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Optical Writing of Magnetic Properties by Remanent Photostriction
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We present an optically induced remanent photostriction in BiFeOs, resulting from the photovoltaic
effect, which is used to modify the ferromagnetism of Ni film in a hybrid BiFeO;/Ni structure. The 75%
change in coercivity in the Ni film is achieved via optical and nonvolatile control. This photoferromagnetic
effect can be reversed by static or ac electric depolarization of BiFeO5. Hence, the strain dependent changes
in magnetic properties are written optically, and erased electrically. Light-mediated straintronics is
therefore a possible approach for low-power multistate control of magnetic elements relevant for memory

and spintronic applications.

DOI:

Multiferroic phenomena are often summarized in a Venn
diagram showing the intersection of ferromagnetic, ferro-
electric, and ferroelastic orders [1], each with its own
control field. Numerous electric methods of magnetization
control use elastic strain to leverage magnetoelectric (ME)
properties in solids [2-34] and in magnetostrictive-electro-
strictive or ferroelectric structures [5-8]. The expected
technological benefit is the possibility of low-power
[9-11] operation down to the nanoscale [12—15]. Indeed,
strain-mediated electric control of magnetic performance of
tunnel junctions has been reported [16]. Furthermore, by
using the ferroelastic effect of remanent strain, multiple
nonvolatile states can be written on piezoelectric substrates
[17,18]. Here we present the optical analog of this memory
imprint approach, based on photostriction in BiFeO3 (BFO)
[19], a well-studied benchmark multiferroic material [20]
exhibiting cross-linked ferroic orders. Light brings a new
layer of functionality to multiferroics [21-24]. In particular,
photoferroelectric [25] effects associated with above-band
gap photovoltaic (PV) properties, [26-28] can mediate
light-induced changes of the ferroelastic order. While it is
increasingly well established that BFO exhibits strain under
illumination [29-31], the possibility of remanent strain
states suggests a new approach [32]. The optical control of
strain is particularly important for BFO, which possesses
both high photostrictive efficiency [32] and large optoe-
lastic coupling [33]. Furthermore, the magnetoelastic cou-
pling in BFO has been shown to dominate its ME properties
[34] that can provide a bridge for ME coupling between
magnetic and electric orders [35]. These effects, together
with the strain-tunable magnonic response in BFO thin

films [36] provide an attractive strain-engineering prospec-
tive [37]. Photostriction control can also be extended to
miniaturized structures using light-polarization-dependent
functionality in ferroelectric domain walls in BaTiO5 [38]
offering an optical degree of control in spin-based devices
[39,40]. Here we will first show that light can impact the
internal electric field of BFO through the PV effect to
produce optically induced ferroelastic remanent states, and
then demonstrate the use of this ferroelastic deformation to
stress a superposed ferromagnetic film, thereby achieving
strain-mediated optical control of the magnetic anisotropy.

Illuminating a material which is ferroelectric (FE) and
PV results in above-band gap voltage generation that
changes the internal electric field in the sample [41].
The former process can be compared to the action of
”subcoercive” electric fields insufficient to saturate the
polarization, resulting in minor (nonswitching) FE loops
[42]. Figure 1(a) illustrates how light excitation can be an
alternative to the electric field, and generate a minor
remanent polarization state via the PV effect [Fig. 1(b)].
A continuous wave (cw) 404 nm laser with a 3 ns rise time
was used as the illumination source through an optical fiber.
The sample was illuminated through a thin (20 nm) Au
film, used as contact transparent electrode for depolarizing
the substrate. Under constant illumination, a steady-state
photocurrent results in an increase of polarization saturat-
ing after ~70 sec (not shown). The light induced change in
electric polarization partly persists in ~5.5% after the light
is switched off [Fig. 1(a)]. One can conclude from Fig. 1(a)
that different remanent polarization levels can result from
different illumination times. The electric polarization of the
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(a) The remanent polarization state (a) created by 30 sec UV light. (b) Corresponding photocurrent. (¢) Remanent

photostriction detected by measuring the resistance of the Ni film (d) and by static x-ray diffraction of BFO (e).

BFO is the primary order parameter and it results in a
change in strain (which is the secondary order parameter)
that is linearly related to the polarization in the subcoercive
region through the piezoelectric response of the oxide [43].
Figure 1(c) shows the remanent photostriction detected
using a resistive measurement of a Ni thin film adlayer in
the setup illustrated in Fig. 1(d). The overall remanent
strain of the sample in Fig. 1(d) is tensile in the (010) plane
and results in an in-plane expansion of the Ni film. In order
to verify the remanent deformation of the BFO substrate,
we carried out static x-ray diffraction experiments
[Fig. 1(e)] at the XPP/KMC3 beam line in the synchrotron
facility BESSY II (Berlin, Germany) [44]. A similar BFO
crystal with the same orientation (but without adlayer) was
used to determine the lattice spacing along the [010]
direction in the as-grown [45] state and after 3 sec of light
illumination. In this case, a femtosecond pulsed laser was
used yielding a similar integral number of photons to that
used for the switching in Figs. 1(a)-1(c) with the cw laser.

The pulsed laser consists of a multistage oscillator and
amplifier system (Impulse, Clark-MXR) and delivers 250 fs
long pulses of 10 uJ pulse energy at a central wavelength of
1030 nm and a repetition rate of 208.3 kHz. They are then
passed through a third harmonic setup at the beam line to
generate the laser pump pulses of 350 nm with a final
average power of 80 mW incident on the sample in a spot
size of 277 x 176 ym?> (FWHM) under an incidence angle

of 20° between laser beam and sample surface. The x-ray
photon energy was set to 9 keV with a relative bandwidth of
AE/E = 1073, The x-ray spot size on the sample was
approximately 100 ym? and the experiment was conducted
on a 4-axis goniometer in 0/26 geometry, with the
diffracted photons detected by a DECTRIS Pilatus 100k
hybrid-pixel 2D detector.

After illumination, the x-ray scan reveals a remanent
shift of Ag =3.07 x 107* A~', which corresponds to a
relative lattice contraction of 1 x 10~* along [010] direc-
tion. It is accompanied by a peak broadening in the out- and
in-plane directions, which may be attributed to increase of
intrinsic nanoscale inhomogeneities, possibly related to
ferroelastic domains. No significant sample heating is
expected during the x-ray scan as this would yield lattice
expansion, contrary to our findings. The observed con-
traction along the [010] direction leads to an overall lattice
expansion in the (010) plane due to Poisson’s ratio and
agrees well with Fig. 1(c) showing tensile remanent photo-
striction. The light is therefore able to induce anisotropic
deformation in BFO that can be used to stress the
magnetostrictive overlayer, as in piezoelectric-magneto-
stictive structures. This possibility is demonstrated by
the experiment in Fig. 2(a), where the 11 nm thick Ni
film was deposited on the flat side of the BFO crystal in an
e-beam evaporator at a rate of 0.1 nm/s for M(H) loop
measurements [Fig. 2(a)]. The remanent photostriction
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(a) Schematics of the experiment. (b) Room-temperature ferromagnetic loops of an 11 nm thick Ni film on top of a BFO single

crystal before (1) and after (2) excitation by 404 nm light (fluence 250 Jcm~2). The initial M (H) loop (1) can be recovered (3) by an
electric pulse (c) that corresponds to the ferroelastic coercive force E. as represented by an example sketch (d) [46].

largely modifies the magnetic properties of the Ni thin film
[Fig. 2(b)], as revealed by the longitudinal magneto-optic
Kerr effect (MOKE) magnetometry. The shape of the initial
M (H) loop is modified after light exposure, with a change
in coercivity of 75%, which remains stable over a long
period. For this particular sample, we waited 5 days before
electrical recovery tests, but other samples showed that the
effect persisted for more than a month. The scenario
explaining how light can impact magnetic properties is
clearly seen from Fig. 1(a). When the light is turned on, the
concentration of free carriers (electrons and holes) starts to
increase due to the above-band gap PV effect, and the
photocurrent across the BFO crystal stabilizes. This creates
an electric field in the bulk of the crystal that tends to
influence the net polarization [Fig. 1(a)]. Since the magni-
tude of this light-induced electric field is small compared to
the ferroelectric coercive field, there is no polarization
reversal but only slight displacements of the ferroelastic
domains in BFO which contribute to its net deformation.
After the light is turned off, the generation of free carriers
ceases and the ferroelastic domains gradually relax to a new
equilibrium configuration that determines the remanent
photostriction. This optically induced strain is imprinted in
the magnetostrictive Ni adlayer.

Successful electrical erasing, namely, recovery of the
initial ferroelastic configuration of BFO, can be achieved in

two ways. If the coercive ferroelastic force is known, it can
be done by applying the voltage corresponding to the
ferroelastic coercive force [Fig. 2(d)]. The electric field
amplitude of 5V/32 um was enough to recover a close to
initial “virgin” M(H) loop in the sample (Fig. 2).
Alternatively, an oscillating damped voltage procedure
analogous to ac demagnetization can be used, as in the
case of electrically written states [17,18]. When the initial
spontaneous ferroelastic state is not characterized, the ac
electrical erasure may be more convenient.

The possibility of direct ME coupling at the interface
[47] can be discarded because the optical writing [Fig. 2(a)]
was also demonstrated for samples where a 5 nm Au film is
inserted between the BFO substrate and the Ni film to
screen any electric charges at the interface. The Au film
also excludes the possibility of direct magnetic coupling
between the BFO and the Ni.

All MOKE loop measurements were performed at room
temperature after excitation and are therefore free of Joule
heating artifacts. The data shown in Fig. 1(a) obtained
during excitation suggest a negligible heating effect of the
laser light, because the polarization of BFO should
decrease when warming to its ferroelectric Curie temper-
ature of ~1143 K [48]. A temperature increase of 12.3 K,
detected with a thermal camera during the 30 s illumination
had no influence on the M(H) loops of the Ni film. Even
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after heating to 325 K (13 K more than detected by the
thermal camera), the M (H) loops remained unchanged. We
can therefore safely infer that the optical modification of
the magnetic properties has a photovoltaic-photostrictive
origin, as confirmed by the electrical erasure test we
performed. Our data indicate that the magnetostriction of
the Ni adlayer explains the modification of its magnetic
properties, originating from the remanent strain state
imprinted by light on the BFO substrate.

In conclusion, we have demonstrated that ferroelastic
deformation states can be written optically in BFO, and that
it is possible to erase them electrically. The remanent
photostriction naturally depends on the remanent ferro-
electric state of the sample. The possibility to recover the
initial state of the functional materials is of key importance,
as we observed that the ferroic electric or elastic orders
results in remanent states values that depend on the
sample’s history (spontaneous polarization). This observa-
tion requires a special care when performing repetitive
experiments (e.g., pump and probe procedures) with
unsaturated FE samples in order to guarantee proper reset
of the initial polarization. The observed photopolarization
induces a deformation that can be coupled to a ferromag-
netic adlayer, resulting in optically controlled magnetic
anisotropy. This optically induced effect manifests itself in
a75% change in the ferromagnetic coercivity, exceeding by
55% the well-known electric control in the BaTiO;/Fe
structures [49] with the nonvolatile and wireless advantage,
thus opening the technologically interesting possibility of
multistate magnetic operation [Fig. 1(a)]. The ultrafast
photostriction in BFO films [50-52] and ceramics [53]
combined with the possibility of ultrafast gating [54],
provides a perspective for light-controlled magnetic switch-
ing devices and magnetoresistive memories on sub-ns time
scales. Furthermore, the fact that photostriction can exist in
a number of different materials [32,55] expands the horizon
of photo-magneto-elastic interactions beyond inorganic
compounds [56].
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