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Liquid water can persist in a supercooled state to below 238 K in the Earth’s atmosphere, a
temperature range where homogeneous nucleation becomes increasingly probable. However, the
rate of homogeneous ice nucleation in supercooled water is poorly constrained, in part, because
supercooled water eludes experimental scrutiny in the region of the homogeneous nucleation regime
where it can exist only fleetingly. Here we present a new parameterization of the rate of homogeneous
ice nucleation based on classical nucleation theory. In our approach, we constrain the key terms in
classical theory, i.e., the diffusion activation energy and the ice-liquid interfacial energy, with physi-
cally consistent parameterizations of the pertinent quantities. The diffusion activation energy is related
to the translational self-diffusion coefficient of water for which we assess a range of descriptions and
conclude that the most physically consistent fit is provided by a power law. The other key term is
the interfacial energy between the ice embryo and supercooled water whose temperature dependence
we constrain using the Turnbull correlation, which relates the interfacial energy to the difference in
enthalpy between the solid and liquid phases. The only adjustable parameter in our model is the abso-
lute value of the interfacial energy at one reference temperature. That value is determined by fitting
this classical model to a selection of laboratory homogeneous ice nucleation data sets between 233.6
K and 238.5 K. On extrapolation to temperatures below 233 K, into a range not accessible to standard
techniques, we predict that the homogeneous nucleation rate peaks between about 227 and 231 K at a
maximum nucleation rate many orders of magnitude lower than previous parameterizations suggest.
This extrapolation to temperatures below 233 K is consistent with the most recent measurement of
the ice nucleation rate in micrometer-sized droplets at temperatures of 227–232 K on very short time
scales using an X-ray laser technique. In summary, we present a new physically constrained param-
eterization for homogeneous ice nucleation which is consistent with the latest literature nucleation
data and our physical understanding of the properties of supercooled water. C 2016 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4962355]

I. INTRODUCTION

The properties of supercooled water in the regime of
homogeneous nucleation remain poorly defined and this limits
our capacity to accurately describe the rate of homogeneous
nucleation of ice.1 Knowledge of ice nucleation kinetics is
perhaps most important for the accurate description of ice
particle formation in clouds arising in Earth’s atmosphere.
Clouds are sometimes observed to supercool to temperatures
approaching and even below 238 K,2–6 a temperature range
where homogeneous ice nucleation becomes increasingly
probable. For example, a ∼10 µm droplet nucleates with
a half-life of hours at 238 K, and only seconds at ∼235 K.
Therefore, this latter temperature of 235 K is often termed
the “homogeneous ice nucleation limit.” However, this limit
is only a practical definition and not a strict physical limit, as
recent measurements of micrometer-sized droplets below 232

a)Authors to whom correspondence should be addressed. Electronic
addresses: thomas.koop@uni-bielefeld.de and b.j.murray@leeds.ac.uk

K clearly demonstrate.7 Therefore, we denote the temperature
range of about 233–238 K, where most standard techniques
assess homogeneous ice nucleation, as the “homogeneous
nucleation regime.”

In the past, it was common to represent homogeneous
ice nucleation in atmospheric cloud models with a threshold
function at which all droplets froze at either 233 K or 235 K
(−40 ◦C or −38 ◦C, respectively), but in a recent study, it was
shown that it is very important to represent the temperature
dependence of homogeneous nucleation correctly and that
homogeneous nucleation starts to strongly influence a cloud at
temperatures as high as about 240 K,8 a result that is supported
by a recent theoretical analysis using a freezing-relaxation
concept.9 At present, there is a considerable divergence of
parameterizations for homogeneous nucleation which produce
significant differences in cloud models,1,8 hence there is a
clear need for an improved description of this critical and
atmospherically highly relevant process.

Supercooled water is a notoriously complex liquid and
has been the subject of intense discussion and debate for

0021-9606/2016/145(21)/211915/11 145, 211915-1 © Author(s) 2016.
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many decades.10–12 One of the anomalous characteristics of
water is that thermodynamic variables such as heat capacity
and compressibility vary strongly with decreasing temperature
through the region relevant for homogeneous nucleation. This
observation led Speedy and Angell13 to propose, in 1976,
that a singularity may exist in supercooled water at around
228 K, originating from a stability limit below which liquid
water cannot exist. More recent studies, however, support
pronounced but continuous changes in water’s thermodynamic
properties at ambient pressure.12,14 It is proposed that the
observed changes coincide with a fragile-to-strong transition
of the liquid, which may occur in a region somewhere below
the homogeneous nucleation regime and above the glass
transition temperature of 136 K.15,16 Whether or not this
behavior originates from the proposed but controversially
discussed occurrence of a second (liquid-liquid) critical point
of water at low temperature and elevated pressure (∼220-
225 K, ∼500 bars),17–20 however, does not greatly influence
a physical description of homogeneous ice nucleation at
atmospheric pressure.

Recent experimental work shows that the structure
of water also changes dramatically through the region of
homogeneous nucleation which may be the underlying cause
for the observed rapidly changing thermodynamic variables.
Sellberg et al.21 used a fast free-electron X-ray laser technique
to study the structure of water at the 100 fs time scale in
micrometer-sized droplets down to about 227 K and found
that the molecular nearest-neighbor coordination of water
molecules increases sharply. These observations confirmed
similar computational findings that there is a sharp increase
in the fraction of four-coordinate water molecules in the
homogeneous nucleation regime.22 Moore and Molinero22

suggest that this dramatic change in water structure controls
the homogeneous nucleation of ice. It is also known
that various dynamical properties, such as viscosity,23,24

self-diffusion,25 and dielectric relaxation times,16,26 vary
strongly through the region of homogeneous nucleation. It is
striking that water’s thermodynamic, structural, and dynamic
properties all vary extremely strongly in the temperature and
pressure regime of direct relevance for supercooled clouds
in Earth’s atmosphere. Hence, the complexity of supercooled
water is key to defining and describing the rate at which
ice nucleates in supercooled water, and thus, an accurate
parameterization of atmospheric ice formation in liquid water
clouds.

In this paper, we have developed a new parameterization
for homogeneous ice nucleation which is based on classical
nucleation theory (CNT), but where many of the variables
within this theory are constrained using an up-to-date
understanding of the behavior of physical properties of
supercooled water. The new CNT formulation is then fitted to
a selection of the available literature data of homogeneous ice
nucleation to produce a new parameterization, which has some
key differences from those previously published, particularly
at low temperatures. The rate of nucleation in CNT is very
sensitive to the value of various physical parameters and
their temperature dependence, namely, the saturation ratio of
the nucleating phase, the diffusion activation energy, and the
interfacial energy between the nucleating phase and its mother

phase (here, ice and supercooled water, respectively), most
of which are not known accurately within the homogeneous
nucleation regime. This makes it very difficult to predict
ice nucleation rates from first principles. On the other hand,
CNT allows for a very flexible but not necessarily unique
fitting of the above terms to measured nucleation data. Thus,
obtaining these terms from CNT fits to nucleation data is
often ambiguous. Here, we follow a different approach by
constraining the different terms and/or their temperature
dependence in the supercooled range as much as possible
with available physical data and current understanding of the
behavior of supercooled water’s properties, with only one
single free parameter: the value of the interfacial energy at
one fixed temperature.

II. DEVELOPMENT OF THE PARAMETERIZATION

A. Classical nucleation theory

Classical nucleation theory has been widely used to
describe nucleation of ice in supercooled water and the rate
of nucleation can be expressed as1,27,28

J(T) = kT
h

nl exp−
∆Gdiff(T )

kT exp−
∆Gcrit(T )

kT , (1)

where T is absolute temperature, k is the Boltzmann constant,
h is the Plank constant, and nl is the volume number density
of water molecules in liquid water (derived from the density
of water, ρl, multiplied by NA/M(H2O), i.e., the Avogadro
constant divided by the molar mass of water, see Tables
I and II). ∆Gdiff(T) is the diffusion activation free energy,
which approximates the activation energy associated with the
unfavorable bond orientation as a molecule adds to a cluster,28

and ∆Gcrit(T) is the free energy barrier associated with the
formation of a critical ice cluster. According to CNT, ∆Gcrit(T)
is given by1,28

∆Gcrit(T) =
16πν2

i (T)σ3
i,l
(T)

3[kT ln S(T)]2 , (2)

TABLE I. Parameterizations for density and vapor pressure of ice and of
liquid water. These parameterizations are valid for temperature T given
in K.

Quantity Parameterization Reference

ρl in g cm−3 0.965a

ρi in g cm−3 −1.3103×10−9T 3+3.8109×10−7T 2

−9.2592×10−5T +0.940 40
89

ln(Pl in Pa) 54.842 763−6763.22/T −4.210 ln(T )
+0.000 367T + tanh[0.0415(T
−218.8)](53.878−1331.22/T
−9.445 23 ln(T )+0.014 025T )

29

ln(Ph in Pa) 9.550 426−5723.265/T +3.530 68 ln(T )
−0.007 283 32T

29

aNote that the value of ρl is required for calculating nl . Since ρl varies only by less
than a few percent in the supercooled temperature range, we set it to a fixed value which
approximately corresponds to that of available data extrapolated to the homogeneous
nucleation regime. As nl enters only linearly in the prefactor of Jhom in Eq. (1), the
resulting error in Jhom is negligible.
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TABLE II. Physical constants and parameters used.

Parameter Value Description

Tm 273.15 K Melting temperature of hexagonal ice
at standard pressure

k 1.380 648×10−23 J K−1 Boltzmann constant
h 6.626 070×10−34 J s Planck constant
NA 6.022 14×1023 mol−1 Avogadro constant
M (H2O) 18.014 8 g mol−1 Molar mass of water

∆Hsd,h 0.155 kJ mol−1 Enthalpy difference between stacking
disordered and hexagonal ice,
see Eq. (A2)

Tr 236.0 K Reference temperature for fitting
interfacial energy

where νi is the volume of a water molecule in ice, which is
derived from dividing the term M(H2O)/NA by the density
of crystalline ice ρi (given in Table I), σi,l is the interfacial
energy between liquid water and ice, and S is the saturation
ratio with respect to the nucleating phase, i.e., ice.

B. Saturation ratio

The value of S is related to the difference of the
chemical potentials of water and ice and can be represented
by the ratio of the vapor pressures of supercooled water
(Pl) and of ice,29 see Table I. In this study, we assume
that the metastable stacking-disordered phase of ice initially
nucleates, which is consistent with computational simulations
of ice nucleation30–35 as well as diffraction studies of frozen
droplets.33,34 As a metastable phase, stacking-disordered ice
(ice Isd) has an equilibrium vapor pressure (Psd) larger than that
of hexagonal ice (Ph). It has been shown that this metastable
phase has an enthalpy which is about 155 ± 30 J mol−1

larger than that of ice Ih,36 a value consistent with the
range defined by calorimetry data. Assuming that the entropy
difference is negligible,29 we can say that this enthalpy
difference is equal to the change in free energy associated
with the hexagonal ice (ice Ih) to stacking-disordered ice
(ice Isd) transition (∆Gh→ sd). This difference in free energy
is directly related to the ratio of the vapor pressures of the
two phases, i.e., ∆Gh→ sd = RT ln(Psd/Ph), resulting in the
following formulation for S:

S =
Pl

Psd
=

Pl

Ph exp(∆Gh→ sd/RT) . (3)

C. Diffusion activation energy

The diffusion-activation energy, ∆Gdiff, can be related to
the translational self-diffusion coefficient of water D(T) as
follows:27,28

∆Gdiff(T) = ∂ln D(T)
∂T

kT2. (4)

Measurements show that the rate of self-diffusion of water
molecules in liquid water decreases rapidly with decreasing
temperature.25,37–41 This means that water molecules add to
ice clusters less readily at lower temperatures, which increases

FIG. 1. Translational self-diffusion coefficient of H2O in liquid water. The
data (black circles) are taken from the literature.25,38–41 The fits from Smith
and Kay,42 Prielmeier et al.,39 Dehaoui et al.,23 and Laksmono et al.7 are
shown in addition to the PL and VFT fits derived in this study (red and green
line, respectively). (a) Diffusion coefficients over a broad temperature range
are shown, whereas (b) is focused on the supercooled regime and additionally
shows confidence limits to our PL fit.

∆Gdiff in Eq. (1), and has the effect of slowing the rate of
nucleation. The strong dependence of D with temperature
implies that it is a key parameter to treat accurately in
a parameterization of the nucleation rate. The selection of
the available literature data for D(T) is shown in Figure 1
together with fits both from the literature and the present study.
Dynamic properties of water are commonly represented by
a power-law (PL) or a Vogel–Fulcher–Tammann (VFT) style
fit.38,42 The PL relationship (D = D∗T0.5(T/Ts − 1)γ, where Ts,
γ, and D* are fitted parameters) defines a curve where D
decreases asymptotically to negative infinity as T decreases
towards a singularity temperature Ts, see discussion above.
The VFT relationship (D = Doexp(−B/T − To), where Do,
B, and To are fitted parameters) is commonly applied to
the temperature dependence of transport properties of fragile
liquids.43,44

The PL fit from Smith and Kay42 underestimates the latest
D values below about 255 K and their VFT fit underpredicts
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D between 260 and 300 K; the discrepancy is because they
fitted their parameterization to an older data set from Gillen
et al.,37 whereas we use more recent data of Price et al.25

together with those of Prielmeier et al.38,39 and others40,41 in
this regime. In order to better represent the latest literature
data, we have re-fitted a PL and VFT equation to the D(T)
data below 318.15 K and the results are shown in Figure 1.
Both fits represent the bulk of the data well, but the PL
equation fits the strong downturn in D below about 240 K
much better. We also note that our PL fit is consistent
with the parameterization of D(T) recently presented by
Dehaoui et al.,23 see Figure 1(b). The difference in the various
fits implies that extrapolation to temperatures where most
homogeneous nucleation experiments have been performed
leads to significant deviations in both the absolute value of D,
and more importantly for ∆Gdiff, its temperature dependence.

Many thermodynamic and dynamic properties of water
are well approximated by a power law in the region of
homogeneous nucleation. For example, Dehaoui et al.23

recently demonstrated that their measurements of viscosity
down to temperatures of 239 K were best represented by
a PL. Similarly to our fits to diffusion data in Figure 1,
Dehaoui et al.23 found that a power law fit to their viscosity
data was superior to those following simple Arrhenius,
parabolic, or VFT behavior as the temperature approaches
the homogeneous nucleation regime. As discussed in the
Introduction, the rapid change in transport properties is
echoed by rapidly changing thermodynamic variables in
the same regime. In fact, other thermodynamic properties
can also be well approximated by a PL in the region of
homogeneous nucleation.13,22,45 At lower temperatures, in
so-called no-man’s land where crystallization is inevitable,
it is suggested that water may undergo a fragile-to-strong
transition where the temperature dependence of dynamic
properties switches from a strong non-Arrhenius relationship
to one close to an Arrhenius relationship. Mattsson et al.26

illustrate such a fragile-to-strong transition also in a range
of other H-bonding systems analogous to water, which are
not prone to crystallization. Above a threshold temperature,
they suggest that their dielectric structural relaxation times are
well-represented by a power law and below the threshold the
temperature dependence clearly changes to a behavior closer
to Arrhenius. Furthermore, by extrapolating their results to
the case of water, they suggest that the dynamic crossover
point is around 220 K, which is consistent with the proposed
fragile-to-strong transition suggested elsewhere15 and also
inferred from studies of water in confinement such as in
porous materials.16

Generally, a power law implies the existence of a
critical temperature (here Ts) at which the parameterized
property (here D) diverges. The proposed liquid-liquid critical
point (LLCP) of water17,18 may be the physical cause
of such a divergence. However, most models predict the
existence of a LLCP at higher pressure, and thus, suggest
a thermodynamic continuity of water at ambient pressure to
very low temperature. Yet, a so-called Widom line emanates
from the LLCP towards ambient pressure,46,47 which connects
the points of maxima with respect to temperature of a
thermodynamic or dynamic property of water. Hence, in such

a scenario, ambient properties of water may not diverge at Ts
but may approach a finite maximum near Ts. Therefore, the PL
equation for D does not imply a strict power-law dependence
all the way down to Ts but rather an apparent power-law
behavior. As such it is well suited to describe D over a wider
temperature range, but it becomes invalid in close proximity
to the apparent divergence temperature Ts, which is ∼213 K
in our case. We note that Ts may indicate the approximate
location of the strong-to-fragile transition discussed above.

Overall, the available data and fundamental understanding
of water may suggest that there is a transition from a
fragile to a strong liquid somewhere below the homogeneous
nucleation regime, but through the homogeneous nucleation
regime, an apparent power lower law is probably the most
physically consistent means of approximating the temperature
dependence of water’s self-diffusion coefficient. In the
following, we use both VFT and PL fits, but as will be
seen, the PL fits tend to produce nucleation rates which are
more consistent with the available data.

D. Interfacial energy

There exist several measurements of the equilibrium
ice-liquid interfacial energy σi,l at the melting temperature
of hexagonal ice, at 273.15 K (see, e.g., Ref. 1). However,
in the supercooled range, σi,l cannot be measured directly
in laboratory experiments, and hence, it is often estimated
theoretically or obtained indirectly by fitting CNT to
nucleation data. In order to derive the temperature dependence
of the interfacial energy between the ice embryo and
supercooled water, we make use of the Turnbull correlation.48

The Turnbull correlation relates the interfacial energy of a
solid in its melt in the homogeneous nucleation regime to
the change in enthalpy of the phase change ∆Hm at the
equilibrium melting temperature,48 σs,l (Thom) ∝ ∆Hm (Tm),
and has sometimes been applied for deriving σi,l in ice
nucleation studies, e.g., Refs. 28, 49, and 50, see detailed
discussion in Ickes et al.1 This relationship was originally
derived for describing homogeneous nucleation of various
metals from their melts, but it was shown to also work for
alkali halides.51 More recently, in a computational study of
water and ice confined in nanopores, the Turnbull correlation
was found to be consistent also in the supercooled range of
water, revealing the same temperature dependence of σi,l(T)
and ∆Hm(T), i.e., σi,l(T)/∆Hm (T) ≈ const.52 The more alike
the liquid and solid phases are, the smaller the enthalpy of the
phase change and the smaller the interfacial energy. Hence,
in this study, we approximate the temperature dependence of
σi,l(T) by scaling its value to the temperature dependence of
the enthalpy of melting of ice, ∆Hm(T), an approach already
employed by McDonald for describing homogeneous ice
nucleation, albeit with outdated data.53 Here, we determine
∆Hm(T) from fits to calorimetry data of the isobaric heat
capacity Cp(T) of ice and supercooled water.29 While the heat
capacity of hexagonal ice Ih has been measured over a wide
temperature range, there are no data for the heat capacity
of supercooled bulk or emulsified water below about 236 K.
We have used the parameterization of the heat capacity from
Murphy and Koop29 together with their estimated upper and
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lower limits. The resulting values of the enthalpy of melting
∆Hm,h(T) for hexagonal ice are shown as the solid blue line
in Figure 2(a) together with the lower and upper bounds
(dotted blue lines; note that an upper limit in Cp leads
to a lower limit in ∆Hm,h and vice versa). The observed
behavior is consistent with earlier analyses of ∆Hm,h(T) in the
supercooled range,13,54 as well as with more recent theoretical

FIG. 2. Melting enthalpies and derived interfacial energies used in the
present CNT parameterization. (a) The enthalpy of melting (∆Hm) of ice
Ih and ice Isd (solid lines). The value for ice Ih was determined from the
heat capacity of ice and supercooled water29 and that for ice Isd was de-
rived assuming a constant enthalpy difference between ice Ih and ice Isd of
0.155 kJ mol−1.36 The uncertainty in ∆Hm (dotted lines) was de-
termined from the uncertainty in the heat capacity of liquid wa-
ter.29 The nominal ∆Hm and upper and lower limits are parameter-
ized by polynomials in Eq. (A1) with details given in Table III. The
solid circles represent the values at the melting temperature of ice
Ih at 273.15 K and that of ice Isd calculated here as 265.94 K,
respectively. (b) The solid-liquid interfacial energy derived for stacking-
disordered ice, σsd,l(T ). The temperature dependence of σsd,l is derived
using the relationship in Eq. (5), whereas the σsd,l(Tr) at the reference
temperature (Tr = 236 K) is fitted to the experimental data, see text for details.
Also shown are various literature parameterizations7,71,72,86 of σsd,l(T ),
originally referred to as that of cubic ice in these papers (see text for details),
using a different temperature dependence of σsd,l(T )=σsd,l(T0)× (T /T0)n
with T0= 235.8 K and n as given in the annotation.

models of water.14,55 Moreover, we can approximate the
enthalpy of melting for stacking-disordered ice ∆Hm,sd(T) by
subtracting 0.155 kJ mol−1, see above in Section II B, resulting
in the red lines in Figure 2(a). The interfacial energy between
stacking-disordered ice and supercooled water σsd,l(T) is then
related to ∆Hm,sd(T) through the following expression based
on Turnbull’s correlation:52

σsd,l (T) = ∆Hm,sd (T) × σsd,l(Tr)
∆Hm,sd (Tr) , (5)

where the subscript “r” indicates a reference temperature
which we define as Tr = 236 K, i.e., in the heart of the
homogeneous nucleation regime. The absolute value of
σsd,l(Tr) is treated as the only adjustable parameter in our
CNT analysis, while the temperature dependence of σsd,l(T)
is constrained to that of ∆Hm,sd(T).

III. FITTING THE CNT-BASED MODEL
TO EXPERIMENTAL DATA

The available experimental data for the rates of
homogeneous nucleation Jhom were recently reviewed in the
literature.1,56 In this study, we have selected a subset56–68 of
the available data sets for the purposes of constraining the new
parameterization. The criteria for selection were (i) minimal
and well defined uncertainties, (ii) good reproducibility within
the data set, and (iii) an internal droplet pressure of about 1 bar.
These criteria ruled out much of the literature data from the last
millennium where uncertainties, such as temperature offsets,
were not clear. The data from Wood et al.69 are not included
because of the large spread in nucleation rates over three orders
of magnitude at one temperature. Data from nanometer-sized
droplets are not included because the internal Laplace pressure
of several hundred bar places these droplets in a regime where
thermodynamic and dynamic properties are very different.55

Also, we do not include in the fitting procedure the very recent
data of Laksmono et al.7 in micrometer-sized droplets as cold
as 227 K since the temperature uncertainties of these data are
more than a degree. Note that it has been pointed out that
temperature accuracy is likely the single-most important cause
for uncertainty in measured ice nucleation rates.56 Even with
only the data sets which fit these criteria selected, shown in
Figure 3, the possible values of Jhom are spread over two orders
of magnitude (or 2 K), but this is significantly less spread than
represented by the full literature review conducted by Ickes
et al.,1 where the spread in Jhom at 236 K is more than five
orders of magnitude.

In order to fit the CNT-based parameterization for each
of the four parameterizations of D(T), we have used a least-
square fitting routine where the only adjustable parameter is
σsd,l(Tr), as discussed above. Each Jhom data set was weighted
equally by representing it with three data points, at the
maximum, minimum, and average temperature, determined
from a straight line fit to ln(Jhom) versus T . In addition,
we grouped measurements from separate papers, but made
with the same instrument and methodology, into single data
sets (i.e., we grouped data from Duft and Leisner58 with
Rzesanke et al.,59 Stöckel et al.61 with Kabath et al.,62 as well
as Hoyle et al.64 with Lüönd et al.65). The resulting CNT

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.11.23.82 On: Tue, 27 Sep

2016 12:54:35



211915-6 T. Koop and B. J. Murray J. Chem. Phys. 145, 211915 (2016)

FIG. 3. Fitted ice nucleation rate Jhom parameterizations compared to se-
lected literature data. The fits to the literature data are shown using the four
different parameterizations of D(T ) shown in Figure 1(a). Only the selected
literature data above 233 K56–68 were used in the fitting procedure (grey
symbols), but the data from Laksmono et al.7 are also shown for comparison
(open circles). In order to give each data set equal weight, each data set was
represented by three points (not shown for clarity), see text for details. The
upper and lower limits (dotted and dashed red lines) to the Jhom(T ) curve
(solid red line) corresponding to our power law fit D(T ) are also shown. The
dotted lines indicate the uncertainty due to the 95.4% confidence interval of
our fit to D(T ) and the dashed lines correspond to the uncertainty related to
uncertainty in σsd,l(T ) derived from the upper and lower limits in the heat
capacity of supercooled water.

fits are shown in Figure 3, with different lines originating
from employing different parameterizations of D(T). It is
clear that using the PL parameterization of D(T) by Smith
and Kay42 produces a very poor fit to the data (blue line in
Figure 3). This is perhaps not unexpected since D(T) is a
poor fit to the low temperature diffusion data in Figure 1,
but the degree to which the fitted nucleation rates deviate
from the experimental values is quite striking. This illustrates
how critical the choice of D(T) parameterization is for
nucleation rates. The CNT Jhom curves for the two VFT
parameterizations (yellow and green lines) and our PL fit
are all reasonable fits to the experimental data. However,
the PL based fit provides a better overall fit to the data
in the homogeneous nucleation regime (∼233-238 K), as
it results in the smallest sum of squared residuals when
compared to the other three fits. While we did not include
the low-temperature nucleation data of Laksmono et al.7 in
any of our CNT fitting procedures (see above), it does help
to constrain which diffusion parameterization results in the
best fit of the nucleation rate. The two VFT fits clearly
overpredict Jhom at temperatures below 232 K by as much
as seven orders of magnitude at 227 K. In contrast, our PL
fit to D(T) produces values of Jhom which are within our
and their estimated uncertainty limits. This may imply that
the PL fit to the diffusion data produces a more realistic
temperature dependence of the diffusion activation energy
in the temperature range between about 227 and 238 K
than does the VFT fit. This is consistent with the discussion

above on the fact that apparent PL fits tend to reproduce
various thermodynamic and dynamic properties of water in the
homogeneous nucleation regime. We note that if the apparent
PL function levels off at some temperature above Ts, then Jhom
may decrease less strongly at low temperature than shown in
Fig. 3.

We further note that our new parameterization is not
consistent with the Jhom values, of ∼1023-1025 cm−3 s−1

between 193 and 215 K, determined from the freezing of
nanometer-sized droplets.70,71 Due to the Laplace pressure,
the internal pressure in nanometer-droplets is several orders
greater than in a micrometer-droplet (where the Laplace
pressure is very small). Thermodynamic as well as dynamic
properties such as the self-diffusion coefficient are known
to be pressure dependent,38,55 hence the rate of nucleation
in these droplets is most likely also very different to
droplets at ∼1 bar. Moreover, it is not clear whether ice
nucleation in nanometer-sized droplets may be driven by a
surface-dependent nucleation process rather than the volume-
dependent process in micrometer and super-micrometer
droplets investigated here.7,58 Nevertheless, several authors
have attempted to link the low temperature nanometer-droplet
data with higher temperature micrometer-droplet data,1,70–74

but as Laksmono et al.7 already pointed out this should
probably not be done for the reasons given above. In a previous
study,75 the internal droplet pressure has been considered by
including a pressure-dependent interface energy term, leading
to a reduction in Jhom by about 2-3 orders of magnitude at
200-210 K and implying Jhom values at ambient pressure that
are even larger than those measured in nanometer droplets.
In addition, Laksmono et al.7 argue that there is a “hard
limit” for the maximum in Jhom anywhere in the supercooled
temperature region of Jmax

hom ≤ 1016 cm−3 s−1, which is set by
the fact that previous experiments had shown that micrometer
droplets vitrify at cooling rates of 107 K s−1.76,77 Our
new parameterization suggests a maximum nucleation rate
of about Jmax

hom ≈ 2 × 1012 ± 102 cm−3 s−1 at about 229 K,
which is consistent with this notion. Similarly, previous
experiments had shown that micrometer droplets nucleate
ice at cooling rates of about 104 K s−1, implying a minimal
value of approximately Jmin

hom ≈ 1013 cm−3 s−1 somewhere in
the supercooled temperature range, which is consistent with
our maximum nucleation rate of about Jmax

hom ≈ 2 × 1012 ± 102

cm−3 s−1 at about 229 K. We further note that if the apparent
power-law behavior of D levels off at temperatures around
225 K to 230 K, the maximum in the nucleation rate may
be shifted to lower temperatures and slightly higher Jhom
values.

We also estimate the uncertainties in our derived values
of Jhom based on uncertainties in diffusion and interfacial
energy. The dashed red lines in Figure 3, resulting from
the uncertainties in the temperature dependence of σsd,l(T)
which in turn arise from uncertainties in ∆Hm,sd(T) (see
Figure 2), vary by about one order of magnitude from our best
estimate Jhom (solid red line). The dotted red lines show the
uncertainties in Jhom arising from the D(T) parameterization.
These originate from the 2σ limits (95.4%) of our power law
parameterization to the experimental D(T) data. It is clear
that the uncertainties in σsd,l(T) as well as in D(T) limit
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our ability to accurately predict Jhom at low temperature,
clearly underpinning the need for more and accurate
data of σsd,l and D and in the supercooled temperature
range.

The fitted value of interfacial energy (σsd,l) at 236 K,
based on the power law fit to D(T), is 18.5 ± 0.3 mJ m−2

(where the uncertainty is derived from uncertainty in D(T)).
As mentioned above, there are no direct experimental measure-
ments of interfacial energy at supercooled temperatures with
which to compare this value. However, this value falls
within the range of values previously derived from nucleation
experiments, most of which are between ∼12 and 25 mJ m−2

(see the compilation of results in Figure 2 of Ickes et al.1). The
interfacial energy of hexagonal ice in equilibrium with water
at the melting temperature of 273.15 K has been determined
both experimentally and computationally. Extrapolating our
σsd,l(T) to 265.94 K (the predicted melting temperature of
stacking-disordered ice) and 273.15 K on the basis of the Turn-
bull correlation in Eq. (5) yields values of 24.7 ± 0.5 mJ m−2

and 25.9 ± 0.5 mJ m−2, respectively. It is not obvious that
we should compare these values for stacking-disordered ice
to literature values of interfacial energy of hexagonal ice, but
computational studies suggest there is only a small difference
in interfacial energy between the different forms of ice I,78,79

and that the basal face of hexagonal ice at equilibrium may
be stacking disordered.80 Hence, we cautiously compare
our values of σsd,l at the melting temperature with values
determined for hexagonal ice also at the melting temperature.
From experiments, there is a substantial spread of the reported
interfacial energy at 273.15 K,1 but it has been suggested
that the value of Hardy81 of 29.1 ± 0.8 mJ m−2 may be the
most reliable.1,82 Studies with the TIP4P family of models
yield values averaged across several faces ranging between
26.5 ± 0.4 to 29.8 ± 0.8 mJ m−2,80,82,83 whereas the mW
model of water yields somewhat higher values of 35.5 ± 2.5
mJ m−2.84 Estimates of the interfacial energy based on the
critical cluster size of hexagonal ice in TIP4P/2005 and
TIP4P/ice water models yield an interfacial free energy of
29 ± 3 mJ m−2.85 Hence, our estimate of the interfacial energy
at melting is at the low end of, but consistent with, the various
predictions.

Repeating the fitting procedure, but where we assume the
critical cluster has the thermodynamic properties of hexagonal
ice rather than stacking-disordered ice yield a σh,l at 236 K
and 273.15 K of 21.9 mJ m−2 and 30.7 mJ m−2, respectively.
This value is in better agreement with the experimentally
derived value from Hardy81 (29.1 ± 0.8 mJ m−2) but larger
than the values derived from the TIP4P family of models. More
importantly, we also note that the fitted slope of Jhom versus
T is shallower than many of the experimental data sets when
we assume hexagonal ice nucleates. This calculation suggests
that a metastable stacking-disordered phase nucleates, but
also that the parameterization of the nucleation rate and
derived interfacial energy is sensitive to the choice of ∆Hsd,h.
We have chosen a value of 155 J mol−1 based on vapour
pressure measurements,36 whereas stacking disorder is known
to be highly variable and the ice made in those experiments
may not have the same thermodynamic properties as the
ice in a critical cluster.34 In addition, it has been suggested

that the energy cost of stacking disorder is minor and that
defects in ice are responsible for much of the observed
metastability.79

The temperature dependence of the interfacial energy
used in our CNT parameterization, shown in Figures 2(b),
is substantially steeper than the majority of literature
parameterizations summarized by Ickes et al.1 In order to
illustrate this point, we plot in Figure 2(b) a selection7,71,72,86

of those literature parameterizations that refer to cubic ice.
In the meantime it has become clear, that what used to be
termed cubic ice, is now believed to have been stacking-
disordered ice,33,34,87 thus, they may be directly compared
to our derivation of σsd,l(T). The use of the Turnbull
correlation, which produces a much stronger temperature
dependence of σi,l, is consistent with Limmer and Chandler52

who demonstrated the consistency of the Turnbull correlation
in the mW water model.52 In addition, Sanz et al.85 reported
a temperature dependence of σi,l of ∼0.18 mJ m−2 K−1 for
supercoolings between 14.5 and 34.5 K using TIP4P/2005
and TIP4P/ice water models. Over a similar supercooling
range, the curve in Figure 2(b) has a slope of approximately
0.21 mJ m−2 K−1. Hence, computational studies with various
models of water produce temperature dependencies of
the interfacial energy, which are in far better agreement
with our parameterisation than the parameterisations used
previously in the literature to analyse experimental nucleation
data.

IV. SUMMARY AND CONCLUSIONS

We present a new parameterization for homogeneous
nucleation of ice from supercooled water which is based
on CNT where we have constrained key variables with
available data for supercooled water. By constraining the
ice-liquid interfacial energy and the self-diffusion coefficient
of water in a physically realistic manner, we were able to
reproduce the experimentally observed temperature trend
of the rate of homogeneous ice nucleation at atmospheric
pressure. While this parameterization is constrained to a
selection of laboratory nucleation data between about 233
and 238 K, our parameterization also reproduces within
uncertainties the more recent X-ray laser-derived data down
to 227 K even though they were not included in the
analysis.

The new parameterization is strikingly different at
temperatures below ∼237 K when compared to commonly
used literature parameterizations (see Figure 4). For example,
Pruppacher88 and Zobrist et al.27 produce nucleation rates
many orders of magnitude larger than the values observed by
Laksmono et al.7 and predicted by our parameterization below
237 K. In particular, Pruppacher88 predicts that the increase
in Jhom with decreasing temperature accelerates below 231 K,
whereas our parameterization predicts that the nucleation
rate should start to decrease with decreasing temperature at
around 229 K. The much smaller values of Jhom predicted
by our parameterization are a result of the strong decrease
in translational self-diffusion predicted by the power law
fit. We justify the use of a power law on the basis that
many thermodynamic and transport properties of supercooled
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FIG. 4. The new CNT-based homogeneous ice nucleation rate parameter-
ization Jhom(T ) compared to other parameterizations1,7,27,88 in the litera-
ture. While we provide all the individual terms and their parameters of our
CNT-based parameterization for Jhom in Tables I–VI of the Appendix, it is
sometimes necessary to use a more computationally cheaper, i.e., simpler,
parameterization. Therefore, we have fitted our best estimate for Jhom by
means of a 6th-order-polynomial for this purpose, see Table VII.

water are well defined by an apparent power law in the
temperature range above homogeneous freezing and it is
expected that diffusion will follow a similar law. Our fits to
diffusion coefficients in Figure 1 clearly show that only the
apparent power law can fit the downturn in diffusion at low
temperatures, a similar conclusion to that of Dehaoui et al.23

for both diffusion coefficients and viscosity. Nevertheless, a
large source of uncertainty in the predicted values of Jhom arise
from uncertainties in the extrapolated diffusion coefficients,
and thus, measurements of diffusion in strongly supercooled
water are highly desirable to further constrain the diffusion
coefficient. On the other hand, the consistency we find between
nucleation data at temperatures below 237 K and the use of
the power law fit to D(T) data suggests that diffusion does
indeed follow an apparent power law through this temperature
range.

The parameterization of Jhom given by Laksmono et al.,7

which was fitted to their own data at 227–232 K as
well as data in the homogeneous nucleation regime at
233–238 K, is very similar to our new parameterization,
but it is restricted to temperatures below about 238 K.90

Hence, it is not applicable to the potentially very important
atmospheric temperature range above 238 K, see below.
Moreover, while the parameterization of Laksmono et al.7

describes the data between 227 and 238 K very well,
we believe our parameterization is based more soundly
on the temperature dependence of the underlying physical
properties of supercooled water. Laksmono et al.7 used a
simple literature parameterization for the interfacial energy
that was originally derived by Huang and Bartell and meant
to reproduce their nanometer-droplet nucleation data at very
low temperature. That analysis resulted in a linear decrease

in σsd,l with decreasing temperature, whereas we relate the
temperature dependence of σsd,l to the difference in enthalpy
between stacking-disordered ice and water, see Figure 2(b).
Furthermore, Laksmono et al.7 used a parameterization for
D(T) (see Figure 1(b)), which shows a much stronger decrease
with decreasing temperature, although we note that they used
a CNT model with a different formulation of the prefactor for
their analysis, which may be the cause for the strong decrease
in their D(T).

Using a simple cloud model, Herbert et al.8 tested the
sensitivity of cloud glaciation to various parameterizations of
homogeneous nucleation. They concluded that temperature
dependence of the nucleation rate is very important. Unlike
a simple offset in temperature, a change in temperature
dependence does not have a simple linear effect upon cloud
evolution. With a more shallow temperature dependence, the
onset of ice nucleation is more gradual allowing more time for
secondary processes, such as growth of crystals and depletion
of supercooled water, to take place. Inspection of Figure 4
reveals that at temperatures above 235 K, where homogenous
nucleation is most likely in the atmosphere, the temperature
dependence of the parameterization of Zobrist et al.27 is
significantly steeper than that of the new parameterization. In
fact, the slope of our new parameterization is very close to
that of Pruppacher,88 although Pruppacher’s parameterization
is shifted to warmer temperatures, and the “mixed-effect”
CNT parameterization of Ickes et al.,1 which is shifted to
slightly lower temperatures, with a shallower slope in the
high-temperature range.

Herbert et al.8 also noted that clouds begin to become
sensitive to homogeneous nucleation at a rate Jhom of
1 cm−3 s−1, which corresponds to a temperature of about
240 K for our parameterization. In contrast, the experimental
data we have chosen for this analysis are limited to Jhom values
larger than ∼104 cm−3 s−1 at temperatures mostly below 238
K. Clearly, there is a need to test our new parameterization for
homogeneous nucleation at warmer temperatures for smaller
values of Jhom. However, since the temperature dependence
of D(T) and that of σsd,l(T) (through its correlation with
∆Hm) is relatively well constrained at temperatures above
∼237 K, we are more confident in the behavior of our Jhom
parameterization at higher temperature.
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APPENDIX: DETAILED PARAMETERIZATION

The temperature-dependent enthalpy of melting of
hexagonal ice with respect to water∆Hm,h(T) is parameterized
as follows:

∆Hm,h(T) =


i
ki · (T − Tm)i, (A1)

where T is the temperature in K, and ∆Hm,h is given in
kJ mol−1. The fitting parameters ki and i are given in Table III.
Their number i was chosen such that the maximum deviation
between the fit and the exact parameterization is about
0.01 kJ mol−1 in the temperature range of validity of
225–273.15 K.

The temperature-dependent enthalpy of melting of
stacking-disordered ice with respect to water ∆Hm,sd(T) then
follows:

∆Hm,sd(T) = ∆Hm,h(T) − ∆Hsd,h, (A2)

where ∆Hsd,h is a constant, see Table II.
The temperature-dependent interfacial energy between

stacking-disordered ice and water σsd,l(T) is parameterized
according to the Turnbull correlation using the fitted values of
∆Hm,sd and σsd,l at a reference temperature Tr = 236.0 K by

σsd,l(T) = ∆Hm,sd (T)
∆Hm,sd (Tr)σsd,l(Tr). (A3)

The corresponding values are given in Table IV.
The parameters for the temperature-dependent diffusion

activation energy ∆Gdiff (T) were obtained by fitting exper-
imental data of the translational self-diffusion coefficient of
water D(T) in the stable and supercooled liquid. D(T) was

TABLE III. Parameters for calculating ∆Hm,h(T ) according to Eq. (A1).

Best estimate Lower limit Upper limit

i ki ki ki

0 6.008 6.008 6.008
1 0.036 16 0.039 035 0.039 178
2 −3.947 9 × 10−4 1.585 8 × 10−4 4.297 1 × 10−4

3 −1.624 8 × 10−5 2.422 1 × 10−5 6.666 × 10−5

4 −3.256 3 × 10−7 8.226 6 × 10−7 3.668 2 × 10−6

5 0 1.218 7 × 10−8 9.310 5 × 10−8

6 0 0 8.392 × 10−10

TABLE IV. Parameters for calculating σsd,l(T ) according to Eq. (A3).

∆Hm,sd (Tr) in kJ mol−1 σsd,l(Tr) in mJ m−2

Best estimate 4.1776 18.505
Lower limit 4.0844 18.469
Upper limit 4.1776 18.513

TABLE VI. Parameters for calculating D(T ) according to VFT fit in
Eq. (A7). D (T ) results in cm2 s−1 for T in K.

Parameter Value

D0 9.6307 × 10−4 cm2 s−1

T0 148.0 K
B 560.96 K

TABLE VII. Parameters for calculating Jhom(T ) according to Eq. (A9). Jhom
results in cm−3 s−1 for T in K.

i ci

0 −3020.684
1 −425.921
2 −25.977 9
3 −0.868 451
4 −1.662 03 × 10−2

5 −1.717 36 × 10−4

6 −7.469 53 × 10−7

parameterized by a power-law38

D(T) = D∗ · T0.5 ·
(

T
Ts
− 1

)γ
. (A4)

The parameters from fitting the experimental D(T) data in
units of cm2 s−1 are given in Table V.

The following derivative with respect to temperature can
be used to obtain ∆Gdiff(T) from D(T):

∆Gdiff(T) = ∂ln D(T)
∂T

kT2. (A5)

Applying this derivative to the power law in Eq. (A4) above
then yields the following term for the diffusion activation
energy, with parameters given in Table V:

∆Gdiff,PL (T) = kT
2
+

γkT2

T − Ts
. (A6)

This parameterization was used for our best estimate of
Jhom(T).

Alternatively, D (T) can be parameterized by the
Vogel–Fulcher–Tammann (VFT) law

D (T) = D0 · exp
(
−B

T − T0

)
. (A7)

The parameters from fitting the experimental D (T) data in
units of cm2 s−1 are given in Table VI.

Applying the derivative of Eq. (A5) to the VFT
Eq. (A7) above then yields the following term for the diffusion

TABLE V. Parameters for calculating D(T ) according to the PL fit in Eq. (A4). D (T ) results in cm2 s−1

for T in K.

Parameter Value best fit Value 2σ lower limit Value 2σ upper limit

D∗ 8.3175 × 10−6 cm2 s−1 K−0.5 8.1617 × 10−6 cm2 s−1 K−0.5 8.392 × 10−6 cm2 s−1 K−0.5

Ts 215.45 K 218.47 K 212.07 K
γ 1.9188 1.8178 2.0311
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TABLE VIII. Values recommended for checking computed parameterizations. Note that the last digits may vary
depending upon the computational environment.

Equation 230 K 240 K 250 K

Best fit from CNT analysis
∆Hm,h(T ) in kJ mol−1 (A1) 3.8891 4.5741 5.0673
σsd,l(T ) in mJ m−2 (A3) 16.5407 19.5748 21.7598
D (T ) in cm2 s−1 (A4) 7.1603 × 10−07 1.9957 × 10−06 3.9238 × 10−06

∆Gdiff,PL(T ) in J (A6) 9.7905 × 10−20 6.3813 × 10−20 4.9649 × 10−20

Jhom(T ) in cm−3 s−1 (1) 1.33 × 1012 3.85 1.05 × 10−55

Jhom(T ) polynomial fit in cm−3 s−1 (A9) 1.33 × 1012 3.83 1.27 × 10−55

Other parameters
∆Hm,h(T ) low in kJ mol−1 (A1) 3.7018 4.5115 5.0441
∆Hm,h (T ) up in kJ mol−1 (A1) 3.9680 4.5693 5.0680

activation energy, with parameters given in Table VI:

∆Gdiff,VFT(T) = kT2B
(T − T0)2 . (A8)

The best fit for the temperature-dependent homogeneous ice
nucleation rate coefficient Jhom(T) was fitted to a polynomial
for simpler computation

x =


i
ci · (T − Tm)i, (A9a)

with

Jhom (T) = 10x, (A9b)

where T is the temperature in K, and Jhom(T) is given in
cm−3 s−1. The fitting parameters ci and i for Eq. (A9) are given
in Table VII. Deviations between the best fit from CNT and the
polynomial given in Eq. (A9) are smaller than 1.3% over the
atmospherically important temperature range of 230-245 K,
smaller than 5% at 225-230 K, and smaller than 22% at
245-250 K. Equation (A9) should not be used outside this
temperature range. Finally, in Table VIII we present values
that we recommend for checking computer codes of all
parameterizations presented in this manuscript.
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