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Estimating Smooth Structural Change in Cointegration Models1

Peter C. B. Phillips2, Degui Li3 and Jiti Gao4

Abstract

This paper studies nonlinear cointegration models in which the structural coefficients may evolve

smoothly over time, and considers time-varying coefficient functions estimated by nonparametric

kernel methods. It is shown that the usual asymptotic methods of kernel estimation completely

break down in this setting when the functional coefficients are multivariate. The reason for this

breakdown is a kernel-induced degeneracy in the weighted signal matrix associated with the non-

stationary regressors, a new phenomenon in the kernel regression literature. Some new techniques

are developed to address the degeneracy and resolve the asymptotics, using a path-dependent local

coordinate transformation to re-orient coordinates and accommodate the degeneracy. The resulting

asymptotic theory is fundamentally different from the existing kernel literature, giving two different

limit distributions with different convergence rates in the different directions of the (functional) pa-

rameter space. Both rates are faster than the usual root-nh rate for nonlinear models with smoothly

changing coefficients and local stationarity. In addition, local linear methods are used to reduce

asymptotic bias and a fully modified kernel regression method is proposed to deal with the general

endogenous nonstationary regressor case, which facilitates inference on the time varying functions.

The finite sample properties of the methods and limit theory are explored in simulations. A brief

empirical application to macroeconomic data shows that a linear cointegrating regression is rejected

but finds support for alternative polynomial approximations for the time-varying coefficients in the

regression.
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1 Introduction

Cointegration models are now one of the most commonly used frameworks for applied research in

econometrics, capturing long term relationships among trending macroeconomic time series and

present value links between asset prices and fundamentals in finance. These models conveniently

combine stochastic trends in individual series with linkages between series that eliminate trending

behavior and reflect latent regularities in the data. In spite of their importance and extensive

research on their properties (e.g. Park and Phillips, 1988; Johansen, 1988; Phillips, 1991; and

Saikkonen, 1995; among many others) linear cointegration models are often rejected by the data

even when there is clear co-movement in the series.

Various nonlinear parametric cointegrating models have been suggested to overcome such de-

ficiencies. These models have been the subject of an increasing amount of econometric research

following the development of methods for handling nonlinear nonstationary process asymptotics

(Park and Phillips, 1999, 2001). However, parameter instability and functional form misspecifi-

cation may limit the performance of such nonlinear parametric cointegration models in empirical

applications (Hong and Phillips, 2010; Kasparis and Phillips, 2012; Kasparis et al, 2013). Most re-

cently, therefore, attention has been given to flexible nonparametric and semiparametric approaches

that can cope with the unknown functional form of responses in a nonstationary time series setting

(Karlsen et al, 2007; Wang and Phillips, 2009a, 2009b, 2015; Gao and Phillips, 2013a). A futher

extension of the linear framework allows cointegrating relationships to evolve smoothly over time

using time-varying cointegrating coefficients (e.g. Park and Hahn, 1999; Juhl and Xiao, 2005; Cai

et al, 2009; Xiao, 2009). This framework seems particularly well suited to empirical applications

where there may be structural evolution in a relationship over time, thereby tackling one of the

main limitations of fixed coefficient linear and nonlinear formulations. It is this framework that is

the subject of the present investigation.

More specifically, we consider the following cointegration model with time-varying coefficient

functions

yt = x′tf
(
t/n
)
+ ut = x′tft + ut, t = 1, · · · , n, (1.1)

where f(·) is a d-dimensional function of time (measured as a fraction of the sample size), xt is

an I (1) vector, and ut is a scalar process. The function f(t/n) is sometimes called a fixed design

and, in the present context, may be regarded as a weak trend function so that the model (1.1) cap-

tures potential drifts in the cointegrating linkage relationship between yt and xt over time. Such

a modeling structure is especially useful for time series data over long horizons where economic

mechanisms are likely to evolve and be subjected to changing institutional or regulatory conditions.

For example, firms may change production processes in response to technological innovation and

consumers may change consumption and savings behavior in response to new products and new

banking regulations. These changes may be captured by temporal evolution in the coefficients

through the functional dependence f (t/n) in the model (1.1). Thus model (1.1) allows the long

term relationships among the trending time series to evolve smoothly over time, which provides
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a more flexible framework than the parametric linear and nonlinear cointegration models. Some

recent papers including Cai et al (2009), Xiao (2009), Gao and Phillips (2013b) and Li et al (2016)

studied a nonlinear cointegrating model with functional coefficients and its generalised version,

where the index variable in the functional coefficients is random, and developed the associated

asymptotic theory. However, it is often difficult to select an appropriate random covariate as the

index variable in practical applications and the requisite data may not be available. Such consid-

erations partly motivate the use of a generic time-varying function to explore potential evolution

in the cointegrating relationship between yt and xt in model (1.1). Nonparametric inference about

time-varying parameters has received attention for modeling stationary or locally stationary time

series data - see, for instance, Robinson (1989), Cai (2007), Li et al (2011), Chen and Hong (2012),

and Zhang and Wu (2012). However, there is little literature on this topic for integrated or coin-

tegrated time series. One exception is Park and Hahn (1999), who considered the time-varying

parameter model (1.1) and used sieve methods to transform the nonlinear cointegrating equation

to a linear approximation with a sieve basis of possibly diverging dimension. Their asymptotic

theory can be seen as an extension of the work by Park and Phillips (1988).

The present paper seeks to uncover evolution in the modeling framework for nonstationary

time series over a long time horizon by using nonparametric kernel regression methods to estimate

f(·), and our asymptotic theory is fundamentally different from that in the paper by Park and

Hahn (1999). Our treatment shows that estimation of this model by conventional kernel methods

encounters a degeneracy problem in the weighted signal matrix (the denominator of the kernel

estimator (2.1)), which introduces a major new challenge in developing the limit theory. In fact,

kernel degeneracy of this type can arise in many contexts where multivariate time-varying functions

are associated with nonstationary regressors. The present literature appears to have overlooked

the problem and existing mathematical tools fail to address it. The reason for degeneracy in the

limiting weighted signal matrix is that kernel regression concentrates attention on a particular

(time) coordinate, thereby fixing attention on a particular coordinate of f and the associated limit

process of the regressor. In the multivariate case this focus on a single time coordinate produces a

limiting signal matrix of deficient rank one whose zero eigenspace depends on the value of the limit

process at that time coordinate. In other words, kernel degeneracy in the signal matrix is random

and trajectory dependent.

This paper introduces a novel method to accommodate the degeneracy in kernel limit theory.

The method transforms coordinates to separate the directions of degeneracy and non-degeneracy

and proceeds to establish the kernel limit theory in each of these directions. The asymptotics are

fundamentally different from those in the existing literature. As intimated, the transformation is

path dependent and local to the coordinate of concentration. Two different convergence rates are

obtained for different directions (or combinations) of the multivariate nonparametric estimators,

and both of the two rates are faster than the usual (
√
nh) rate of stationary kernel asymptotics.

Thus, two types of super-consistency exist for the nonparametric kernel estimation of time-varying
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coefficient functions, which we refer to as type I and type II super-consistency. The higher rate of

convergence (n
√
h) lies in the direction of the nonstationary regressor vector at the local coordinate

point and exceeds the usual
√
nh-rate by

√
n (type I super-consistency). The lower rate (nh) lies in

the degenerate direction but is still super-consistent (type II super-consistency) for nonparametric

estimators and exceeds the usual
√
nh-rate by

√
nh.

The above results are all obtained for the Nadaraya-Watson local level time varying coefficient

regression in a cointegrating model. Similar results are shown to apply for local linear time-varying

regression which assists in reducing asymptotic bias. The general case of endogenous cointegrating

regression is also included in our framework and a fully modified (FM; Phillips and Hansen, 1990)

kernel method is proposed to address the endogeneity of the nonstationary regressors. In the use

of this method it is interesting to discover that the kernel estimators need to be modified through

bias correction only in the degenerate direction as the limit distribution of the estimators is not

affected by the possible endogeneity in the direction of the nonstationary regressor vector at the

local coordinate point. The limit theory for FM kernel regression also requires new asymptotic

results on the consistent estimation of long run covariance matrices, which in turn involve uniform

consistency arguments because of the presence of nonparametric regression residuals in these es-

timates. Importantly, inference about the time varying coefficient functions is unaffected by the

degeneracy once the FM correction is made.

The remainder of the paper is organized as follows. Estimation methodology, some technical-

ities, and assumptions are given in Section 2. This section also introduces the kernel degeneracy

problem, explains the phenomenon, and provides intuition for its resolution. Asymptotic properties

of the nonparametric kernel estimator are developed in Section 3 with accompanying discussion.

A kernel weighted FM regression method is proposed with attendant limit theory in Section 4.

Section 5 reports simulation findings on the finite sample properties of the methods and limit the-

ory, and gives a practical application of these time-varying kernel regression methods to empirical

relationships involving consumption, disposable income, investment and real interest rates. Section

6 concludes the paper. Proofs of the main theoretical results in the paper are given in Appendix A.

Some supplementary technical materials and discussions on model specification testing are provided

in an online supplement (Phillips, Li and Gao, 2016).

2 Kernel estimation degeneracy

Set τ = ⌊nδ⌋ where the floor function ⌊·⌋ denotes integer part and δ ∈ [0, 1] is the sample fraction

corresponding to observation t. The functional response in (1.1) allows the regression coefficient to

vary over time and kernel regression provides a convenient mechanism for fitting the function locally

at a particular (time) coordinate, say τ = ⌊nδ⌋. At this coordinate the coefficient is the vector

f (⌊nδ⌋/n) ∼ f (δ) and the model response behaves locally around τ as x′τf(τ/n) ∼ x′⌊nδ⌋f(δ).

Evolution in the response mechanism over time is therefore captured as δ changes through the
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functional dependence x′⌊nδ⌋f(δ).

Under certain smoothness conditions on f and for some fixed δ0 ∈ (0, 1) we have

f (t/n) = f(δ0) +O

(
t

n
− δ0

)
≈ f(δ0)

when t
n is in a small neighborhood of δ0. The Nadaraya-Watson type local level regression estimator

of f(δ0) has the usual form given by

f̂n(δ0) =

[
n∑

t=1

xtx
′
tKth(δ0)

]+ [ n∑

t=1

xtytKth(δ0)

]
, Kth(δ0) =

1

h
K

(
t− nδ0
nh

)
, (2.1)

where A+ denotes the generalized inverse of A, K(·) is some kernel function, and h is the band-

width. Extensions to allow for multiple (distinct) coordinates {δi : i = 1, · · · , I} of concentration

are straightforward.

The random matrix in the denominator of the local level regression estimation (2.1) is called

the signal matrix throughout this paper as it carries the sample signal information in the re-

gressors about the coefficient function f locally in the neighborhood of the fixed point δ0. The

weights Kth(δ0) in the estimation (2.1) ensure that the primary contributions to the signal matrix
∑n

t=1 xtx
′
tKth(δ0) come from observations in the immediate temporal neighborhood of τ . In gen-

eral, we can expect there to be sufficient variation in xt within this temporal neighborhood for the

signal matrix
∑n

t=1 xtx
′
tKth(δ0) to be positive definite in finite samples, i.e. for fixed n and h > 0.

In the case of stationary and independent generating mechanisms for xt, the variation in xt is also

sufficient to ensure a positive definite limit as n → ∞ and h → 0 because the second moment ma-

trix E (xtx
′
t) may be assumed to be positive definite. However, in the nonstationary case where xt

converges weakly to a continuous stochastic process upon standardization, localizing the regression

around a fixed point such as δ0 reduces effective variability in the regressor when n → ∞ because

of continuity in the limit process and therefore leads to rank degeneracy in the limit of the signal

matrix after standardization. The generalized inverse is employed in (2.1) for this reason. This

limiting degeneracy in the weighted signal matrix challenges the usual approach to developing ker-

nel asymptotics. As is apparent from the above explanation, limiting degeneracy of this type may

be anticipated whenever kernel regression is conducted to fit multivariate time-varying functions

that are associated with nonstationary regressors.

To develop the limit theory we start with some regularity conditions to characterize the non-

stationary time series xt and the (scalar) stationary error process ut. We assume xt is a unit root

process with generating mechanism xt = xt−1+vt, initial value x0 = OP (1), and innovations jointly

determined with the equation errors ut according to the linear process

wt = (v′t, ut)
′ = Φ(L)εt =

∞∑

j=0

Φjεt−j , (2.2)

where Φ(L) =
∑∞

j=0ΦjLj , Φj is a sequence of (d+1)× (d+1) matrices, L is the lag operator, and

{εt} is a sequence of independent and identically distributed (iid) random vectors with dimension
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(d+ 1). Such a generation on ut and vt has been commonly used in the literature such as Phillips

(1995). Partition Φj as Φj = [Φj,1, Φj,2]
′ so that

vt =

∞∑

j=0

Φ′
j,1εt−j , and ut =

∞∑

j=0

Φ′
j,2εt−j .

We use ∥ · ∥ to denote the Euclidean norm of a vector or the Frobenius norm of a matrix.

Assumption 1. Let εt be iid (d + 1)-dimensional random vectors with E[εt] = 0, Λ0 ≡ E[εtε
′
t] >

0, and E[∥εt∥4+γ0 ] < ∞ for γ0 > 0. The linear process coefficient matrices in (2.2) satisfy
∑∞

j=0 j∥Φj∥ < ∞.

By functional limit theory for a standardized linear process (Phillips and Solo, 1992) and noting

that

n−1/2

⌊nr⌋∑

s=1

εs ⇒ Bε,r(Λ0)

with Bε,r(Λ0) being (d+ 1)-dimensional Brownian motion (BM) with variance matrix Λ0,, we have

for t = ⌊nr⌋ and 0 < r ≤ 1,

xt√
n
=

1√
n

t∑

s=1

vs +
1√
n
x0 =

1√
n

⌊nr⌋∑

s=1

vs + oP (1) ⇒ Bd,r(Ωv), (2.3)

n−1/2

⌊nr⌋∑

s=1

ws ⇒ Bd+1,r(Ω), n−1/2

⌊nr⌋∑

s=1

us ⇒ Br(Ωu), (2.4)

where Bd+1,r(Ω) = [Bd,r(Ωv)
′, Br(Ωu)]

′ is (d+ 1)-dimensional BM with variance matrix Ω, and

Ω = Φ(1)′Λ0Φ(1) =




Φ1(1)
′Λ0Φ1(1) Φ1(1)

′Λ0Φ2(1)

Φ2(1)
′Λ0Φ1(1) Φ2(1)

′Λ0Φ2(1)


 ≡




Ωv Ωvu

Ωuv Ωu


 , (2.5)

with Φ(1) =
∑∞

j=1Φj , Φ1(1) =
∑∞

j=1Φj,1, and Φ2(1) =
∑∞

j=1Φj,2. Here Ω is the partitioned long

run variance matrix of wt = (v′t, ut)
′ . The limit theory also involves the partitioned components of

the one-sided long run variance matrix

∆ww ≡




∆vv ∆vu

∆uv ∆uu


 =

∞∑

j=0

E
(
w−jw

′
0

)
.

It is convenient to impose a smoothness condition on the functional coefficient f(·) and some

commonly-used conditions on the kernel function and bandwidth. Define µj =
∫ 1
−1 u

jK(u)du and

νj =
∫ 1
−1 u

jK2(u)du.

Assumption 2. f(·) is continuous with |f(δ0+ z)− f(δ0)| = O(|z|γ1) as z → 0 for some 1
2 < γ1 ≤

1.
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Assumption 3. (i) The kernel function K(·) is continuous, positive, symmetric and has compact

support [−1, 1] with µ0 = 1.

(ii) The bandwidth h satisfies h → 0 and nh → ∞.

In the linear cointegration model with constant coefficients

yt = x′tβ + ut, xt = xt−1 + vt, t = 1, · · · , n, (2.6)

where vt and ut are generated by (2.2) and satisfy Assumption 1, least squares estimation of β

gives β̂n = (
∑n

t=1 xtx
′
t)
−1 (

∑n
t=1 xtyt) . Standard limit theory and super-consistency results for β̂n

involve the following behavior of the signal matrix

1

n2

n∑

t=1

xtx
′
t =

1

n

n∑

t=1

xt√
n

x′t√
n
⇒
∫ 1

0
Bd,r(Ωv)Bd,r(Ωv)

′dr, (2.7)

where the limit matrix is positive definite (Phillips and Hansen, 1990). By naive analogy to (2.7)

it might be anticipated that the weighted signal matrix appearing in the denominator of the kernel

estimator f̂n(δ0) would have similar properties. However, some simple derivations show this not to

be the case, as we now demonstrate.

Take a neighborhood Nnδ0(h) =
[
⌊(δ0−h)n⌋, ⌊(δ0+h)n⌋

]
of ⌊δ0n⌋ and let δn = ⌊(δ0−h)n⌋. The

following representation of the weighted signal matrix is convenient in obtaining the limit behavior

n∑

t=1

xtx
′
tKth(δ0) =

n∑

t=1

xδnx
′
δnKth(δ0) +

n∑

t=1

(xt − xδn)x
′
δnKth(δ0)

+

n∑

t=1

xδn (xt − xδn)
′Kth(δ0) +

n∑

t=1

(xt − xδn) (xt − xδn)
′Kth(δ0)

≡ Un1 + Un2 + Un3 + Un4. (2.8)

Using the BN decomposition as in Phillips and Solo (1992), we have

xt − xt−1 = vt = vt + (ṽt−1 − ṽt),

where vt =
(∑∞

j=0Φ
′
j,1

)
εt = Φ1(1)

′εt, and ṽt =
∑∞

j=0 Φ̃
′
j,1εt−j with Φ̃j,1 =

∑∞
k=j+1Φk,1. Then

xδn =

δn∑

t=1

vt + x0 =

δn∑

t=1

vt + ṽ0 − ṽδn + x0. (2.9)

By virtue of Assumption 1, we have

1

δn

(
δn∑

t=1

vt

)(
δn∑

t=1

vt

)′

= Φ1(1)
′
[
1

δn

(
δn∑

t=1

εt

)(
δn∑

t=1

ε′t

)]
Φ1(1)

⇒ Φ1(1)
′Wd+1(Λ0)Φ1(1), (2.10)

where Wd+1(Λ0) = Bε,δ0(Λ0)Bε,δ0(Λ0)
′ is a Wishart variate with 1 degree of freedom and mean

matrix Λ0. Note that the summability condition
∑∞

j=0 j∥Φj∥ < ∞ ensures
∑∞

j=0 ∥Φ̃j∥ < ∞
(Phillips and Solo, 1992), so that

(ṽ0 − ṽδn + x0) (ṽ0 − ṽδn + x0)
′ = OP (1), (2.11)
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and then (
δn∑

t=1

vt

)
(ṽ0 − ṽδn + x0)

′ = OP (
√
n) = oP (n). (2.12)

On the other hand, by Assumption 3, we have 1
n

∑n
t=1Kth(δ0) → µ0 = 1 for 0 < δ0 < 1 which,

together with (2.9)–(2.12), implies that

1

n2
Un1 =

(
xδnx

′
δn

n

)(
1

n

n∑

t=1

Kth(δ0)

)

⇒ δ0Φ
′
1(1)Wd+1(Λ0)Φ1(1). (2.13)

Next observe that for t ∈ Nnδ0(h) which is a set of integers in Nnδ0(h), we have xt−xδn =
∑t

s=δn+1 vs

and then

sup
t∈Nnδ0

(h)

∣∣∣∣∣

∣∣∣∣∣
xt − xδn√

2⌊nh⌋

∣∣∣∣∣

∣∣∣∣∣ = sup
t∈Nnδ0

(h)

∣∣∣∣∣

∣∣∣∣∣

∑t
s=δn+1 vs√
2⌊nh⌋

∣∣∣∣∣

∣∣∣∣∣⇒ sup
0<r<1

∥Bd,r(Ωv)∥ , (2.14)

where Bd,r(Ωv) is the Brownian motion with covariance matrix Ωv defined as in (2.3). Hence, for

h → 0 as n → ∞ we have

sup
t∈Nnδ0

(h)

∣∣∣∣
∣∣∣∣
xt − xδn√

nh

∣∣∣∣
∣∣∣∣ = OP (1) .

For Un2, by Assumption 3 and the fact that K (·) has compact support, we find that

∥Un2∥ ≤ ∥xδn∥
[(δ0+h)n]∑

t=[(δ0−h)n]+1

Kth(δ0) ∥xt − xδn∥

= OP

(√
n
)
×OP

(
n
)
×OP

(√
nh
)

= OP

(
n2h1/2

)
= oP

(
n2
)
. (2.15)

Similarly,

∥Un3∥ = OP

(
n2h1/2

)
= oP

(
n2
)
, (2.16)

and

∥Un4∥ = OP

(
n2h

)
= oP

(
n2
)
. (2.17)

In view of (2.8) and (2.13)–(2.17), we deduce that

1

n2

n∑

t=1

xtx
′
tKth(δ0) ⇒ δ0Φ

′
1(1)Wd+1(Λ0)Φ1(1), (2.18)

which is the limiting signal matrix analogue of (2.7) in the case of nonparametric kernel-weighted

least squares. On inspection, the d× d limit matrix Φ′
1(1)Wd+1(Λ0)Φ1(1) in (2.18) is singular with

rank one when d > 1. The weighted signal matrix 1
n2

∑n
t=1 xtx

′
tKth(δ0) is therefore asymptotically

singular whenever the dimension of the regressor xt exceeds unity.

The intuition for this limiting degeneracy in the signal matrix is that kernel regression con-

centrates attention on the time coordinate δ0 and thereby the realized value of the limit process

Bd,δ0(Ωv) of the (standardized) regressor xt. When the nonstationary regressor xt is multivariate,
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this focus on the realization Bd,δ0(Ωv) of the limit process of n−1/2xt produces a limiting signal

matrix of the outer product form Bd,δ0(Ωv)Bd,δ0(Ωv)
′. In effect, continuity of the limit process

Bd,r(Ωv) ensures that in any shrinking neighborhood of the coordinate δ0, weighted kernel regres-

sion concentrates the signal toward the quantity Bd,δ0(Ωv)Bd,δ0(Ωv)
′ - as if there were only a single

observation of xt in the limit. Importantly, the limiting form of the weighted signal matrix de-

pends on the realized value Bd,δ0(Ωv) of the limit process at the time coordinate δ0. So, the kernel

degeneracy is random and trajectory dependent.

This phenomenon of kernel degeneracy has two relatives in existing asymptotic theory but

seems not before to have arisen in kernel asymptotics. The first relative is a nonstationary linear

regression model with many trending and/or cointegrated regressors. In such models the limiting

signal matrix of the nonstationary data is degenerate to the extent that the trends do not have full

rank - see Park and Phillips (1988) and Phillips (1989). However, in such cases the null space of the

limiting signal matrix is a fixed space determined by the parameters that define the direction of the

trends and the stochastic nonstationarity and cointegration. The second relative in econometrics

occurs in models with nonstationary regressors that have common explosive coefficients - see Phillips

and Magdalinos (2008, 2013). Such models can be cointegrated systems with co-moving explosive

regressors or vector autoregressions with common explosive roots. In these cases, the null space of

the limiting signal matrix is determined by the direction vector of the (limit of the standardized)

exploding process and is therefore random and trajectory dependent, as in the present case.

The following section shows how to transform the coordinate system to accommodate the degen-

eracy and develop limit theory for the kernel regression estimator. This limit theory is operational

for practical implementation. However, the asymptotics turn out to be fundamentally different from

those in the existing kernel regression literature. Also, unlike the asymptotic theory for linear mod-

els with degenerate limits discussed in the last paragraph where the degenerate directions typically

have stationary asymptotics with Gaussian limit distributions and conventional
√
n convergence

rates apply, in the kernel regression case both the degenerate and nondegenerate directions give

super-consistent estimation and nonstandard asymptotics. Nonstationary kernel regression limit

theory therefore has some unusual and rather unexpected properties in the degenerate case induced

by time varying coefficient functions.

3 Large sample theory

To simplify presentation define b ≡ bδ0 = Bd,δ0(Ωv) and set

q =
b

(b′b)1/2
=

b

∥b∥ .

Let q⊥ be a d× (d− 1) orthogonal complement matrix such that

Q =
(
q, q⊥

)
, Q′Q = Id, (3.1)

9



where Id is the d× d identity matrix. Correspondingly, we define the following sample versions of

these quantities

qn =
bn

(b′nbn)1/2
=

bn
∥bn∥

, bn ≡ bnδ0 =
1√
n
xδn ,

let

Qn =
(
qn, q

⊥
n

)
, Q′

nQn = Id, (3.2)

and introduce the standardization matrix

Dn = diag
{
n
√
h, (nh)Id−1

}
. (3.3)

The matrices Q and Qn are random, path dependent, and localized to the coordinate of concen-

tration (at δ0 and δn = ⌊(δ0 − h)n⌋, respectively). Write Bd+1,r(Ω) = [Bd,r(Ωv)
′, Br(Ωu)]

′ and

define

∆δ0 =




∆δ0(1) ∆δ0(2)

∆δ0(2)
′ ∆δ0(3)


 , Γδ0 =




Γδ0(1)

Γδ0(2)


 , (3.4)

where the components of the partition are

∆δ0(1) = b′b,

∆δ0(2) =
√
2
(
b′b
)1/2

[∫ 1

−1
B∗

d,(r+1)/2(Ωv)
′K(r)dr

]
q⊥,

∆δ0(3) = 2(q⊥)′
[∫ 1

−1
B∗

d,(r+1)/2(Ωv)B
∗
d,(r+1)/2(Ωv)

′K(r)dr

]
q⊥,

Γδ0(1) =
(
2b′b

)1/2
∫ 1

−1
K(r)dB∗

(r+1)/2(Ωu),

Γδ0(2) = 2(q⊥)′
[∫ 1

−1
K(r)B∗

d,(r+1)/2(Ωv)dB
∗
(r+1)/2(Ωu) +

1

2
∆vu

]
,

where the (d + 1)-dimensional BM B∗
d+1,r(Ω) =

[
B∗

d,r(Ωv)
′, B∗

r (Ωu)
]′

is an independent copy of

Bd+1,r(Ω) = [Bd,r(Ωv)
′, Br(Ωu)]

′. Note that the variate
∫ 1
−1K(r)dB∗

(r+1)/2(Ωu) has the same distri-

bution as N(0, 12ν0Ωu) and is independent of Bd,δ0(Ωv). The following theorem gives the asymptotic

distribution of f̂n(δ0).

Theorem 3.1. Suppose Assumptions 1–3 are satisfied and n2h1+2γ1 = o(1). Then as n → ∞

DnQ
′
n

[
f̂n(δ0)− f(δ0)

]
⇒ ∆+

δ0
Γδ0 , (3.5)

where 0 < δ0 < 1 is fixed such that ∆δ0 is nonsingular with probability 1.

From the definition of Dn and (3.5), different convergence rates apply for the directions qn and

q⊥n . In the direction of qn we have the faster convergence rate given by

q′n
[
f̂n(δ0)− f(δ0)

]
= OP

(
1

n
√
h

)
. (3.6)

The rate (3.6) exceeds the usual
√
nh rate for kernel estimators in the stationary case. The n

√
h

rate in (3.6) can be understood as the
√
n2h rate so that the effective sample size for estimating

10



q′f(δ0) is n2h, as determined by the signal matrix behavior in this direction, rather than nh. Note

that in unstandardized form the signal matrix is
∑n

t=1 xtx
′
tK( t−nδ0

nh ) which is OP

(
n2h

)
by virtue

of (2.13) and (2.18). This signal matrix is rank degenerate in the limit. But in the direction qn we

have the non-degenerate signal

q′n

[
n∑

t=1

xtx
′
tK

(
t− nδ0
nh

)]
qn = OP

(
n2h

)
.

The replacement of n by n2 in determining the convergence rate in the nonstationary direction qn

is the result of the stronger signal in the data about the specific component q′f(δ0) of the unknown

function f(δ0) in the direction q.We call this result type I super-consistency. The
√
n2h convergence

rate was also obtained by Cai et al (2009) and Xiao (2009) in certain functional-coefficient models

with multivariate nonstationary regressors and no degeneracies. The type I super-consistency in

functional coefficient kernel regression corroborates intuitive ideas from linear parametric models

about the additional information in the data about the coefficients of stochastic trends in the

direction of those trends, i.e., the signal matrix in (2.1) has the asymptotic order of n2h in the

direction qn, stronger than the order of nh in the stationary case.

In the direction of q⊥n , (3.5) gives

(q⊥n )
′
[
f̂n(δ0)− f(δ0)

]
= OP

(
1

nh

)
. (3.7)

Interestingly, this rate also exceeds the usual
√
nh rate for kernel estimators in stationary models.

But convergence in the direction q⊥n is slower than in direction qn. We call the result in (3.7) type

II super-consistency. This rate is new to the kernel regression literature. In a functional coefficient

cointegrating regression the result indicates that nonstationarity in the regressors increases the rate

of convergence in all directions, including the components (q⊥)′f(δ0) of f(δ0) in directions that

are orthogonal to those of the nonstationary regressor. The reason why the rate exceeds the usual√
nh rate for stationary regression is that the signal in the direction q⊥n is still stronger than that

of a stationary regressor. This feature of the signal is explained by the fact that the signal matrix

has order OP

(
n2h2

)
in this direction, viz.,

(q⊥n )
′
[

n∑

t=1

xtx
′
tK

(
t− nδ0
nh

)]
q⊥n = (q⊥n )

′
[

n∑

t=1

(
xt − xδ(n)

) (
xt − xδ(n)

)′
K

(
t− nδ0
nh

)]
q⊥n

= OP

(
n2h2

)
.

So the effective sample size in the estimation of the component (q⊥)′f(δ0) has the asymptotic order

of n2h2, which is smaller than the effective sample size with the asymptotic order n2h that applies

for estimation of q′f(δ0). More specifically, under the compact support condition on the kernel

function (as given in Assumption 3), estimation of (q⊥)′f(δ0) only uses information on xt − xδn
over the interval of observations Nnδ0(h) = [⌊nδ0 − nh⌋, ⌊δ0 + nh⌋]. So, the number of observations

contributing to nonparametric kernel estimation of (q⊥)′f(δ0) is only of the order of nh. However,

over this interval for t = δn + ⌊2nhp⌋ ∈ Nnδ0(h) with p ∈ [0, 1] the data increments still manifest
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nonstationary characteristics. In particular, we have the following weak convergence

xt − xδn√
2⌊nh⌋

=

∑⌊2nhp⌋
s=δn+1 vs√
2⌊nh⌋

⇒ Bd,p(Ωv). (3.8)

The stronger signal in these observations raises the overall signal in (q⊥n )
′
[∑n

t=1 xtx
′
tK
(
t−nδ0
nh

)]
q⊥n

to OP

(
(
√
nh)2

)
× OP (nh) = OP

(
n2h2

)
, as distinct from the OP (nh) signal in conventional

stationary kernel regression case. Thus, local nonstationarity in the data around ⌊nδ0⌋ contributes
to greater information about (q⊥)′f(δ0) than would occur in a stationary kernel regression.

Although the variate
∫ 1
−1K(r)dB∗

(r+1)/2(Ωu) in Γδ0(1) has the centred normal distribution,

the variate
∫ 1
−1K(r)B∗

d,(r+1)/2(Ωv)dB(r+1)/2(Ωu) in Γδ0(2) has the more complicated mixed normal

distribution (Phillips and Hansen, 1990). This further makes the distribution theory in (3.6)

different from that in the conventional stationary case which usually has the asymptotic normal

distribution in all directions.

In the pure cointegration case with ∆vu = 0 and Ωvu = 0, the form of Γδ0(2) can be simplified.

Define Γδ0(2) = 2(q⊥)′
[∫ 1

−1K(r)B∗
d,(r+1)/2(Ωv)dB

∗
(r+1)/2(Ωu)

]
and Γδ0 just as Γδ0 but with Γδ0(2)

replaced by Γδ0(2). Importantly, Γδ0(2) has a mixed normal distribution in this case in view of

the independence of the Brownian motions B∗
d,(r+1)/2(Ωv) and B∗

(r+1)/2(Ωu) when Ωvu = 0. The

following simplified mixed limit theory applies in this pure cointegration case.

Corollary 3.1. Suppose that the conditions in Theorem 3.1 are satisfied and ∆vu = 0. We then

have

DnQ
′
n

[
f̂n(δ0)− f(δ0)

]
⇒ ∆+

δ0
Γδ0 , (3.9)

for fixed 0 < δ0 < 1 such that ∆δ0 is nonsingular with probability 1.

To eliminate bias effects in these nonparametric asymptotics we have imposed the bandwidth

condition n2h1+2γ1 = o(1) on the bandwidth, which may be somewhat restrictive if γ1 is close to

its lower boundary of 1/2 (Assumption 2). To relax the restriction in such cases, a higher order

kernel function may be considered (e.g., Wand and Jones, 1994) or local polynomial smoothing

(e.g., Fan and Gijbels, 1996) can be used. Local linear regression is the most commonly used

local polynomial smoothing method in practical work and has certain advantages over local level

regression in stationary regression, although Wang and Phillips (2009b, 2011, 2015) showed that

such bias reduction with local linear methods does not occur (and hence is not an advantage) in

nonstationary nonparametric regression.

Assume f has continuous derivatives up to the second order. Then, for fixed 0 < δ0 < 1, the

following local linear approximation holds when t
n is in a small neighborhood of δ0,

f (t/n) = f(δ0) + f (1)(δ0)

(
t

n
− δ0

)
+O

((
t

n
− δ0

)2
)
,

where f (1)(δ0) is the first-order derivative of f at δ0. Define the local loss function

Ln(a, b) =

n∑

t=1

[
yt − x′ta− x′tb

(
t

n
− δ0

)]2
Kth(δ0), (3.10)
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where a = (a1, · · · , ad)′ and b = (b1, · · · , bd)′. The local linear estimator of f(δ0) is defined as

f̃n(δ0) = ã, where (ã, b̃) = argmin(a,b) Ln(a, b). Set

∆δ0∗ =




∆δ0∗(1) ∆δ0∗(2)

∆δ0∗(2)
′ ∆δ0∗(3)


 , Γδ0∗ =




Γδ0∗(1)

Γδ0∗(2)


 ,

where ∆δ0∗(1) = ∆δ0 , Γδ0∗(1) = Γδ0 , ∆δ0∗(2) and ∆δ0∗(3) are defined as in ∆δ0 but with K(r)

replaced by rK(r) and r2K(r), respectively, and Γδ0∗(2) is defined as Γδ0 with K(r) replaced by

rK(r). Let ed = (Id, Od), where Od is a d × d null matrix. The limit theory for the local linear

estimator f̃n(δ0) is given in the following theorem.

Theorem 3.2. Suppose that Assumptions 1 and 3 in Section 2 are satisfied and f(·) has continuous
derivatives up to the second order. Let δ0 be fixed such that 0 < δ0 < 1 and ∆δ0∗ is nonsingular

with probability 1. Then, we have

DnQ
′
n

[
f̃n(δ0)− f(δ0) +OP (h

2)
]
⇒ ed ∆+

δ0∗Γδ0∗. (3.11)

Furthermore, if n2h5 = o(1), we have

DnQ
′
n

[
f̃n(δ0)− f(δ0)

]
⇒ ed ∆+

δ0∗Γδ0∗. (3.12)

Just as in the case of Theorem 3.1, types I and II super-consistency apply to the local linear

estimator f̃n(δ0) according to the directions qn and q⊥n . The results are entirely analogous, so the

details are omitted. Note that to eliminate the asymptotic bias of the local linear estimation,

we impose the restriction of n2h5 = o(1), which is weaker than the corresponding restriction in

Theorem 3.1. As discussed above, the bandwidth condition in Theorem 3.2 might be further relaxed

if a higher-order local smoothing technique is applied.

4 FM-nonparametric kernel estimation

The one-sided long run covariance ∆vu which appears in the limit functionals Γδ0 and Γδ0∗ of

Theorems 3.1 and 3.2 induces a “second-order” bias effect just like the bias that appears in linear

cointegrating regression limit theory (Park and Phillips, 1988, 1989). In addition, there is an

endogeneity bias effect arising from the correlation of the limit Brownian motions and these bias

effects originate in the correlation between the regressor innovations and the equation error. The

effects are second order, so the two super-consistency rates of the kernel estimator of the functional

coefficient shown in Section 3 are unchanged. But, as in the linear cointegration model with

constant coefficients, the bias does influence centering of the limit distributions. So the effects

can be substantial in finite samples, as is well known in the linear constant coefficient case. This

section therefore develops a nonparametric kernel version of the FM regression technique (Phillips
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and Hansen, 1990) to eliminate the bias effect in this nonstationary case. Although there has

been extensive study of this type of correction in linear cointegration models, to the best of our

knowledge there is no work on techniques of bias correction for nonparametric kernel estimation of

time-varying cointegration models.

Let ∆̂uu, ∆̂vu, ∆̂vv, Ω̂uv and Ω̂vv denote consistent estimates of ∆uu, ∆vu,∆vv,Ωuv and Ωvv,

whose construction will be considered later in this section. We define the “bias-corrected” FM

kernel regression estimator of the functional coefficient f (·) as

f̂n,bc(δ0) =

[
n∑

t=1

xtx
′
tKth(δ0)

]+ [ n∑

t=1

xtŷ
#
t Kth(δ0)−QnDnΓ̂n,bc

]
(4.1)

with ŷ#t = yt − Ω̂uvΩ̂
−1
vv ∆xt and

Γ̂n,bc =

(
0,
[
(q⊥n )

′∆̂#
vu

]′)′
, (4.2)

and ∆̂#
vu = ∆̂vu − ∆̂vvΩ̂

−1
vv Ω̂vu. Since

(
∆̂uu, ∆̂vu, ∆̂vv, Ω̂uv, Ω̂vv

)
= (∆uu,∆vu,∆vv,Ωuv,Ωvv) +

oP (1), the asymptotic distribution of f̂n,bc(δ0) is obtained in the same manner as the proof of Theo-

rem 3.1 and has a mixed normal limit, just as that of f̂n(δ0) in the pure cointegration case shown in

Corollary 3.1. In the present case, because of the removal of the endogeneity bias, the mixed normal

limit theory involves the stochastic integral Γ#
δ0
(2) = 2(q⊥)′

[∫ 1
−1K(r)B∗

d,(r+1)/2(Ωv)dB
∗
(r+1)/2(Ωu.v)

]

where the univariate BM B∗
(r+1)/2(Ωu.v) has covariance matrix Ωu.v = Ωuu − ΩuvΩ

−1
vv Ωvu and is in-

dependent of the d-dimensional BM B∗
d,(r+1)/2(Ωv) so that Γ#

δ0
(2) has a mixed normal distribution.

We further define Γ#
δ0
(1) = (2b′b)1/2

[∫ 1
−1K (r) dB∗

(r+1)/2(Ωu.v)
]
, which is normally distributed just

as Γδ0(1) but with the BM B∗
(r+1)/2(Ωu.v) in place of B∗

(r+1)/2(Ωu). Importantly, these simplifi-

cations produce a mixed normal limit theory for f̂n,bc(δ0) which facilitates inference on the time

varying coefficient functions, just as in the case of linear FM estimation of fixed coefficient coin-

tegrating relations. Furthermore, we define Γ#
δ0

just as Γδ0 but with [Γδ0(1),Γδ0(2)
′] replaced by[

Γ#
δ0
(1),Γ#

δ0
(2)′
]
.

Proposition 4.1. Suppose that the conditions in Theorem 3.1 are satisfied. We then have

DnQ
′
n

[
f̂n,bc(δ0)− f(δ0)

]
⇒ ∆+

δ0
Γ#
δ0

(4.3)

for fixed 0 < δ0 < 1.

From (4.1) and (4.3), it is evident that the bias term of the nonparametric kernel estimator

needs only to be corrected in the direction q⊥n , since the limit distribution in the direction qn

remains the same irrespective of whether endogeneity is present. This bias correction technique

may similarly be applied to the local linear estimator. Since the derivations and results are the

same, the details are omitted.

Practical implementation of the FM-nonparametric kernel regression requires estimation of the

long run covariance matrices
(
∆̂vu, ∆̂vv, Ω̂uv, Ω̂vv

)
. For the following discussion it will be sufficient

14



to focus on estimation of the one-sided long run covariance matrix ∆vu. The usual approach may

be followed here. Let ût = yt−x′tf̂n(t/n) be the estimated residuals from applying kernel regression

to (1.1). Let 0 < τ∗ < 1/2, which can be arbitrarily small. Since vt = xt − xt−1, we may construct

the estimated autocovariances

∆̂vu(j) =
1

⌊(1− τ∗)n⌋ − ⌊τ∗n⌋

⌊(1−τ∗)n⌋∑

t=⌊τ∗n⌋+1

vt−j ût, j = 0, 1, · · · , ln, (4.4)

which are combined to produce the one-sided long run covariance estimate

∆̂vu =

ln∑

j=0

k (j/ln) ∆̂vu(j), (4.5)

where k(·) is a kernel function and ln < n is the lag truncation number which tends to infinity as

n → ∞. To ensure the consistency of ∆̂vu, the lag kernel function k(·) is assumed to be bounded

with k(0) = 1 and k(−x) = k(x) such that
∫ 1
−1 k

2(x) < ∞ and limx→0
1−k(x)

|x| < ∞ (e.g. Park and

Hahn, 1999). The choice of the truncation number ln has been discussed in detail in the existing

literature on FM regression (e.g. Phillips, 1995).

To avoid possible boundary effects from kernel estimation in the estimated autocovariogram in

(4.4), we use only information on vt−j ût from ⌊τ∗n⌋ + 1 to ⌊(1 − τ∗)n⌋. This construction differs

from usual practice in parametric linear cointegration models where vt−j ût is summed over the full

domain (j+1, n) to estimate the covariance. However, as is evident intuitively and shown rigorously

in the proof of Proposition 4.2 in Appendix A, for τ∗ close to zero this modification does not affect

the asymptotic analysis. In the context of parametric cointegration models, the proof of consistency

of ∆̂vu is straightforward because the quantities ∆̂vu(j) rely on the estimates of residuals that are

obtained from coefficients estimated at parametric rates. In the present nonparametric case, kernel

methods are used to estimate the time-varying coefficient functions, which in turn complicates the

form of the estimated residuals and makes the proof of consistency much more difficult. A particular

difficulty in the nonparametric case is that conditions are needed to ensure the nonsingularity of the

random denominator of the local level regression estimator f̂n(δ) uniformly over δ ∈ [τ∗, 1− τ∗] for

any 0 < τ∗ < 1/2. The following proposition establishes the consistency of ∆̂vu defined in (4.5).

Proposition 4.2. Let the conditions in Theorem 3.1 hold with γ1 = 1, l
10+2γ0+ϖ
n = o(n5+γ0h9+γ0)

for arbitrarily small ϖ > 0 and ln = o
(

1√
nh

)
. Suppose that the random matrix ∆δ is nonsingular

uniformly for δ ∈ [τ∗, 1− τ∗] with probability 1 for any 0 < τ∗ < 1/2. Then we have

∆̂vu = ∆vu + oP (1). (4.6)

The condition l
10+2γ0+ϖ
n = o(n5+γ0h9+γ0) indicates a trade-off between the restriction on the

truncation number ln and the moment condition on the εi. In particular, for γ0 large enough, we

find that the imposed condition is close to ln = o(
√
nh), which allows the truncation number to

increase at a polynomial rate. On the other hand, the restriction ln = o
(

1√
nh

)
ensures that the

asymptotic bias of the kernel estimates does not affect the consistency of ∆̂vu.
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5 Numerical Studies

This section has two numerical examples. The first reports simulations designed to investigate the

finite sample performance of kernel estimation in multivariate nonstationary settings and examines

the adequacy of the asymptotic theory developed in the paper. The second provides a practical

application of time-varying kernel regression methods to examine empirical relationships involving

consumption, disposable income, investment and real interest rates. In the simulations, we are

particularly interested in the behavior of multivariate time-varying coefficient function estimators,

the respective convergence rates, and the effects of endogeneity and serial dependence on these

procedures.

Example 5.1. We consider a cointegrated system with time-varying coefficient functions

yt = x′tft + ut, t = 1, · · · , n, (5.1)

where ft = (f1t, f2t)
′ has the following two functional forms

M1 : f1t = f1 (t/n) = 1 +
t

n
, f2t = f2 (t/n) = e−

t
n ;

M2 : f1t = f1 (t/n) = cos (2πt/n) , f2t = f2 (t/n) = sin (2πt/n) .

The regressor xt = (x1,t, x2,t)
′, with xi,t = xi,t−1 + vi,t for i = 1 and 2, vi,t = ρivi,t−1 + εi,t, and the

error ut = ρut−1 + εt, with innovations (εt, ε1,t, ε2,t) that follow



εt

ε1,t

ε2,t




iid∼ N







0

0

0




,




1 λ1 λ2

λ1 1 λ3

λ2 λ3 1







, (5.2)

with λi = 0 or λi = 0.5 for i = 1, 2 and 3. Simulations are conducted with sample size n = 1, 000

and with R = 10, 000 replications.

The nonparametric kernel estimate of f(δ) =
[
f1(δ), f2(δ)

]′
is given by

f̂n(δ) =

[
n∑

t=1

xtx
′
tK
( t− nδ

nh

)
]+ [ n∑

t=1

xtytK
( t− nδ

nh

)
]
≡
[
f̂1n(δ), f̂2n(δ)

]′
, (5.3)

where we use K(x) = 1
2I{−1 ≤ x ≤ 1}, with I{·} being the indicator function, and choose band-

width values h that will be specified later. Before reporting the simulation results, we use the follow-

ing notation, based partly on earlier definitions. Let δn = ⌊(δ − h)n⌋, xδn = (x1,δn , x2,δn)
′, bn(δ) =

1√
n
xδn = 1√

n
(x1,δn , x2,δn)

′ and qn(δ) = bn(δ)/∥bn(δ)∥ =
[

x1,δn√
n∥bn(δ)∥ ,

x2,δn√
n∥bn(δ)∥

]′
≡ [q1n(δ), q2n(δ)]

′.

Let q⊥n (δ) =
[
p1n(δ), p2n(δ)

]′
be chosen such that Qn(δ) =

[
qn(δ), q

⊥
n (δ)

]
and Qn(δ)

′Qn(δ) = I2.

For this purpose we set p1n(δ) = q2n(δ) and p2n(δ) = −q1n(δ).

To evaluate the finite sample performance of the proposed estimators, we introduce the following

transformed and centered quantities

g1n(δ) ≡ q1n(δ)
[
f̂1n(δ)− f1(δ)

]
+ q2n(δ)

[
f̂2n(δ)− f2(δ)

]
, (5.4)

g2n(δ) ≡ p1n(δ)
[
f̂1n(δ)− f1(δ)

]
+ p2n(δ)

[
f̂2n(δ)− f2(δ)

]
, (5.5)
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and compute averages of g1n(δ) and g2n(δ) as follows: gin(δ) = 1
R

∑R
j=1 gin,j(δ) for i = 1, 2 and

R = 10, 000, where gin,j(δ) is the value of gin(δ) at the j-th replication. Corresponding results

are investigated for the bias-corrected FM kernel regression estimator proposed in equation (4.1)

above. Accordingly, we define

g∗1n(δ) ≡ q1n

[
f̂1n,bc(δ)− f1(δ)

]
+ q2n

[
f̂2n,bc(δ)− f2(δ)

]
, (5.6)

g∗2n(δ) ≡ p1n

[
f̂1n,bc(δ)− f1(δ)

]
+ p2n

[
f̂2n,bc(δ)− f2(δ)

]
, (5.7)

where f̂n,bc(·) ≡
[
f̂1n,bc(·), f̂2n,bc(·)

]′
is defined as in (4.1). Averages of g∗1n(δ) and g∗2n(δ) are com-

puted as follows: g∗in(δ) =
1
R

∑R
j=1 g

∗
in,j(δ) for i = 1, 2 and R = 10, 000, where g∗in,j(δ) is the value

of g∗in(δ) at the j-th replication.

The simulation results of point-wise kernel estimation are reported in Tables 5.1 and 5.2, which

consider six different parameter constellations for {ρ, ρi, λi, (δ, h)}:

Case 1 : ρ = ρ1 = ρ2 = 0, λ1 = λ2 = λ3 = 0, (δ, h) =

(
1

4
,
1

6

)
;

Case 2 : ρ = ρ1 = ρ2 = 0, λ1 = λ2 = λ3 = 0, (δ, h) =

(
1

2
,
1

3

)
;

Case 3 : ρ = ρ1 = ρ2 = 0, λ1 = λ2 = λ3 = 0, (δ, h) =

(
3

4
,
1

2

)
;

Case 4 : ρ = 0.5, ρ1 = −0.5, ρ2 = 0.5, λ1 = λ2 = λ3 = 0.5, (δ, h) =

(
1

4
,
1

6

)
;

Case 5 : ρ = 0.5, ρ1 = −0.5, ρ2 = 0.5, λ1 = λ2 = λ3 = 0.5, (δ, h) =

(
1

2
,
1

3

)
;

Case 6 : ρ = 0.5, ρ1 = −0.5, ρ2 = 0.5, λ1 = λ2 = λ3 = 0.5, (δ, h) =

(
3

4
,
1

2

)
.

Broadly speaking, |g1n(δ)| is smaller than |g2n(δ)|, which supports the asymptotic theory in

Section 3 that g1n(δ) converges to zero at a faster rate than g2n(δ). The presence of endogeneity

between xt and ut does not impose a noticeable impact on the results, corroborating similar findings

by Wang and Phillips (2009b) in the context of nonlinear cointegration models with a univariate

regressor. The bias-corrected kernel method implies a second-order bias correction for gin(·), as
shown in Proposition 4.1. We find that the corresponding values of |g∗1n(δ)| and |g∗2n(δ)| are slightly
smaller than those for |g1n(δ)| and |g2n(δ)| reported in Tables 5.1 and 5.2, providing evidence of

bias reduction and supporting the limit theory in Section 4.
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Table 5.1: Absolute averages of gin(δ) and g∗in(δ) for the functional form M1

Case 1 Case 2 Case 3

|g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)|

0.005279 0.007294 0.002083 0.016241 0.001607 0.005815

Case 4 Case 5 Case 6

|g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)|

0.000895 0.004268 0.000816 0.000458 0.000399 0.011452

|g∗1n(δ)| |g∗2n(δ)| |g∗1n(δ)| |g∗2n(δ)| |g∗1n(δ)| |g∗2n(δ)|

0.000870 0.003749 0.000688 0.000185 0.000297 0.011091

Table 5.2: Absolute averages of gin(δ) and g∗in(δ) for the functional form M2

Case 1 Case 2 Case 3

|g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)|

0.000302 0.026371 0.000504 0.002895 0.042893 0.059356

Case 4 Case 5 Case 6

|g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)| |g1n(δ)| |g2n(δ)|

0.006109 0.005456 0.024125 0.049481 0.030661 0.069070

|g∗1n(δ)| |g∗2n(δ)| |g∗1n(δ)| |g∗2n(δ)| |g∗1n(δ)| |g∗2n(δ)|

0.005963 0.004695 0.023760 0.049477 0.030607 0.068099

Fig. 5.1 near here

Fig. 5.2 near here

We next consider the case where ρ = 0.5, ρ1 = 0.5 and ρ2 = 0.5 and λi = 0.5 for i = 1, 2, 3. For

given h, we define the leave-one-out estimate

f̂t(δ|h) =




n∑

s=1, ̸=t

xsx
′
sK
(s− nδ

nh

)


+ 


n∑

s=1, ̸=t

xsysK
(s− nδ

nh

)

 ≡

[
f̂1t(δ|h), f̂2t(δ|h)

]′
, (5.8)

and the cross-validation function

CVn(h) =
1

n

n∑

t=1

[
yt − x′tf̂t

( t
n

∣∣h
)]2

, (5.9)
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and find an optimal bandwidth of the form

ĥcv = arg min
h∈Hn

CVn(h), (5.10)

where Hn =
[
n−1, n− 2

3 log−1(n)
]
. For δ > ĥcv, define δ̂n = ⌊(δ − ĥcv)n⌋, xδ̂n =

(
x
1,δ̂n

, x
2,δ̂(n)

)′
,

b̂n(δ) = 1√
n
x
δ̂n

= 1√
n

(
x
1,δ̂n

, x
2,δ̂n

)′
and q̂n(δ) =

[
x
1,δ̂n√

n∥b̂n(δ)∥
,

x
2,δ̂n√

n∥b̂n(δ)∥

]′
≡ [q̂1n(δ), q̂2n(δ)]

′. Let the

transformed quantities g1n(δ) and g2n(δ) be again defined as in (5.4) and (5.5) but with qin(δ) and

pin(δ) replaced by q̂in(δ) and p̂in(δ), respectively, where p̂1n(δ) = q̂2n(δ) and p̂2n(δ) = −q̂1n(δ).

The plots shown in Figs. 5.1 and 5.2 are based on 500 replications. These plots clearly show that

the window of fluctuations of g1n(δ) is much narrower than that of g2n(δ), further corroborating

the limit theory that the variance of g1n(·) is smaller than that of g2n(·).

Example 5.2. We next apply the time varying coefficient model and estimation methodology to

aggregate US data on consumption, income, investment, and interest rates obtained from Federal

Reserve Economic Data (FRED)5. Two formulations are considered using data that were studied

recently in Athanasopoulos et al (2011) using linear VAR and reduced rank regression methods.

Case (i) (Quarterly data over 1960:1–2009:3): c1t is log per-capita real consumption, i1t is

log per capita disposable income, and rt is the real interest rate expressed as a percentage and

calculated ex post by deducting the CPI inflation rate over the following quarter from the nominal

90 day Treasury bill rate.

Case (ii) (Quarterly data over 1947:1–2009:4): c2t is log per-capita real consumption, i2t is log

per capita real disposable income, and zt is log per capita real investment.

The series are plotted in Figs. 5.3 and 5.4, which show that i1t, i2t and zt have trending

components. In order to satisfy Assumption 1, we first eliminate the trends by introducing zjt =

ijt−µjt with µj =
1
n

∑n
t=1(ijt− ij,t−1) for j = 1, 2, and z3t = zt−µzt with µz =

1
n

∑n
t=1(zt− zt−1).

Figs. 5.3(b), 5.3(c), 5.4(b) and 5.4(c) show that the differenced versions of zkt for k = 1, 2, 3 and rt

all appear stationary, leading us to define yt = c1t, x1t = z1t and x2t = rt for case (i), and yt = c2t,

x1t = z2t and x2t = z3t for case (ii). Application of the nonparametric test in Gao and King (2011)

for checking unit root nonstationarity gives p-values of 0.106 and 0.112 for x1t and x2t in case (i),

and corresponding p-values of 0.132 and 0.116 for x1t and x2t in case (ii).

Fig. 5.3(a) near here

Fig. 5.3(b) near here

Fig. 5.3(c) near here

Fig. 5.4(a) near here

Fig. 5.4(b) near here

Fig. 5.4(c) near here

5We thank George Athanasopoulos for providing us with the data.
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In both cases, we fit the following model allowing for a time varying coefficient vector

yt = x′tf (t/n) + ut = x′tft + ut, t = 1, · · · , n, (5.11)

where the regressors and coefficients are partitioned as xt = (x1t, x2t)
′ and ft = (f1t, f2t)

′. The

coefficient function f(·) = (f1(·), f2(·))′ is estimated by kernel weighted regression giving

f̂(δ) =

[
n∑

t=1

xtx
′
tK
( t− nδ

nh

)
]+ [ n∑

t=1

xtytK
( t− nδ

nh

)
]
≡
[
f̂1(δ), f̂2(δ)

]
, (5.12)

where K(x) = 1
2I{−1 ≤ x ≤ 1} as in Example 5.1, over δ ∈ (0, 1], and the bandwidth h is chosen

by cross-validation as described in (5.10). The nonparametric estimates of the two curves fi(·) with
their 95% confidence bands are shown in Figs. 5.5 and 5.6 for case (i), and in Figs. 5.7 and 5.8 for

case (ii).

Fig. 5.5 near here

Fig. 5.6 near here

Fig. 5.7 near here

Fig. 5.8 near here

The plots of f̂1(δ) and f̂2(δ) are strongly indicative of nonlinear functional forms for the coeffi-

cients in both cases, but also suggest that the functions fi(δ) may be approximated by much simpler

parametric functions gi(δ; θi), for some parametric values θi and pre-specified functions gi(·; ·). We

have done some pre–testing for all possible linear forms and other polynomial approximations be-

fore we propose using the parametric polynomial approximations in equations (5.13)–(5.16) below.

Therefore, for case (i), in Figs. 5.5 and 5.6, we also consider polynomial fitted specifications of the

form:

g1(δ; θ̂1) = θ̂01 +
6∑

j=1

θ̂j1δ
j , (5.13)

g2(δ; θ̂2) = θ̂02 +

5∑

j=1

θ̂j2δ
j , (5.14)

where θ̂01 = 1.1036, θ̂11 = −4.9534, θ̂21 = 225.087, θ̂31 = −63.983, θ̂41 = 87.136, θ̂51 = −60.191,

θ̂61 = 16.547; θ̂02 = 0.4359, θ̂12 = 4.577, θ̂22 = −19.381, θ̂32 = 41.327, θ̂42 = −43.237 and

θ̂52 = 17.001. Similarly, for case (ii), in Figs. 5.7 and 5.8, we consider the fitted polynomial

specifications:

g1(δ; θ̂1) = θ̂01 +

3∑

j=1

θ̂j1δ
j , (5.15)

g2(δ; θ̂2) = θ̂02 +
3∑

j=1

θ̂j2δ
j , (5.16)
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where θ̂01 = 1.5525, θ̂11 = −3.0978, θ̂21 = 3.7520, θ̂31 = −1.4718; θ̂02 = −6.1002, θ̂12 = −22.890,

θ̂22 = −27.873 and θ̂31 = 11.100.

Figs. 5.5–5.8 show that f1(δ) and f2(δ) are reasonably well captured by the parametric forms

g1(δ; θ̂1) and g2(δ; θ̂2). Interestingly, lower order polynomial approximations are used in case (ii)

than those in case (i), even though the data cover a longer period in (ii) than (i). In case (ii) both

regressors are macro aggregates (income and investment), and slower moving (i.e., less variable

over time) functional responses might be expected. Case (i) involves the interest rate regressor,

which displays greater volatility than the macro aggregates, so the functional responses are cor-

respondingly more variable over the sample period and seem to require higher order polynomial

approximations to adequately capture the nonparametric fits.

Standard t-tests show that all these coefficients are significant with p-values almost zero. Con-

ventional t-tests are robust to this type of parametric regression under nonstationarity, being equiv-

alent to those from a standardised (weak trend) model of the form yt = x̃′d,tg̃
(
t
n ; θ0

)
+ ut, where

x̃d,t =
xt√
n
and g̃

(
t
n ; θ0

)
=

√
ng
(
t
n ; θ0

)
giving the same p-values. A formal test of the polynomial

specifications may be mounted to test the null hypothesis H0 : yt = x′tg
(
t
n ; θ0

)
+ ut for a specific

parametric form g (·; θ0) . The test statistic used to assess this (joint) null hypothesis is Ln(h),

which is defined in Appendix C of the online supplement. This statistic measures scaled departures

of parametrically fitted functional elements from their nonparametric counterparts. A detailed

development of this test statistic and discussions on its limit theory are provided in Appendix C.

For cases (i) and (ii), by using the block bootstrap method introduced in Appendix C of the

online supplement, the calculated p-values are 0.2937 and 0.3178, respectively, confirming that there

is insufficient evidence to reject the null hypothesis H0 in both cases. In other words, a suitable

polynomial function provides a reasonable parametric approximation to each coefficient function

fi(δ) for both data sets over their respective sample periods.

This empirical example shows that while co-movement in macroeconomic data may well be

supported by data inspection, linear cointegrating regressions with constant coefficients is often

rejected in favor of models with time varying coefficients that allow the model to adapt to variations

in the relationship over time. These variations are in many cases slowly moving and may be

captured, as is done here, by kernel methods or by direct specifications in terms of simple basis

functions like time polynomials.

6 Conclusions

Nonlinear cointegrated systems are of particular empirical interest in cases where the data are

nonstationary and move together over time yet linear cointegration fails. Time varying coefficient

models provide a general mechanism for addressing and capturing such nonlinearities, allowing for

smooth structural changes to occur over the sample period. The present paper has explored a gen-

eral approach to fitting these nonlinear systems using kernel-based structural coefficient estimation
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which allow the coefficients to evolve smoothly over time.

Our analysis reveals a novel feature of kernel asymptotics that has not been encountered in the

previous literature. When the functional coefficient is multivariate, the usual asymptotic methods

and limit theory of kernel estimation break down due to a degeneracy in the kernel-weighted signal

matrix associated with the nonstationary regressors. This degeneracy does not affect inference but,

as we have shown here, it has a major effect on the limit theory. The asymptotics rely on path-

dependent local coordinate transformations to re-orient coordinates and accommodate the kernel

degeneracy, changing the limit theory in a fundamental way from the existing kernel literature.

The degeneracy leads to two different limit distributions with different convergence rates in two

complementary directions of the function space. Unexpectedly, and in contradistinction to the

case of linear model degeneracy with cointegrated regressors (Park and Phillips, 1988; 1989), both

convergence rates are faster than the usual convergence rate for stationary systems – here nonlinear

models with smoothly changing coefficients in the conventional setting of local stationarity. The

higher rate of convergence (n
√
h) lies in the direction of the nonstationary regressor vector at the

local coordinate point of the function and the lower rate (nh) lies in the degenerate direction but

this rate is still clearly super-consistent for nonparametric estimators.

Kernel estimation of time varying coefficient cointegration models therefore involves two types of

super-consistency and this limit theory differs significantly from other kernel asymptotics for nonlin-

ear systems as well as the limit theory for linear systems with cointegrated regressors. For practical

implementation purposes, a local linear estimation approach is developed to reduce asymptotic bias

and relax bandwidth restrictions, and a fully modified kernel regression estimator is developed to

deal with models where there are endogenous nonstationary regressors.

The present paper touches on several topics that deserve further study. Included among these

are model specification tests, bandwidth selection methods for kernel smoothing, and the uniform

convergence properties of nonparametric kernel estimates in nonstationary time varying coefficient

models. The main asymptotic results in the paper, such as Theorems 3.1 and 3.2, are given

for a single fixed time point and extension to the case of finitely many distinct time points is

straightforward. However, for a rigorous asymptotic theory of the model specification test and

bootstrap procedure discussed in Appendix C of the online supplement, extra work is needed in

justification, including the development of uniform convergence results for kernel-based random

elements over diverging time points. This work is beyond the scope of the present paper and is

left for future research. Some uniform consistency results with sharp convergence rates for kernel

estimation in nonstationary time varying coefficient models have been obtained in other work by

the authors (Li et al, 2016). Another area of potential importance for empirical research is the

case where both deterministic and stochastic trends arise among the regressors. This type of model

raises further complications of degeneracy that may be handled by the methods developed here.
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Appendix A: Proofs of the main results

To derive the limit theory for f̂n(δ0) in (2.1) we start with asymptotics for the denominator involved

in f̂n(δ0). An early discussion on weak convergence for a sequence of random matrices can be found

in Phillips and Durlauf (1986) and in the overview paper by Phillips (1988). A recent treatment of

weak convergence to stochastic integrals with drift is given in Liang et al (2016). In what follows

let Gth = hKth(δ0), and C be a positive constant whose value may change from line to line.

Proposition A.1. Suppose that Assumptions 1 and 3 are satisfied. Then, we have, for fixed

0 < δ0 < 1,

D+
nQ

′
n

( n∑

t=1

xtx
′
tGth

)
QnD

+
n ⇒ ∆δ0 , (A.1)

where ∆δ0 is defined in (3.4) of Section 3.

Proof. Observe that

D+
nQ

′
n

( n∑

t=1

xtx
′
tGth

)
QnD

+
n

=




1
nh

n∑
t=1

q′n
(

xt√
n

)(
xt√
n

)′
qnGth

1
nh3/2

n∑
t=1

q′n
(

xt√
n

)(
xt√
n

)′
q⊥nGth

1
nh3/2

n∑
t=1

(q⊥n )
′( xt√

n

)(
xt√
n

)′
qnGth

1
(nh)2

n∑
t=1

(q⊥n )
′(xtx′t)q

⊥
nGth




≡




∆n(1) ∆n(2)

∆n(2)
′ ∆n(3)


 . (A.2)

Let

∆∗
n(1) = q′n

(xδn√
n

)(xδn√
n

)′
qn

( 1

nh

n∑

t=1

Gth

)
,

where δn = ⌊(δ0 − h)n⌋ is defined as in Section 2. Following the proof of (2.18), it is easy to show

that

∆n(1) = ∆∗
n(1) + oP (1). (A.3)

By the definitions of qn and bn, we have

∆∗
n(1) = q′n

(xδn√
n

)(xδn√
n

)′
qn + oP (1) = b′nbn + oP (1). (A.4)

Furthermore, letting bnv = 1√
n

∑δn
t=1 vt with vt defined in Section 2 and using (A.3), (A.4) and the

BN decomposition (Phillips and Solo, 1992), we may show that

∆n(1) = b′nvbnv + oP (1) ≡ ∆⋄
n(1) + oP (1). (A.5)
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From the BN decomposition, we also have for t ≥ δn

xt =
t∑

s=1

vs + ṽ0 − ṽt + x0

=
( δn∑

s=1

vs + ṽ0 − ṽδn + x0

)
+
( t∑

s=δn+1

vs

)
+ (ṽδn − ṽt)

≡ xδn + ηt + ξt, (A.6)

where ηδn = 0. Note that (q⊥n )
′xδn = 0 with probability 1. Hence, we have

∆n(2) = ∆∗
n(2) + oP (1), (A.7)

where

∆∗
n(2) =

1

nh3/2

n∑

t=1

q′n
( xt√

n

)(ηt + ξt√
n

)′
q⊥nGth.

By using (A.6) again, we have

∆∗
n(2) =

1

nh3/2
q′n
(xδn√

n

) n∑

t=1

(ηt + ξt√
n

)′
q⊥nGth +

1

nh3/2

n∑

t=1

q′n
(ηt + ξt√

n

)(ηt + ξt√
n

)′
q⊥nGth

≡ ∆∗
n(2, 1) + ∆∗

n(2, 2). (A.8)

Note that

∆∗
n(2, 2) =

1

nh3/2

n∑

t=1

q′n
( ηt√

n

)( ηt√
n

)′
q⊥nGth +

1

nh3/2

n∑

t=1

q′n
( ηt√

n

)( ξt√
n

)′
q⊥nGth +

1

nh3/2

n∑

t=1

q′n
( ξt√

n

)( ηt√
n

)′
q⊥nGth +

1

nh3/2

n∑

t=1

q′n
( ξt√

n

)( ξt√
n

)′
q⊥nGth

≡ ∆∗
n(2, 2, 1) + ∆∗

n(2, 2, 2) + ∆∗
n(2, 2, 3) + ∆∗

n(2, 2, 4). (A.9)

We next show that

∆∗
n(2, 2, k) = oP (1) for k = 1, · · · , 4. (A.10)

To save space, we prove only that ∆∗
n(2, 2, 1) = oP (1) and ∆∗

n(2, 2, 4) = oP (1) as the other two

cases follow similarly. Using the weak convergence results such as (2.3) in Section 2, we can prove

∆∗
n(2, 2, 1) =

1

nh3/2

n∑

t=1

q′n
( ηt√

n

)( ηt√
n

)′
q⊥nGth

=
2
√
h

nh

n∑

t=1

q′n
( ηt√

2nh

)( ηt√
2nh

)′
q⊥nGth

= OP

(√h

nh

n∑

t=1

Gth

)
= OP (

√
h) = oP (1), (A.11)
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as h → 0, and

∆∗
n(2, 2, 4) =

1

nh3/2

n∑

t=1

q′n
( ξt√

n

)( ξt√
n

)′
q⊥nGth

= OP

( 1

n2h3/2

n∑

t=1

Gth

)
= OP

( 1

nh1/2
)
= oP (1), (A.12)

as nh → ∞. Then, the proof of (A.10) has been completed for k = 1 and 4. On the other hand, it

is easy to show that

∥∥∥ 1

nh3/2
q′n
(xδn√

n

) n∑

t=1

( ξt√
n

)′
q⊥nGth

∥∥∥

≤ 1

(nh)1/2
·
∥∥∥q′n
(xδn√

n

)∥∥∥ ·
( 1

nh

n∑

t=1

∥∥ξ′tq⊥n
∥∥Gth

)

= OP

(
(nh)−1/2

)
= oP (1),

which indicates that

∆∗
n(2, 1) =

1

nh3/2
q′n
(xδn√

n

) n∑

t=1

( ηt√
n

)′
q⊥nGth + oP (1)

=
√
2
[
b′nvbnv

]1/2 [ 1

nh

n∑

t=1

( ηt√
2nh

)′
Gth

]
q⊥nv + oP (1)

≡ ∆⋄
n(2) + oP (1), (A.13)

where qnv and q⊥nv are defined as qn and q⊥n in Section 3 but with bn replaced by bnv. By (A.7)–(A.10)

and (A.13), we have

∆n(2) = ∆⋄
n(2) + oP (1). (A.14)

Finally, consider ∆n(3). Noting that (q⊥n )
′xδn = 0 with probability 1, we can argue that ∆∗

n(3)

is asymptotically equivalent to ∆n(3), where

∆∗
n(3) =

1

(nh)2

n∑

t=1

(q⊥n )
′(ηt + ξt

)(
ηt + ξt

)′
q⊥nGth.

Furthermore, following the proof of ∆∗
n(2) as above, we can show that

∆∗
n(3) =

1

(nh)2

n∑

t=1

(q⊥n )
′ηtη

′
tq

⊥
nGth + oP (1) = (q⊥nv)

′
[ 2

nh

n∑

t=1

( ηt√
2nh

)( ηt√
2nh

)′
Gth

]
q⊥nv + oP (1),

which leads to

∆n(3) = (q⊥nv)
′
[ 2

nh

n∑

t=1

( ηt√
2nh

)( ηt√
2nh

)′
Gth

]
q⊥nv + oP (1) ≡ ∆⋄

n(3) + oP (1). (A.15)
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By (A.5), (A.14) and (A.15), we have

D+
nQ

′
n

( n∑

t=1

xtx
′
tGth

)
QnD

+
n =




∆n(1) ∆n(2)

∆n(2)
′ ∆n(3)


 =




∆⋄
n(1) ∆⋄

n(2)

∆⋄
n(2)

′ ∆⋄
n(3)


+ oP (1). (A.16)

Furthermore, by Assumption 1, there exist two independent Brownian motions, Bd,r(Ωv) and

Bd,r,∗(Ωv), such that

( 1√
n

δn∑

s=1

vs,
1√

2⌊nh⌋

δn(r)∑

s=δn+1

vs

)
⇒
[
Bd,δ0(Ωv), Bd,r,∗(Ωv)

]
(A.17)

for δn(r) = δn + ⌊2rnh⌋+ 1 with 0 < r ≤ 1. By using (A.16), (A.17) and the continuous mapping

theorem (Billingsley, 1968), we can complete the proof of (A.1). �

Next consider the derivation of the limit behavior of

Γn ≡ Γnδ0 = D+
nQ

′
n

( n∑

t=1

xtutGth

)
.

We derive asymptotic distribution for Γn through the following Propositions A.2 and A.3.

Proposition A.2. Suppose that Assumptions 1 and 3 are satisfied. Then,

Γn =




(2b′nbn)
1/2 · 1√

2nh

n∑
t=1

utGth

(2q⊥n )
′ · 1

2nh

n∑
t=1

(xt − xδn)utGth


+ oP (1)

≡




(2b′nbn)
1/2 · Γ⋄

n(1)

(2q⊥n )
′ · Γ⋄

n(2)


+ oP (1), (A.18)

where Γ⋄
n(1) and Γ⋄

n(2) are asymptotically independent of bn.

Proof. Observe that Γn = [Γn(1),Γn(2)
′]′, where

Γn(1) = q′n · 1

nh1/2

n∑

t=1

xtutGth,

Γn(2) = (q⊥n )
′ · 1

nh

n∑

t=1

xtutGth.

For Γn(1), note that

Γn(1) =
√
2q′n · xδn√

n
· 1√

2nh

n∑

t=1

utGth + q′n · 1

nh1/2

n∑

t=1

(
xt − xδn

)
utGth

= (2b′nbn)
1/2 · Γ⋄

n(1) + oP (1), (A.19)
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as

∣∣∣q′n · 1

nh1/2

n∑

t=1

(
xt − xδn

)
utGth

∣∣∣ ≤ 1

nh1/2
· ∥qn∥ ·

∥∥∥
n∑

t=1

(
xt − xδn

)
utGth

∥∥∥

=
1

nh1/2
·OP (1) ·OP (nh) = OP (

√
h) = oP (1) (A.20)

using Assumptions 1 and 3.

We next show that Γ⋄
n(1) is asymptotically independent of bn. Define

utN =

ρ(n)∑

j=0

Φ′
j,2εt−j , utH =

∞∑

j=ρ(n)+1

Φ′
j,2εt−j ,

where ρ(n) = (nh)
1

3
+ϵ∗ , 0 < ϵ∗ <

γ0

3(6+2γ0)
. Note that

(2b′nbn)
1/2 · Γ⋄

n(1) = (2b′nbn)
1/2 · 1√

nh

n∑

t=1

utNGth + (2b′nbn)
1/2 · 1√

nh

n∑

t=1

utHGth

≡ (2b′nbn)
1/2 · Γ⋄

n(1, 1) + (2b′nbn)
1/2 · Γ⋄

n(1, 2). (A.21)

As {εt} is a sequence of iid random vectors, we have, for any t,

E
[
u2tH
]
≤

∞∑

j=ρ(n)+1

∥Φj,2∥2 = oP (ρ
−3(n))

by Assumption 1. Hence, we have

∥∥∥
n∑

t=1

utHGth

∥∥∥ = oP
(
nh · ρ−3/2(n)

)
= oP

(√
nh
)
, (A.22)

which indicates that Γ⋄
n(1, 2) is asymptotically dominated by Γ⋄

n(1, 1). On the other hand, let

ςn = ρ(n)/n, δ̃n = ⌊(δ0 − h − ςn)n⌋ and b̃n = 1√
n
x
δ̃n
. We may show that bn = b̃n + oP (1). It

is obvious that Γ⋄
n(1, 1) is independent of b̃n. Thus, we have proved that Γ⋄

n(1) is asymptotically

independent of bn.

For Γn(2), by the definition of q⊥n and following the argument in the proof of Proposition A.1,

we can show that

Γn(2) = (2q⊥n )
′ · 1

2nh

n∑

t=1

(xt − xδn)utGth + oP (1) ≡ (2q⊥n )
′Γ⋄

n(2) + oP (1). (A.23)

Applying the truncation technique used in the above argument, we can similarly prove that Γ⋄
n(2)

is asymptotically independent of bn.

The proof of Proposition A.2 has been completed. �

Proposition A.3. Suppose that Assumptions 1 and 3 hold. Then

Γ⋄
n ≡




Γ⋄
n(1)

Γ⋄
n(2)


⇒




∫ 1
−1K(r)dB∗

(r+1)/2(Ωu)

∫ 1
−1K(r)Bd, r+1

2
,∗(Ωv)dB r+1

2
,∗(Ωu) +

1
2∆vu


 . (A.24)
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Proof. Observe that

Γ⋄
n(1) =

n∑

t=1

ut√
2nh

K

(
t− nδ0
nh

)
=

⌊δ0n⌋+⌊nh⌋∑

t=⌊δ0n⌋−⌊nh⌋+1

ut√
2nh

K

(
t− δ0n

nh

)

and

Γ⋄
n(2) =

n∑

t=1

xt − xδn√
2nh

ut√
2nh

K

(
t− nδ0
nh

)
=

⌊δ0n⌋+⌊nh⌋∑

t=⌊δ0n⌋−⌊nh⌋+1

xt − xδn√
2nh

ut√
2nh

K

(
t− δ0n

nh

)
.

Then, using the weak convergence result of

1√
2nh

( δn(p)∑

t=δn+1

v′t,
δn(p)∑

t=δn+1

ut

)
⇒
(
Bd,p,∗(Ωv)

′, Bp,∗(Ωu)
)
, 0 ≤ p ≤ 1

with δn(p) = δn + ⌊2nhp⌋ + 1, Lemma B.1 in Appendix B and the continuous mapping theorem,

we may complete the proof of (A.24). �

With Propositions A.1–A.3 in hand, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Observe that

f̂n(δ0)− f(δ0) =
[ n∑

t=1

xtx
′
tGth(δ0)

]+{ n∑

t=1

xtx
′
t

[
f
(
t/n
)
− f(δ0)

]
Gth(δ0)

}
+

[ n∑

t=1

xtx
′
tGth(δ0)

]+[ n∑

t=1

xtutGth(δ0)
]
. (A.25)

By Taylor expansion of f(·), and Assumption 2, we can show that

f
(
t/n
)
− f(δ0) = O(hγ1) (A.26)

when
∣∣ t
n − δ0

∣∣ ≤ h. By (A.26) and following the proof of Proposition A.1, we can easily prove that

[ n∑

t=1

xtx
′
tGth(δ0)

]+{ n∑

t=1

xtx
′
t

[
f
( t
n

)
− f(δ0)

]
Gth(δ0)

}
= OP (h

γ1). (A.27)

Then, using Propositions A.1–A.3, (A.27) in conjunction with the condition n2h1+2γ1 = o(1), we

can prove (3.5) in Theorem 3.1. �

Proof of Theorem 3.2. Let Dn∗ = I2 ⊗Dn, Qn∗ = I2 ⊗Qn,

∆n∗ ≡ ∆nδ0∗ = D+
n∗Q

′
n∗




n∑
t=1

xtx
′
tGth

n∑
t=1

xtx
′
tGth∗

n∑
t=1

xtx
′
tGth∗

n∑
t=1

xtx
′
tGth∗∗


Qn∗D

+
n∗
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and

Γn∗ ≡ Γnδ0∗ = D+
n∗Q

′
n∗




n∑
t=1

xtutGth

n∑
t=1

xtutGth∗


 ,

where

Gth∗ =
( t− δ0n

nh

)
K
( t− δ0n

nh

)
, Gth∗∗ =

( t− δ0n

nh

)2
K
( t− δ0n

nh

)
.

Following the proofs of Propositions A.1–A.3, we can establish that

(
∆n∗,Γn∗

)
⇒
(
∆δ0∗,Γδ0∗

)
, (A.28)

where both ∆δ0∗ and Γδ0∗ are defined in Section 3. By some elementary calculations for the local

linear fitting, we obtain

DnQ
′
n

[
f̃n(δ0)− f(δ0)

]
= edDn∗Q

′
n∗




f̃n(δ0)− f(δ0)

hf̃ ′
n(δ0)− hf(δ0)




= ed∆
+
n∗Γn∗ +OP (h

2DnQn). (A.29)

Equations (A.28) and (A.29) lead to (3.11) in Theorem 3.2. Meanwhile, (3.11) and the bandwidth

condition n2h5 = o(1) together imply that (3.12) holds. The proof of Theorem 3.2 is then complete.

�

Proof of Proposition 4.1. Note that

ŷ#t = yt − Ω̂uvΩ̂
−1
vv ∆xt = yt − ΩuvΩ

−1
vv vt +

(
ΩuvΩ

−1
vv − Ω̂uvΩ̂

−1
vv

)
vt

and let

y#t = yt − ΩuvΩ
−1
vv vt = f ′

txt + ut − ΩuvΩ
−1
vv vt ≡ f ′

txt + u#t .

Following the proof of Theorem 3.1 and using the fact that
(
∆̂uu, ∆̂vu, ∆̂vv, Ω̂uv, Ω̂vv

)
= (∆uu,∆vu,∆vv,Ωuv,Ωvv) + oP (1),

we may show that

DnQ
′
n

[ n∑

t=1

xtx
′
tKth(δ0)

]+ n∑

t=1

xt

(
ΩuvΩ

−1
vv − Ω̂uvΩ̂

−1
vv

)
vtKth(δ0) = oP (1).

Now we have

DnQ
′
n

[
f̂n,bc(δ0)− f(δ0)

]
= DnQ

′
n

{[ n∑

t=1

xtx
′
tKth(δ0)

]+ n∑

t=1

xtŷ
#
t Kth(δ0)− f(δ0)

}
−

DnQ
′
n

[ n∑

t=1

xtx
′
tKth(δ0)

]+
QnDnΓ̂n,bc

= DnQ
′
n

{[ n∑

t=1

xtx
′
tKth(δ0)

]+ n∑

t=1

xty
#
t Kth(δ0)− f(δ0)

}
−

DnQ
′
n

[ n∑

t=1

xtx
′
tKth(δ0)

]+
QnDnΓ̂n,bc + oP (1)
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Note that n−1/2
∑⌊nr⌋

s=1 u#s ⇒ Br(Ωu.v) which is independent of the Brownian motion Bd,r(Ωv). By

virtue of the definition of Γ̂n,bc in (4.2) and proceeding as in Theorem 3.1, Proposition A.1, and

the FM regression arguments of Phillips and Hansen (1990), we can show that the two components

of the second-order bias of f̂n(δ0) in the direction q⊥n are eliminated, and the limit theory given in

(4.3) follows. �

Proof of Proposition 4.2. Let f̂nt = f̂
(
t/n
)
and recall that ft = f

(
t/n
)
. Observe that

ût = yt − x′tf̂nt = ut − x′t
(
f̂nt − ft

)
,

which implies that

∆̂vu(j) =
1

τ∗n − τn

τ∗n∑

t=τn+1

vt−j ût

=
1

τ∗n − τn

τ∗n∑

t=τn+1

vt−jut −
1

τ∗n − τn

τ∗n∑

t=τn+1

vt−jx
′
t

(
f̂nt − ft

)

≡ ∆vu(j)− ∆̃vu(j), (A.30)

for j = 1, · · · , ln, where τn = ⌊τ∗n⌋ and τ∗n = ⌊(1− τ∗)n⌋. Using (A.30), we have

∆̂vu =

ln∑

j=0

k
( j
ln

)
∆̂vu(j) =

ln∑

j=0

k
( j
ln

)
∆vu(j)−

ln∑

j=0

k
( j
ln

)
∆̃vu(j). (A.31)

We first prove the second term on the right hand side of (A.31) is asymptotically negligible. By

the definition of f̂nt in (2.1) and letting Gsh(t/n) = hKst(t/n), we have

f̂nt − ft =

[
n∑

s=1

xsx
′
sGsh(t/n)

]+ [ n∑

s=1

xsysGsh(t/n)

]
− ft

=

[
n∑

s=1

xsx
′
sGsh(t/n)

]+ [ n∑

s=1

xsusGsh(t/n)

]
+

[
n∑

s=1

xsx
′
sGsh(t/n)

]+ [ n∑

s=1

xsfsGsh(t/n)

]
− ft

≡ Θnt(u) + Θnt(f)

for t = τn + 1, · · · , τ∗n. Letting Qnt =
[
qnt, q

⊥
nt

]
with

qnt =
bnt

(b′ntbnt)
1/2

=
bnt
∥bnt∥

, bnt =
1√
n
x⌊t−nh⌋

and q⊥nt such that Q′
ntQnt = Id, by transforming coordinates, we have

n∑

s=1

xsx
′
sGsh(t/n) =

[
QntDn

][
D+

nQ
′
nt

n∑

s=1

xsx
′
sGsh(t/n)QntD

+
n

][
DnQ

′
nt

]

≡ Θ⋄
nt(1)Θ

⋄
nt(2)Θ

⋄
nt(1)

′.

30



Furthermore, by Lemma B.3 in Appendix B of the online supplement and the definitions of Qnt and

Dn, we may show that Θ⋄
nt(1) and Θ⋄

nt(2) are invertible with probability 1, and thus the generalized

inverse becomes the conventional inverse. Then we have

Θnt(u) = QntD
+
n

[
D+

nQ
′
nt

n∑

s=1

xsx
′
sGsh(t/n)QntD

+
n

]+ [
D+

nQ
′
nt

n∑

s=1

xsusGsh(t/n)

]

≡ QntD
+
nΘ

+
nt,1Θnt,2(u). (A.32)

Note that xt = x⌊t−nh⌋ + xt − x⌊t−nh⌋ and x′⌊t−nh⌋q
⊥
nt = 0 with probability 1. Then, using

Lemmas B.2 and B.3 in Appendix B and by Taylor expansion of f(·), we can prove that

ln∑

j=0

k
( j
ln

)
∆̃vu(j) =

1

τ∗n − τn

ln∑

j=0

k
( j
ln

) τ∗n∑

t=τn+1

vt−jx
′
t

(
f̂nt − ft

)

=
1

τ∗n − τn

ln∑

j=0

k
( j
ln

) τ∗n∑

t=τn+1

vt−jx
′
t

[
Θnt(u) + Θnt(f)

]

= oP (1) +OP (
√
nhln) = oP (1) (A.33)

as ln = o
(

1√
nh

)
.

We finally consider
∑ln

j=0 k
( j
ln

)
∆vu(j). Since τ∗n − τn → ∞ when τ∗ ∈

(
0, 12
)
, it follows as in

Park and Phillips (1988, 1989) that

ln∑

j=0

k
( j
ln

)
∆vu(j) =

ln∑

j=0

k
( j
ln

)( 1

τ∗n − τn

τ∗n∑

t=τn+1

vt−jut

)
= ∆vu + oP (1). (A.34)

Using (A.33) and (A.34), we can complete the proof of Proposition 4.2. �
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Fig. 5.1: Plots of g1n(δ) and g2n(δ) versus δ for the functional form M1
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Fig. 5.2: Plots of g1n(δ) and g2n(δ) versus δ for the functional form M2
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Fig. 5.3(a): Real consumption and real disposable income for 1960:1 – 2009:3
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Fig. 5.3(b): (A) The detrended series z1t; and (B) its differenced version for 1960:1 – 2009:3
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Fig. 5.3(c): The real interest rate for 1960:1 – 2009:3 and the differenced version
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Fig. 5.4(a): Real consumption, disposable income and investment for 1947:1 – 2009:4
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Fig. 5.4(b): The detrended series z2t and z3t for 1947:1 – 2009:4

Fig. 5.4(c): The differenced versions of z2t and z3t for 1947:1 – 2009:4
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