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Abstract. In this paper we study the propagation of nonlinear ion-acoustic waves in

plasmas with negative ions. The Gardner equation governing these waves in plasmas

with the negative ion concentration close to critical is derived. The weakly nonlinear

theory of modulational instability based on the use of the nonlinear Schrödinger

equation is discussed. The investigation of the nonlinear dynamics of modulation-

ally unstable quasi-harmonic wavepackets is carried out by the numerical solution

of the Gardner equation. The results are compared with the predictions of the

weakly nonlinear theory.

1. Introduction

Nonlinear ion-acoustic waves in plasmas have been studied for more than four

decades. Washimi and Taniuti (1966), Su and Gardner (1969), Tappert (1972) and

Tappert (1973) derived the Korteweg–de Vries (KdV) equation for ion-acoustic

waves propagating in a plasma that consists of electrons and one type of positive

ions. The KdV solitons in electron–ion plasmas were experimentally studied by

Ikezi (1973),Watanabe (1975), Tran (1979), Nakamura (1982) and Lonngren (1983).

Das and Tagare (1975), Das (1977, 1979), Tagare (1986), Kalita and Devi (1993),

Kalita and Barman (1995) and Kalita and Das (2002) generalized the derivation of

the KdV equation for multicomponent plasmas, where there are both positive and

negative ions. In particular, it was shown that the solitons in a plasma with negative

ions can be either compressional or rarefactional depending on the negative ion

concentration. In plasmas without negative ions solitons are always compressional.

The theoretical results were experimentally confirmed byWatanabe (1978), Ludwig

et al. (1984) and Nakamura et al. (1985).

When the concentration of negative ions is equal to a critical value, the coefficient

at the nonlinear terms in the KdV equation is equal to zero, so that the cubic

nonlinearity has to be taken into account. As a result, the nonlinear ion-acoustic

waves are described by the modified Korteweg–de Vries (mKdV) equation. The

mKdV equation for ion-acoustic waves in a plasma with the critical concentration
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of negative ions was derived by Watanabe (1984), Nakamura and Tsukabayashi

(1985), Tagare (1986), Verheest (1988), Kalita and Kalita (1990) and Kalita and

Das (2002). The mKdV solitons in such a plasma were experimentally observed

by Nakamura et al. (1985). Weakly two-dimensional nonlinear ion-acoustic waves

in a plasma with the critical concentration of negative ions are described by the

modified Kadomtsev–Petviashvili equations. Recently Tsuji and Oikawa (2004)

used this equation to study the oblique interaction of solitary waves.

If the concentration of negative ions is not exactly equal to the critical value,

but close to it, then both the quadratic and cubic nonlinearity should be taken into

account. Watanabe (1984) has shown that, in this case, the nonlinear ion-acoustic

waves are described by the Gardner equation.

In all studies on nonlinear ion-acoustic wave propagation most of the attention

was paid to solitons, in particular, to the dependences of their parameters (the

amplitude, width and propagation speed) on plasma parameters (e.g. negative ion

concentration). Another interesting aspect of the nonlinear theory of ion-acoustic

waves is the nonlinear development of modulationally unstable wavepackets. Re-

cently Grimshaw et al. (2005) carried out a general study of this problem for the

mKdV equation. The aim of this paper is to extend this study to the Gardner

equation with a particular emphasis on its application to the ion-acoustic waves.

The paper is organized as follows. In the next section we give a brief derivation

of the Gardner equation for ion-acoustic waves in plasmas with negative ions un-

der slightly more general assumptions than those adopted by Watanabe (1984).

In Sec. 3 we discuss the analytical results on modulational instability obtained

on the basis of the nonlinear Schrödinger equation, and then present the results

of numerical modelling of modulational instability of the initial quasi-harmonic

wavepackets with small and moderate amplitudes. Section 4 contains a summary

of the results and our conclusions.

2. Derivation of Gardner equation

In this section we give a brief derivation of the Gardner equation for ion-acoustic

waves in a plasma with negative ions. Similar to Watanabe (1984) we assume that

the ions are cold, the electrons are isothermal and neglect the electron inertia.

However, in contrast to Watanabe (1984), who assumed that both positive and

negative ions bear only one elementary charge, we allow arbitrary ion charges.

Then the system of equations governing the one-dimensional plasma motion can

be written as

∂nα

∂t
+

∂(nαuα )

∂x
= 0, (2.1a)

∂uα

∂t
+ uα

∂uα

∂x
= −χαqα

mα

∂φ

∂x
, (2.1b)

ε0
∂2φ

∂x2
= ene − q+n+ + q−n−, (2.1c)

ne = n0e
eφ/κΘ . (2.1d)

Here nα , uα , mα and qα are the number density, the velocity, the mass and the

charge of the positive ions when α = + and the negative ions when α = −; ne
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and n0 are the electron number density and the unperturbed electron number

density respectively; Θ is the electron temperature (assumed constant), φ is the
electric potential, e is the elementary charge, κ is the Boltzmann constant, ε0 is the

permittivity of empty space and χ± = ±1.
We assume that the unperturbed plasma is neutral. Introducing the notation

Zα = qα/e, we write this condition as

Z+n0+ = Z−n0− + n0 , (2.2)

where the subscript ‘0’ indicates an unperturbed quantity.

The standard derivation of the KdV equation (see, e.g., Das and Tagare 1975)

gives the coefficient at the nonlinear term proportional to the quantity

W =
1

3n0

(

n0+Z2
+

m+
+

n0−Z2
−

m−

)2

− n0+Z3
+

m2
+

+
n0−Z3

−
m2−

(2.3)

with the proportionality coefficient that is always different from zero. To derive

the mKdV equation Watanabe (1984) assumed that W = 0. It follows from (2.2)

and the condition W = 0 that

n0+ = n
(0)
0+ ≡ n0 [3η − 1 +

√

3(3η2 − 2η + 3)]

2(η + 1)Z+
, (2.4a)

n0− = n
(0)
0− ≡ n0 [η − 3 +

√

3(3η2 − 2η + 3)]

2(η + 1)Z−
, (2.4b)

where η = Z+m−/Z−m+ . It is easy to show that n0+Z+/n0 increases monotonically

from 1 to 3 and n0−Z−/n0 increases monotonically from 0 to 2 when η varies from
0 to ∞.
Since we want to derive the Gardner equation, where both the quadratic and

cubic nonlinear terms are present, we take

n0α = n
(0)
0α + ǫn

(1)
0α , n

(1)
0α = γn0/Zα , (2.5)

where ǫ � 1 is the dimensionless wave amplitude and γ is a free dimensionless

parameter of order unity. With such a choice of n0+ and n0−, (2.3) is still satisfied,
however W is not equal to zero any longer; instead W = O(ǫ).
To derive the Gardner equation we use the reductive perturbation method (e.g.

Engelbrecht et al. 1988; Kakutani et al. 1968; Taniuti andWei 1968). In accordance

with this method we introduce the same stretching variables as are used to derive

the mKdV equation (e.g. Watanabe 1984), ξ = ǫ(x − V t) and τ = ǫ3t. In the new
variables (2.1a)–(2.1c) are rewritten as

ǫ2 ∂nα

∂τ
− V

∂nα

∂ξ
+

∂(nαuα )

∂ξ
= 0, (2.6a)

ǫ2 ∂uα

∂t
− V

∂uα

∂ξ
+ uα

∂uα

∂ξ
= −eχαZα

mα

∂φ

∂ξ
, (2.6b)

ǫ2ε0
∂2φ

∂ξ2
= e(ne − Z+n+ + Z−n−). (2.6c)
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Now we are looking for the solution of the system of equations (2.1d) and (2.6) in

the form of expansions

n = n0 + ǫn(1) + ǫ2n(2) + ǫ3n(3) + · · · ,

nα = n
(0)
0α + ǫ

(

n
(1)
0α + n(1)

α

)

+ ǫ2n(2)
α + ǫ3n(3)

α + · · · ,

uα = ǫu(1)
α + ǫ2u(2)

α + ǫ3u(3)
α + · · · ,

φ = ǫφ(1) + ǫ2φ(2) + ǫ3φ(3) + · · · .

(2.7)

We also write V = V0+ǫV1 . We do not include terms of higher order in the expansion

for V because they can be incorporated in the dependence on τ . Substituting these
expansions in (2.1d) and (2.6) we obtain in the first-order approximation

V0
∂n

(1)
α

∂ξ
− n

(0)
0α

∂u
(1)
α

∂ξ
= 0, (2.8a)

V0
∂u

(1)
α

∂ξ
− eχαZα

mα

∂φ(1)

∂ξ
= 0, (2.8b)

n(1)
e − Z+n

(1)
+ + Z−n

(1)
− = 0, (2.8c)

n(1)
e − en0

κΘ
φ(1) = 0. (2.8d)

It is straightforward to show that the system of equations (2.8) has a non-trivial

solution if and only if V 2
0 is given by

V 2
0 =

κΘ

n0

(

n
(0)
0+Z2

+

m+
+

n
(0)
0− Z2

−
m−

)

=
κΘZ+

2m+η
[3η − 3 +

√

3(3η2 − 2η + 3)]. (2.9)

It is easy to show that V 2
0 (κΘZ+/m+ )−1 monotonically increases from 1 to 3 when

η varies from 0 to ∞.
In what follows we consider only waves propagating in the positive x-direction

and take V0 > 0. Using (2.8) we can express all of the quantities of the first-order
approximation in terms of φ1 :

u(1)
α =

eχαZα

mαV0
φ1 , n(1)

α =
eχαn

(0)
0α Zα

mαV 2
0

φ1 , n(1)
e =

en0

κΘ
φ1 . (2.10)

In the second-order approximation we obtain, with the aid of (2.5),

V0
∂n

(2)
α

∂ξ
− n

(0)
0α

∂u
(2)
α

∂ξ
=

∂

∂ξ

[

u(1)
α

(

n
(1)
0α + n(1)

α

)]

− V1
∂n

(1)
α

∂ξ
, (2.11a)

V0
∂u

(2)
α

∂ξ
− eχαZα

mα

∂φ(2)

∂ξ
= u(1)

α

∂u
(1)
α

∂ξ
− V1

∂u
(1)
α

∂ξ
, (2.11b)

n(2)
e − Z+n

(2)
+ + Z−n

(2)
− = 0, (2.11c)

n(2)
e − en0

κΘ
φ(2) =

e2n0

2κ2Θ2
φ(1)2

. (2.11d)
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Using (2.11a), (2.11b) and (2.11d) we express all quantities of the second-order

approximation in terms of φ(1) and φ(2) :

u(2)
α =

eχαZα

mαV0
φ(2) +

e2Z2
α

2m2
αV 3

0

φ(1)2 − eχαZαV1

mαV 2
0

φ(1) , (2.12a)

n(2)
α =

eχαn
(0)
0α Zα

mαV 2
0

φ(2) +
3e2n

(0)
0α Z2

α

2m2
αV 4

0

φ(1)2
+

eχαZα

(

V0n
(1)
0α − 2V1n

(0)
0α

)

mαV 3
0

φ(1) , (2.12b)

n(2)
e =

en0

κΘ
φ(2) +

e2n0

2κ2Θ2
φ(1)2

. (2.12c)

Substituting (2.12b) and (2.12c) in (2.11c) and using the fact that W (0) = 0, where

W (0) is given by (2.3) with n
(0)
0α substituted for n0α , we obtain

2V1

(

Z2
+n

(0)
0+

m+
+

Z2
−n

(0)
0−

m−

)

= V0

(

Z2
+n

(1)
0+

m+
+

Z2
−n

(1)
0−

m−

)

. (2.13)

With the aid of (2.4) and (2.5) this equation reduces to

V1 =
γ(η + 1)V0

3η − 3 +
√

3(3η2 − 2η + 3)
. (2.14)

It is easy to show that V1/γV0 monotonically decreases from∞ to 1/6 when η varies
from 0 to ∞.
In the third-order approximation we obtain, from (2.1d) and (2.6),

V0
∂n

(3)
α

∂ξ
− n

(0)
0α

∂u
(3)
α

∂ξ
=

∂n
(1)
α

∂τ
+

∂

∂ξ

[

u(2)
α

(

n
(1)
0α + n(1)

α

)

+ u(1)
α n(2)

α

]

− V1
∂n

(2)
α

∂ξ
,

(2.15a)

V0
∂u

(3)
α

∂ξ
− eχαZα

mα

∂φ(3)

∂ξ
=

∂u
(1)
α

∂τ
+

∂

∂ξ

(

u(1)
α u(2)

α

)

− V1
∂u

(2)
α

∂ξ
, (2.15b)

n(3)
e − Z+n

(3)
+ + Z−n

(3)
− =

ε0

e

∂2φ(1)

∂ξ2
, (2.15c)

n(3)
e − en0

κT
φ(3) =

e2n0

κ2Θ2
φ(1)φ(2) +

e3n0

6κ3Θ3
φ(1)3

. (2.15d)

Now we use (2.15a), (2.15b) and (2.15d) to express n
(3)
+ , n

(3)
− and n

(3)
e in terms of φ(3)

and the quantities of the first- and second-order approximation. Substituting the

obtained expressions in (2.15c) we find that the terms proportional to φ(3) cancel

each other, so that we arrive at the equation relating the quantities of the first-

and second-order approximation. Using (2.12) we obtain that the quantities of the

second-order approximation also cancel each other, so that the derived equation

contains only the quantities of the first-order approximation. Using (2.10)we write
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this equation in the form

2

V 3
0

(

n
(0)
0+Z2

+

m+
+

n
(0)
0− Z2

−
m−

)

∂φ(1)

∂τ
− 2V 2

1

V 4
0

(

n
(0)
0+Z2

+

m+
+

n
(0)
0− Z2

−
m−

)

∂φ(1)

∂ξ

+
e

V 4
0

[

3n
(1)
0+Z3

+

m2
+

− 3n
(1)
0− Z3

−
m2−

− 12V1

V0

(

n
(0)
0+Z3

+

m2
+

− n
(0)
0− Z3

−
m2−

)]

φ(1) ∂φ(1)

∂ξ

−
(

e2n0

2κ3Θ3
− 15e2n

(0)
0+Z4

+

2m3
+V 6

0

− 15e2n
(0)
0− Z4

−
2m3−V 6

0

)

φ(1)2 ∂φ(1)

∂ξ
+

ε0

e2

∂3φ(1)

∂ξ3
= 0. (2.16)

Introducing the dimensionless quantities

ψ =
eφ(1)

κΘ
, τ ′ = τe

(

n0Z+

ε0m+

)1/2

, ξ′ = e

(

n0

ε0κΘ

)1/2(

ξ +
V 2

1

V0
τ

)

, (2.17)

using (2.4) and (2.9), and dropping the prime at τ and ξ, we rewrite (2.16) as

∂ψ

∂τ
− aψ

∂ψ

∂ξ
+ bψ2 ∂ψ

∂ξ
+ β

∂3ψ

∂ξ3
= 0, (2.18)

where

a =
γ(η + 1)

√

6(3η2 − 2η + 3)

η1/2 [3η − 3 +
√

3(3η2 − 2η + 3)]3/2
, (2.19a)

b =

√
6[3(5η2 − 6η + 5) − 5(η − 1)

√

3(3η2 − 2η + 3)]

3η[
√

3(3η2 − 2η + 3) − 3η + 3]1/2
, (2.19b)

β =

(

3η − 3 +
√

3(3η2 − 2η + 3)

8η

)1/2

. (2.19c)

The quantity β is real because
√

3(3η2 − 2η + 3) >
√

9η2 − 18η + 9 = |3η − 3|.
It can be verified that equation (30) of Watanabe (1984) rewritten in the variables

used in this paper coincides with (2.18) in the case where Z+ = Z− = 1.
The dependences of a/γ, b and β on η are shown in Fig. 1. The first two quantities

are monotonically decreasing functions of η, while β is a monotonically increasing
function of η, and

a ≈ 3γ

2η2
for η � 1, a → γ

√
3

6
as η → ∞, (2.20a)

b ≈ 10

η
for η � 1, b → 2

√
3

3
as η → ∞, (2.20b)

β → 1

2
as η → 0, β →

√
3

2
as η → ∞. (2.20c)

Equation (2.18) is the Gardner equation (also called the extended KdV equation).

It is used in the next section to study the nonlinear evolution of modulationally

unstable wavepackets.
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Figure 1. The solid, dashed and dotted curves show the dependences on η of a/γ, b and β,
respectively. The horizontal lines show the asymptotic values of a/γ, b and β as η → ∞.

3. Modulational instability of nonlinear wavepackets

In this section we use the Gardner equation (2.18) to study the dynamics of modu-

lationally unstable wavepackets. When the ion densities are equal to their critical

values, i.e. γ = 0, we have a = 0 and (2.18) reduces to the mKdV equation. The
dynamics of modulationally unstable wavepackets described by themKdV equation

has been already extensively studied (see, e.g., Grimshaw et al. 2005). Here we aim to

study the role of the quadratic nonlinearity described by the second term in (2.18).

First of all we recall the results for the weakly nonlinear limit of the modulational

instability. In this case the dynamics of wavepackets is described by the nonlinear

Schrödinger equation for the complex amplitude of the wavepacket (Grimshaw et al.

2001; Parkes 1987)

i
∂Ψ

∂T
= 3βk

∂2Ψ

∂X2
+ δk|Ψ|2Ψ. (3.1)

This equation governs the dynamics of quasi-monochromatic wave solutions of

(2.18), i.e. solutions that have the form

ψ(ξ, τ) = εΨ(X,T ) exp(iΘ) + c.c., (3.2)

where X = ε(ξ + 3βk2τ), T = ε2τ , Θ = kξ − ωτ , k is the carrier wavenumber,
ω = −βk3 , ε is an arbitrary small parameter and c.c. denotes the complex conjugate.
The coefficient δ in (3.1) is given by (Grimshaw et al. 2001)

δ = b − a2

6βk2
. (3.3)

Here it is worth making one comment. The nonlinear Schrödinger equation

describing the nonlinear evolution of modulations of a harmonic carrier wave can

be derived directly from the system of equations (2.1). A similar derivation has

been performed for ion-electron plasmas by, e.g., Chan and Seshadri (1975), for ion-

electron plasmas with two populations of electron with different temperatures by

Kourakis and Shukla (2003a), for plasmas with negative ions by Saito et al. (1984),
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Figure 2. The dependences of kc/|γ| on η.

and for multicomponent plasma by, e.g., Mishra et al. (1994) (see also the derivation

of the nonlinear Schrödinger equation for dusty plasma by Kourakis and Shukla

(2003b, 2005)). In all of these papers the derivation of the nonlinear Schrödinger

equation has been carried out for arbitrary frequency of the carrier wave. If we use

a similar approach to derive the nonlinear Schrödinger equation form (2.1), then we

obtain an equation similar to (3.1), but with much more complicated expressions

for the coefficients β and δ. This equation should, in principle, reduce to (3.1) in
the limit of low wave frequency, i.e. when the frequency of the carrier wave is much

smaller than the ion plasma frequency ωpi.
Equation (3.1) has the solution in the form of monochromatic wave given by

Ψ0 = A0 exp[i(KX − ΩT )], Ω = k(δA2
0 − 3βK2). (3.4)

To study the stability of this solution we write Ψ = Aeiθ . The substitution of this

expression in (3.1) results in a system of two equations for the real variables A and

θ. Then we take A = A0 + A′ and θ = KX − ΩT + θ′, and linearize the system of

equations for A and θ with respect to A′ and θ′. Next we look for the solution of
the obtained linear system of equations in the form A′, θ′ ∼ exp[i(κX − σT )]. As a
result we arrive at the dispersion equation

(σ + 6kβKκ)2 = 3βk2κ2(3βκ2 − 2δA2
0). (3.5)

It follows from this equation that the solution (3.4) is stable when βδ < 0, and
unstable when βδ > 0. This is the well-known criterion for the modulational or
Benjamin–Feir instability (e.g. Benjamin and Feir 1967; Newell 1985). Since, in

accordance with (2.19c), β > 0, the stability of monochromatic ion-acoustic waves
is completely determined by the sign of δ. It follows from (3.3) that the condition

for the onset of the modulational instability is

k > kc =
|a|√
6bβ

. (3.6)

In a particular case when the negative ion density is equal to its critical value,

i.e. γ = 0, we have a = 0 and the monochromatic wave is unstable for any value
of k. In the general case this wave is unstable if and only if the carrier wavenumber
k is sufficiently large. The dependence of kc/|γ| on η is shown in Fig. 2. It is a
monotonically decreasing function, and its behaviour for small and large values of

η is given by

kc
|γ| ≈

√
30

20η3/2
for η � 1,

kc
|γ| →

√
2

12
as η → ∞. (3.7)
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It is also follows from (3.5) that the solution (3.4) is only unstable with respect

to relatively long-wavelength modulations with the wavenumber κ satisfying

κ < κlim = A0

√

2δ

3β
. (3.8)

The instability increment takes its maximum value, δA2
0 , at κ = κlim/

√
2.

To study the nonlinear dynamics of modulationally unstable wavepackets we

solved the initial value problem for the discrete nonlinear Schrödinger equation

numerically. To do this it is convenient to rewrite (2.18) in such new variables that

it contains only one coefficient characterizing the effect of quadratic nonlinearity.

These new variables are given by

Υ = −(b/6)1/2β−1/6ψ sgn(a), ζ = β−1/3ξ, (3.9)

where we take sgn(a) = 1 when a = 0. In these new variables (2.18) takes the form

∂Υ

∂τ
+ 6αΥ

∂Υ

∂ζ
+ 6Υ2 ∂Υ

∂ζ
+

∂3Υ

∂ζ3
= 0, (3.10)

where α = |a|(6b)−1/2β−1/6 . When α = 0, (3.8) becomes the mKdV equation. Note
that (3.10) cannot be reduced to the KdV equation because the coefficient at the

term describing the cubic nonlinearity is fixed. This form of equation is convenient

for studying the effect of quadratic nonlinearity.

In the new variables the criterion for the modulational instability (3.5) and the

inequality (3.8) are rewritten as

k > α, κ < 2A0

√

1 − α2

k2
. (3.11)

The wavenumber of the fastest growing perturbation is given by

κ = A0

√

2 − 2α2

k2
. (3.12)

At this wavenumber the instability increment takes its maximum value δ̃A2
0 , where

δ̃ = 6

(

1 − α2

k2

)

. (3.13)

For the numerical solution of (3.10) we used the finite-difference scheme described

by Berezin (1987). The number of mesh points in the calculation domain was 8000.

The size of the calculational domain was 400, and the periodic boundary conditions

were imposed at the domain boundaries. The time step was taken in accordance with

the Courant criterion. The initial condition was chosen in the form of a modulated

harmonic wave,

Υ = A{1 + m cos(κζ − π)} sin(kζ). (3.14)

The main purpose of our numerical modelling was to study the role of the quadratic

nonlinearity. To do this we carried out calculations with α = 1 and α = 0 (corres-
ponding to the mKdV equation), and then compared the results. In all calculations

we tookm = 0.05, k = 1.256 and κ = 0.0157, so that the first inequality in (3.11) was
satisfied for both values of α. Figure 3 shows the shape of the initial wavepacket with
A = 0.05. In accordance with (3.12) the increment of the modulational instability
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Figure 3. Initial modulated wave group.

takes its maximum value at A = 2A0 = 0.0367 for α = 1, and at A = 2A0 = 0.0222
for α = 0.
We performed calculations for two values of the wave amplitude, A = 0.05

(weakly nonlinear wave) and A = 0.23 (moderately nonlinear wave). The first value
is close to the value corresponding to the maximum growth rate for α = 1, and
about twice as large as the value corresponding to the maximum growth rate for

α = 0. Since this value is small, we expected that the wave dynamics would be close
to that described by the nonlinear Schrödinger equation. It is important to note

that δ̃ = 6 for the mKdV equation, while δ̃ ≈ 2.2 for the Gardner equation with
α = 1. Since the instability increment is proportional to δ̃, we can expect that the
modulational instability will develop more slowly for the Gardner equation than

for the mKdV equation. This preliminary conclusion is confirmed by the numerical

solution of (3.10) and illustrated in Fig. 4, where the formation of the first wave

group with the maximum amplitude is presented. The corresponding time is about

2.3 times as large for the Gardner equation than for the mKdV equation. The

spatial scales are also different with the width of the large-amplitude wave group

about twice as large for the Gardner equation than for the mKdV equation. In this

figure we can also observe the recurrence phenomenon. In the upper right panel

corresponding to τ = 2400 for the mKdV equation the waveform is almost the same
as it was at τ = 0.
Figure 5 displays the time evolution of the maximum amplitude (crest and trough

amplitudes) of the wavepacket. This figure once again clearly demonstrates the

difference in the time scales with the wave amplitude changing more rapidly for

the mKdV equation than for the Gardner equation. The variation of the wave

amplitude is more regular for the Gardner equation. There is no visible difference

in the crest and trough amplitudes in complete agreement with the results obtained

by using the nonlinear Schrödinger equation. The maximum amplification of the
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Figure 4. Formation of the first intense wave groups owing to modulational instability of
the wave with the initial amplitude A = 0.05. The upper panels correspond to α = 0 (the
mKdV equation) and the lower to α = 1 (the Gardner equation).

wave amplitude owing to the modulational instability is approximately 3 for the

mKdV equation and (2.7) for the Gardner equation. In both cases the maximum

amplification does not exceed the maximum possible value, 3, predicted by the

nonlinear Schrödinger equation.

The long-time wave dynamics is illustrated in Fig. 6. In the case of the Gardner

equation the intense wave groups appear and disappear periodically. The wave

dynamics described by the mKdV equation is richer with the various wave groups

appearing and disappearing mode or less randomly.

The second run was done for a moderately nonlinear quasi-monochromatic wave

with A = 0.23. In this case the characteristic time of the development of the
modulational instability is much shorter than it was with A = 0.05. This time
is approximately 140 for the mKdV equation, and 270 for the Gardner equation.

Maximum amplification exceeds the theoretical value, 3, predicted by the weakly

nonlinear theory. It is 3.15 for the mKdV equation, and 3.25 for the Gardner

equation. Owing to the effect of quadratic nonlinearity the wave profile described by

the Gardner equation becomes asymmetric, with the crest amplitude exceeding the

trough amplitude. This effect is absent in the case of the mKdV equation because

this equation is invariant under the substitution −Υ → Υ. The time evolution of
the crest and trough amplitudes are shown in Fig. 7.

In the case of moderate amplitude the generated intense wave groups are shorter

than those in the case of small amplitude (see Fig. 8). Usually a few wave groups are

generated at approximately the same time, and the dynamics of these groups cannot
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Figure 5. Maximum crest (black) and trough (grey) amplitudes versus time for the wave
with the initial amplitude A = 0.05. The upper panel corresponds to α = 0 (the mKdV
equation) and the lower to α = 1 (the Gardner equation). In the upper panel the two curves
are indistinguishable.

be described by the weakly nonlinear theory based on the nonlinear Schrödinger

equation. In average, the number of short-lived intense wave groups increases with

time, the number of wave groups being larger in the case of the mKdV equation

than in the case of the Gardner equation (see Fig. 9).

4. Summary and conclusions

In this paper we have studied the dynamics of the modulational instability of

ion-acoustic waves in plasmas with negative ions. In general, ion-acoustic wave

in plasmas are described by the KdV equation. However, when the negative ion
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Figure 6. Long-time evolution of the wave with the initial amplitude A = 0.05. The upper
panels correspond to α = 0 (the mKdV equation) and the lower to α = 1 (the Gardner
equation).

concentration is equal to its critical value, the coefficient at the nonlinear term

in the KdV equation vanishes, and the cubic nonlinearity has to be taken into

account. As a result, the wave dynamics is described by the mKdV equation. When

the negative ion concentration is not exactly equal to its critical value, but close to

it, both quadratic and cubic nonlinearity contribute in the wave dynamics, which

is now described by the Gardner equation (also called the extended KdV equation).

The Gardner equation for the ion-acoustic waves in plasmas with negative ions

was first derived by Watanabe (1984). We repeated this derivation under slightly

more general conditions, and using slightly different method. We presented the

Gardner equation in dimensionless variables, the units for measuring the time,

length and electric potential being the inverse ion plasma frequency, ω−1
pi , the

thermal speed of electrons times the inverse electron plasma frequency, and the

thermal energy of the electrons (or ions) divided by the elementary charge (see

(2.17)). A very important property of the Gardner equation for the ion-acoustic

waves is that the coefficient at the term describing the cubic nonlinearity is positive.

We then used the Gardner equation to study the dynamics of modulationally

unstable wavepackets. First we briefly recalled the results of weakly nonlinear

theory based on the use of the nonlinear Schrödinger equation. When the negative

ion concentration is equal to its critical value, the Gardner equation reduces to

the mKdV equation. Since the coefficient at the nonlinear term in this equation

is positive, the weakly nonlinear theory predicts that quasi-monochromatic wave-

packets are always modulationally unstable. On the other hand, when the negative
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Figure 7. Maximum crest (black) and trough (grey) amplitudes versus time for the wave
with the initial amplitude A = 0.23. The upper panel corresponds to α = 0 (the mKdV
equation) and the lower to α = 1 (the Gardner equation). In the upper panel the two curves
are indistinguishable.

ion concentration deviates from the critical value, so that the coefficient at the

term describing the quadratic nonlinearity in the Gardner equation is non-zero, a

quasi-monochromatic wavepacket is unstable only when the carrier wavenumber is

larger than the critical value (see (3.8)).

To study the nonlinear development of the modulational instability and com-

pare it with the prediction of the weakly nonlinear theory we solved the Gardner

equation numerically. To do this we introduced new dimensionless variables in such

a way that the transformed equation contains only one coefficient α at the term
describing the quadratic nonlinearity. In these new dimensionless variables the time
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Figure 8. Formation of the first intense wave groups owing to modulational instability of
the wave with the initial amplitude A = 0.23. The upper panels correspond to α = 0 (the
mKdV equation) and the lower to α = 1 (the Gardner equation).

remains the same, while the length and potential are multiplied by quantities of the

order of unity. We carried out the calculations for two different values of α: α = 0,
which corresponds to the mKdV equation, and α = 1, which corresponds to the
Gardner equation. In all calculations the initial condition was chosen in the form

of harmonic modulated wave with the carrier wavenumber satisfying the condition

of the modulational instability given by the weakly nonlinear theory.

Fist we took the amplitude of the initial wave equal to 0.05, which corresponds to
the weak nonlinearity. In this case the numerical results are in complete agreement

with the predictions of the weakly nonlinear theory. In particular, the modulational

instability was developing slower in the case when α = 1 than in the case when
α = 0. The wave remains symmetric with equal amplitudes of crests and troughs.
We then studied the evolution of the wave with the amplitude 0.23, which cor-

responds to the moderate nonlinearity. In this case the modulational instability

was developing much faster than in the case of wave with the amplitude 0.05,
although, once again, it was developing slower in the case when α = 1 than in the
case when α = 0. The wave dynamics strongly deviated from what was predicted

using the weakly nonlinear theory. In particular, the wave become asymmetric

with the amplitudes of crests exceeding the amplitudes of troughs. The long-time

dynamics of the modulational instability also reveals the freak wave phenomenon,

when large-amplitude perturbations appear for a short period of time, and then

disappear quickly.

It is also worth noting that the modulational instability can be considered as a

relatively slow process. Even for moderate initial amplitude the characteristic time
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Figure 9. Wave profiles for large moments of time for the wave with the initial amplitude
A = 0.23. The upper panels correspond to α = 0 (the mKdV equation) and the lower to
α = 1 (the Gardner equation).

of its development is a hundred of ω−1
pi , and this time increases to a thousand of

ω−1
pi for a small-amplitude initial wave.
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