2% (SE 0.5%). The heritability estimates 394	

per chromosome were strongly correlated with chromosome length (p = 4.9 × 10–4, r2 = 0.46, 395	

Fig. 3a), which again is indicative of the polygenic architecture of ALS. 396	
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 397	

We found that the genome-wide significant loci only explained 0.2% of the heritability and 398	

thus the bulk of the heritability (8.3%, SE 0.3%) was captured in SNPs below genome-wide 399	

significance. This implies that many genetic risk variants have yet to be discovered. 400	

Understanding where these unidentified risk variants remain across the allele frequency 401	

spectrum will inform designing future studies to identify these variants. We, therefore, 402	

estimated heritability partitioned by minor allele frequency. Furthermore, we contrasted this 403	

to common polygenic traits studied in GWASs such as schizophrenia. We observed a clear 404	

trend that indicated that most variance is explained by low-frequency SNPs (Fig. 3b). 405	

Exclusion of the C9orf72 locus, which harbors the rare pathogenic repeat expansion, and the 406	

other genome-wide significant loci did not affect this trend (Supplementary fig. 9). This 407	

architecture is different from that expected for common polygenic traits and reflects a 408	

polygenic rare-variant architecture observed in simulations22.  409	

 410	

To gain better insight into the biological pathways that explain the associated loci found in 411	

this study we looked for enriched pathways using DEPICT23. This revealed SNAP receptor 412	

(SNARE) activity as the only enriched category (FDR < 0.05, Supplementary Fig. 10). 413	

SNARE complexes play a central role in neurotransmitter release and synaptic function24, 414	

which are both perturbed in ALS25.  415	

 416	

Although the biological role of C21orf2, a conserved leucine-rich repeat protein, remains 417	

poorly characterized, it is part of the ciliome and is required for the formation and/or 418	

maintenance of primary cilia26. Defects in primary cilia are associated with various 419	

neurological disorders and cilia numbers are decreased in G93A SOD1 mice, a well-420	

characterized ALS model27. C21orf2 has also been localized to mitochondria in immune 421	

cells28 and is part of the interactome of the protein product of NEK1, which has previously 422	

been associated with ALS15. Both proteins appear to be involved in DNA repair 423	

mechanisms29.	Although future studies are needed to dissect the function of C21orf2 in ALS 424	

pathophysiology it is tempting to speculate that defects in C21orf2 lead to primary cilium 425	

and/or mitochondrial dysfunction or inefficient DNA repair and thereby adult onset disease. 426	

The other associated loci will require more extensive studies to fine-map causal variants. The 427	

SARM1 gene has been suggested as a susceptibility gene for ALS, mainly because of its role 428	

in Wallerian degeneration and interaction with UNC13A8,30. Although these are indeed 429	

interesting observations, the brain cis-eQTL effect on POLDIP2 suggests that POLDIP2 and 430	
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not SARM1 could in fact be the causal gene within this locus. Similarly, KCNN1, which 431	

encodes a neuronal potassium channel involved in neuronal excitability, could be the causal 432	

gene either through a direct eQTL effect or rare variants in LD with the associated SNP in 433	

UNC13A. 434	

 435	

In conclusion, we identified a key role for rare variation in ALS and discovered SNPs in 436	

novel complex loci. Our study therefore informs future study design in ALS genetics: the 437	

combination of larger sample sizes, full genome coverage and targeted genome editing 438	

experiments, leveraged together to fine map novel loci, identify rare causal variants and 439	

thereby elucidate the biology of ALS.440	
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 559	

FIGURE LEGENDS 560	

Figure 1. Imputation accuracy comparison. The aggregate r2 value between imputed and 561	

sequenced genotypes on chromosome 20 using different reference panels for imputation. 562	

Allele frequencies are calculated from the Dutch samples included in the Genome of the 563	

Netherlands cohort. The highest imputation accuracy was achieved when imputing from the 564	

merged custom and 1000GP panels. This difference is most pronounced for low frequency 565	

(0.5–10%) alleles in both ALS cases from The Netherlands (a) and United Kingdom (b). 566	

 567	

Figure 2. Meta-analysis and linear mixed model associations. (a) Manhattan plot for meta-568	

analysis results. This yielded four genome-wide significant associations highlighted with 569	

names indicating the closest gene. The associated SNP in C21orf2 is a non-synonymous 570	

variant not found in previous GWAS. (b) Manhattan plot for linear mixed model results. This 571	

association analysis yielded three additional loci reaching genome-wide significance (MOBP, 572	

LOC101927815 and SCFD1). SNPs in the previously identified ALS risk gene TBK1 573	

approached genome-wide significance (p = 6.6 × 10–8). Since the C21orf2 SNP was removed 574	



Van	Rheenen	et	al.	 19	

from a Swedish stratum because of a MAF < 1%, this SNP was tested separately, but is 575	

presented here together with all other SNPs with a MAF > 1% in every stratum. Here, 576	

LOC101927815 is colored grey because the association for this locus could not be replicated. 577	

 578	

Figure 3. Partitioned heritability. (a) The heritability estimates per chromosome were 579	

strongly correlated with chromosome length (p = 4.9 × 10–4). (b) For ALS there was a clear 580	

trend where more heritability was explained within the lower allele frequency bins. This 581	

effect was still observed when, for a fair comparison between ALS and a previous study 582	

partitioning heritability for schizophrenia (SCZ) using identical methods22, SNPs present in 583	

HapMap3 (HM3) were included. The pattern for ALS resembles that observed in a rare 584	

variant model simulation performed in this study. Error bars reflect standard errors. 585	

 586	

TABLES 587	

Table 1. Discovery and replication of novel genome-wide significant loci. 588	

 Discovery   Replication   Combined 

SNP MAFcases MAFcontrols OR Pmeta PLMM 

 

MAFcases  MAFcontrols OR P  Pcombined I2 

rs75087725 0.02 0.01 1.45 8.65 × 10–11 2.65 × 10–9  0.02 0.01 1.65 3.89 × 10–3  3.08 × 10–10 0.00* 

rs616147 0.30 0.28 1.10 4.14 × 10–5 1.43 × 10–8  0.31 0.28 1.13 2.35 × 10–3  4.19 × 10–10 0.00* 

rs10139154 0.34 0.31 1.09 1.92 × 10–5 4.95 × 10–8  0.33 0.31 1.06 9.55 × 10–2  3.45 × 10–8 0.05* 

rs7813314 0.09 0.10 0.87 7.46 × 10–7 3.14 × 10–8   0.12 0.10 1.17 7.75 × 10–3  1.05 × 10–5 0.80** 

 589	

Table 1. Discovery and replication of novel genome-wide significant loci. Genome-wide 590	

significant loci from the discovery phase including 12,557 cases and 23,475 controls were 591	

directly genotyped and tested for association in the replication phase including 2,579 cases 592	

and 2,767 controls. The three top associated SNPs in the MOBP (rs616147), SCFD1 593	

(rs10139154) and C21orf2 (rs75087725) loci replicated with associations in identical 594	

directions as in the discovery phase and an association in the combined analysis that exceeded 595	

the discovery phase. * Cochrane’s Q test: p > 0.1, ** Cochrane’s Q test: p = 4.0 × 10–6, Chr = 596	

chromosome; SNP = single nucleotide polymorphism, MAF = minor allele frequency, OR = 597	

odds ratio, Pmeta = meta-analysis p-value, PLMM = linear mixed model p-value, Pcombined = meta-598	

analysis of discovery linear mixed model and associations from replication phase. 599	

 600	
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 605	

ONLINE METHODS 606	

Software packages used, their version, web source, and references are described in the 607	

Supplementary Table 20. 608	

 609	

GWAS discovery phase and quality control. Details on the acquired genotype data from 610	

previously published GWAS are described in Supplementary Table 1. Methods for case and 611	

control ascertainment for each cohort are described in the Supplementary methods. All 612	

cases and controls gave written informed consent and the relevant institutional review boards 613	

approved this study. To obtain genotype data for newly genotyped individuals, genomic DNA 614	

was hybridized to the Illumina OmniExpress array according to manufacturer’s protocol. 615	

Subsequent quality control included: 616	

1)! Removing low quality SNPs and individuals from each cohort. 617	

2)! Combining unbalanced cohorts based on nationality and genotyping platform to form 618	

case-control strata. 619	

3)! Removing low quality SNPs, related individuals and population outliers per stratum. 620	

4)! Calculate genomic inflation factors per stratum. 621	

More details are described in the Supplementary methods. The number of SNPs and 622	

individuals failing each QC step per cohort and stratum are displayed in Supplementary 623	

Tables 2–5. 624	

 625	

Whole genome sequencing (custom reference panel). Individuals were whole genome 626	

sequenced on the Illumina HiSeq 2500 platform using PCR free library preparation and 100bp 627	

paired-end sequencing yielding a minimum 35X coverage. Reads were aligned to the hg19 628	

human genome build and after variant calling (Isaac variant caller) additional SNV and 629	

sample quality control was performed (Supplementary methods). Individuals in our custom 630	

reference panel were also included in the GWAS in strata sNL2, sNL3 and sNL4. 631	

 632	

Merging reference panels. All high quality calls in the custom reference panel were phased 633	

using SHAPEIT2 software. After checking strand and allele inconsistencies, both the 1000 634	

Genomes Project (1000GP) reference panel (release 05-21-2011)31 and custom reference 635	
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panel were imputed up to the union of their variants as described previously32. Those variants 636	

with inconsistent allele frequencies between the two panels were removed. 637	

 638	

Imputation accuracy performance. To assess the imputation accuracy between different 639	

reference panels, 109 unrelated ALS cases of Dutch ancestry sequenced by Complete 640	

Genomics and 67 ALS cases from the UK sequenced by Illumina were selected as a test 641	

panel. All variants not present on the Illumina Omni1M array were masked and the SNVs on 642	

chromosome 20 were subsequently imputed back using four different reference panels 643	

(1000GP, GoNL, custom panel and merged panel). Concordance between the imputed alleles 644	

and sequenced alleles was assessed within each allele frequency bin where allele frequencies 645	

are calculated from the Dutch samples included in the Genome of the Netherlands cohort. 646	

 647	

GWAS imputation. Pre-phasing was performed per stratum using SHAPEIT2 with the 648	

1000GP phase 1 (release 05-21-2011) haplotypes31 as a reference panel. Subsequently, strata 649	

were imputed up to the merged reference panel in 5 megabase chunks using IMPUTE2. 650	

Imputed variants with a MAF < 1% or INFO score < 0.3 were excluded from further analysis. 651	

Variants with allele frequency differences between strata, defined as deviating > 10SD from 652	

the normalized mean allele frequency difference between those strata and an absolute 653	

difference > 5%, were excluded, since they are likely to represent sequencing or genotyping 654	

artifacts. Imputation concordance scores for cases and controls were compared to assess 655	

biases in imputation accuracy (Supplementary Table 6). 656	

 657	

Meta-analysis. Logistic regression was performed on imputed genotype dosages under an 658	

additive model using SNPTEST software. Based on scree plots, 1 to 4 principal components 659	

were included per stratum. These results were then combined in an inverse-variance weighted 660	

fixed effect meta-analysis using METAL. No marked heterogeneity across strata was 661	

observed as the Cochrane’s Q test statistics did not deviate from the null-distribution (Ȣ = 662	

0.96). Therefore, no SNPs were removed due to excessive heterogeneity. The genomic 663	

inflation factor was calculated and the quantile-quantile plot is provided in Supplementary 664	

Fig. 3a.  665	

 666	

Linear mixed model. All strata were combined including SNPs that passed quality control in 667	

every stratum. Subsequently the genetic relationship matrices (GRM) were calculated per 668	
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chromosome including all SNPs using the GenomeWide Complex Trait Analysis (GCTA) 669	

software package. Each SNP was then tested in a linear mixed model including a GRM 670	

composed of all chromosomes excluding the target chromosome (leave one chromosome out, 671	

LOCO). The genomic inflation factor was calculated and the quantile-quantile plot is 672	

provided as Supplementary Fig. 3b. 673	

 674	

Replication. For the replication phase independent ALS cases and controls from Australia, 675	

Belgium, France, Germany, Ireland, Italy, The Netherlands and Turkey that were not used in 676	

the discovery phase were included. A pre-designed TaqMan genotyping assay was used to 677	

replicate rs75087725 and rs616147. Sanger sequencing was performed to replicate 678	

rs10139154 and rs7813314 (Supplementary methods, Supplementary Table 7). All 679	

genotypes were tested in a logistic regression per country and subsequently meta-analyzed. 680	

 681	

Rare variant analysis in C21orf2. The burden of non-synonymous rare variants in C21orf2 682	

was assessed in whole genome sequencing data obtained from ALS cases and controls from 683	

The Netherlands, Belgium, Ireland, United Kingdom and the United States. After quality 684	

control the burden of non-synonymous and loss-of-function mutations in C21orf2 were tested 685	

for association per country and subsequently meta-analyzed. More details are provided in the 686	

Supplementary methods. 687	

 688	

Polygenic risk scores. To assess the predictive accuracy of polygenic risk scores in an 689	

independent dataset SNP weights were assigned based on the linear mixed model (GCTA-690	

LOCO) analysis in 18/27 strata. SNPs in high LD (r2 > 0.5) within a 250 kb window were 691	

clumped. Subsequently, polygenic risk scores for cases and controls in the 9 independent 692	

strata were calculated based on their genotype dosages using PLINK v1.9. To obtain the 693	

Nagelkerke R2 and corresponding p-values these scores were then regressed on their true 694	

phenotype in a logistic regression where (based on scree plots) the first three PCs, sex and 695	

stratum were included as covariates. 696	

 697	

SNP-based heritability estimates. GCTA-REML. GRMs were calculated using GCTA 698	

software including genotype dosages passing quality control in all strata. Based on the 699	

diagonal of the GRM individuals representing subpopulations that contain an abundance of 700	

rare alleles (diagonal values mean +/- 2SD) were removed (Supplementary Fig. 14a). Pairs 701	

where relatedness (off-diagonal) exceeded 0.05 were removed as well (Supplementary Fig. 702	
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14b). The eigenvectors for the first 10 PCs were included as fixed effects to account for more 703	

subtle population structure. The prevalence of ALS was defined as the life-time morbid risk 704	

for ALS (i.e. 1/400)19. To estimate the SNP-based heritability for all non-genome-wide 705	

significant SNPs, genotypes for the SNPs reaching genome-wide significance were modeled 706	

as fixed effect. The variance explained by the GRM therefore reflects the SNP-based 707	

heritability of all non-genome-wide significant SNPs. SNP-based heritability partitioned by 708	

chromosome or MAF was calculated by including multiple GRMs, calculated on SNPs from 709	

each chromosome or within the respective frequency bin, in one model.  710	

Haseman-Elston regression. The Phenotype correlation - Genotype correlation (PCGC) 711	

regression software package was used to calculate heritability based on the Haseman-Elston 712	

regression including the eigenvectors for the first 10 PCs as covariates. The prevalence was 713	

again defined as the life-time morbid risk (1/400).  714	

LD score regression. Summary statistics from GCTA-LOCO and LD scores calculated from 715	

European individuals in 1000GP were used for LD score regression. Strongly associated 716	

SNPs (p < 5 × 10-8) and variants not in HapMap3 were excluded. Considering adequate 717	

correction for population structure and distant relatedness in the linear mixed model, the 718	

intercept was constrained to 1.012. 719	

Biological pathway analysis (DEPICT). Functional interpretation of associated GWAS loci 720	

was carried out using DEPICT, using locus definition based on 1000GP phase 1 data. This 721	

method prioritizes genes in the affected loci, predicts involved pathways, biological processes 722	

and tissues, using gene co-regulation data from 77,840 expression arrays. Three separate 723	

analyses were performed for GWAS loci reaching p = 10–4, p = 10–5 or p = 10–6. One thousand 724	

permutations were used for adjusting the nominal enrichment p-values for biases and 725	

additionally 200 permutations were used for FDR calculation. 726	

 727	
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