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In cross-sectional studies, chronic helminth infections have been
associated with immunological hyporesponsiveness that can af-
fect responses to unrelated antigens. To study the immunological
effects of deworming, we conducted a cluster-randomized double
blind placebo-controlled trial in Indonesia and assigned 954 house-
holds to receive albendazole or placebo once every three months
for two years. Helminth-specific and non-specific whole blood
cytokine responses were assessed in 1059 subjects of all ages,
while phenotyping of regulatory molecules was undertaken in 121
school-aged children. All measurements were performed before
and at 9 and 21 months after initiation of treatment. Anthelmintic
treatment resulted in significant increases in pro-inflammatory
cytokine responses to Plasmodium falciparum-infected red blood
cells (PfRBC) and mitogen, with the largest effect on TNF re-
sponses to PfRBC at 9 months (estimate and 95% confidence
interval 0.37 [0.21-0.53], p-value over time <0.0001). Although the
frequency of regulatory T-cells did not change after treatment,
there was a significant decline in the expression of the inhibitory
molecule CTLA-4 on CD4+ T-cells of albendazole-treated individuals
(-0.060 [-0.107 ದ -0.013] and -0.057 [-0.105 ದ -0.008] at 9 and 21
months, respectively, ptime=0.017). This trial shows the capacity
of helminths to upregulate inhibitory molecules and to suppress
pro-inflammatory immune responses in humans. This could help
to explain the inferior immunological responses to vaccines and
lower prevalence of inflammatory diseases in low- compared to
high-income countries.

helminths | albendazole | cytokine responses | Indonesia | deworm-
ing

Introduction

Soil-transmitted helminths (STH) represent the most common
infectious disease worldwide (1). In addition to specific worm-
associated morbidities, it has been argued that chronic STH
infections may magnify health-related burdens in communities
remote from health care facilities, exacerbating anemia, poor
nutritional status, and possibly poor cognitive development (1).
However, this was not fully supported by the latest analysis of the
Cochrane database (2).

Immunologically, cellular immune hyporesponsiveness is a
hallmark of chronic helminth infections that may allow para-
sites' long-term survival (3). The consequences of immunosup-
pression are manifold with potentially major public health rel-
evance. Immune hyporesponsiveness could curtail effective im-
mune responses, thereby increasing susceptibility to pathogens,
and helminths are associated with suboptimal vaccine responses
(4-6). The helminth-related dampened immune responses might
nevertheless help to prevent immunopathology during coinfec-
tions and, possibly, aberrant reactivity to environmental or self-

antigens (7). With respect to the latter, there is currently much
interest in the use of helminth infections to treat allergies and
autoimmune diseases, exploiting their ability to induce immune
hyporesponsiveness (8).

Suppressed lymphocyte responses were described in the
1970s (9), but the evidence base has not moved much beyond
animal models and cross-sectional studies in humans (10). The
cellular mechanisms associated with helminth-related immune
hyporesponsiveness are not fully understood. Several regulatory
cells and molecules are thought to play an important role in the
regulatory network (3). Within T-cell responses, expansion of T-
regulatory cells (Treg) is reported in both animal models (10) and
some human studies (11, 12). Tregs suppress helminth-specific
and bystander proliferative and pro-inflammatory responses.
Expression of T-cellದassociated molecules, including cytotoxic
T-lymphocyteದassociated antigen (CTLA)-4 and programmed
death (PD)-1, may also be involved in helminth-induced hypore-
sponsiveness and spill-over suppression (13).

Longitudinal studies assessing the effect of anthelmintic
treatment on cellular immune responsiveness are rare, and either
lack placebo controls, target children only, or measure immune
responses at one time point post-treatment (14-16). Moreover,

Significance

Chronic helminth infections are accompanied by profound
immune regulation. In humans, helminth-induced immune re-
activity has not been thoroughly investigated in trial settings.
We assessed the effect of anthelmintic treatment on immune
responses in a whole community, in a placebo-controlled RCT.
We show increased immune responses to helminth-specific as
well as unrelated antigens, in parallel with decreased CTLA-4
expression, which is a molecule involved in putting a brake on
immune activation. Deworming seems to lead to decreased im-
munoregulation and increased immune responsiveness. These
findings are of importance regarding the suboptimal vaccine
responses in helminth-endemic areas, but also in anticipating
the future rise in inflammatory diseases when helminth infec-
tions are increasingly controlled.
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Table 1. ದ Baseline characteristics of the study population

N Placebo N Albendazole

Age (mean in years, SD) 572 25.7 (18.5) 487 24.9 (18.4)
Sex (female, n, %)* 572 328 (57.3) 487 279 (57.3)
Area (rural, n, %)* 572 114 (19.9) 487 106 (21.8)
BMI > 19 years old (mean, SD) 264 22.1 (4.1) 220 22.1 (3.8)
Z-score of BMI ื 19 years old (mean, SD) 194 -1.15 (1.11) 386 -1.14(1.15)
Parasite infection (n, %)*

Helminth (any spp) 322 286 (88.8) 237 210 (88.6)
Hookworm1 335 255 (76.1) 245 192 (78.4)
N. americanus1 335 252 (75.2) 245 188 (76.7)
A. duodenale1 335 25 (7.5) 245 17 (6.9)
A. lumbricoides1 335 105 (31.3) 245 80 (32.7)
S. stercoralis1 335 3 (0.9) 245 14 (5.7)
T. trichiura2 415 106 (25.5) 310 62 (20.0)

Malarial parasitaemia (any spp)2 567 24 (4.2) 483 24 (5.0)
P. falciparum 567 16 (2.8) 483 11 (2.3)
P. vivax 567 8 (1.4) 483 10 (2.1)
P. malariae 567 0 (0.0) 483 4 (0.8)

Cytokine production, pg/mL [median, IQR]
LPS TNF-˞ (pg/mL) 554 743 [368-1293] 468 769 [339-1318]

IL-10 (pg/mL) 554 271 [163-441] 468 256 [158-406]
PHA TNF-˞ (pg/mL) 516 100 [50-222] 435 103 [50-214]

IL-10 (pg/mL) 515 76 [41-129] 435 70 [37-116]
IFN-ˠ (pg/mL) 516 1625 [584-3983] 435 1270 [538-4340]
IL-2 (pg/mL) 516 23 [0-101] 432 23 [0-92]
IL-5 (pg/mL) 516 563 [309-840] 435 520 [317-829]

PfRBC TNF-˞ (pg/mL) 299 18 [4-42] 237 14 [3-38]
IL-10 (pg/mL) 300 10 [5-19] 238 10 [5-20]
IFN-ˠ (pg/mL) 300 163 [75-388] 239 176 [70-376]
IL-2 (pg/mL) 300 50 [5-125] 239 40 [5-112]
IL-5 (pg/mL) 300 14 [5-26] 239 12 [4-23]

AscAg TNF-˞ (pg/mL) 517 5 [0-15] 438 6 [0-14]
IL-10 (pg/mL) 516 7 [2-15] 438 7 [1-14]
IFN-ˠ (pg/mL) 516 19 [6-47] 441 21 [7-47]
IL-2 (pg/mL) 497 38 [4-114] 426 36 [0-107]
IL-5 (pg/mL) 515 24 [9-68] 440 24 [9-63]

1diagnosed by PCR; 2diagnosed by microscopy.
The number of positives (n) of the total population examined (N)
SD, standard deviation; BMI, body mass index; IQR, interquartile range.

Fig. 1. The effect of anthelminthic treatment on cytokine responses to AscAg, PfRBC and PHATNF, IFN-ˠ, IL-2, IL-5 and IL-10 concentrations were assessed in
supernatants of 72h-stimulated whole-blood cultures. The values on the ಫy-axisಬ (the spider web lines) represent the estimated outcome (beta) of the effect
of albendazole treatment on cytokine responses to PHA (blue circles), PfRBC (red squares) and AscAg (green triangles). By comparing the responses in the
albendazole versus placebo group, the estimates of the treatment effect in the whole study population after 9 (A) and 21 (B) months of albendazole treatment
were obtained using linear mixed models and positive values were plotted in a spider chart. Statistically significant estimates at 9 months were IL-2 responses
to AscAg (estimated effect of treatment [95% confidence interval]: 0.17 [0.05ದ0.28]), TNF (0.37 [0.21-0.53]) and IFN-ˠ (0.14 [0.03-0.24]) responses to PfRBC and
TNF (0.14 [0.05-0.24]), IFN-ˠ (0.10 [0.01-0.19]) and IL-2 (0.12 [0.01-0.23]) responses to PHA. At 21 months post-treatment, PHA-induced IL-5 (0.10 [0.01-0.19])
and IL-10 (0.12 [0.05-0.19]) were significantly enhanced. As an indication of the magnitude of change in level of cytokines that were significantly different
between placebo and albendazole group, geometric mean with standard error for TNF to PfRBC at 9 months (C) is given as an example.

none have examined the changes in regulatory cells or molecules.
No large-scale community-based intervention studies to establish
whether helminth infections lead to immune hyporesponsiveness
in humans have been reported.

To disentangle the impact of helminths on the immune sys-
tem from other influences, we conducted a household cluster-
randomized double blind placebo-controlled trial of albendazole
once every three months in communities with high STH preva-
lence on Flores island, Indonesia. Here we present results con-
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Table 2. ದ Effect of albendazole treatment on immune responses by helminth infection status at baseline

Out-
come

Effect of treatment at 9 months Effect of treatment at 21 months

Placebo N Albendazole N ˟
[95%CI]*

Placebo N Albendazole N ˟ [95%CI]* ptime

A. Effect of albendazole on cytokine responses in helminth-infected individuals
PHA
TNF 261 190 0.14

[0.01-
0.26]

228 152 0.03 [-0.11-0.17] 0.098

IL-10 260 190 0.08
[-0.00-
0.16]

227 152 0.06 [-0.03-0.15] 0.12

PfRBC
TNF 154 106 0.42

[0.20-
0.64]

133 84 -0.10 [-0.33-0.14] 0.0004

IFN-ˠ 155 108 0.12
[-0.02-
0.26]

134 86 -0.01 [-0.19-0.16] 0.18

AscAg
IL-2 249 182 0.25

[0.10-
0.41]

215 146 0.04 [-0.12-0.20] 0.006

B. Effect of albendazole on cytokine responses in helminth-uninfected individuals
PHA
TNF 31 19 0.02 [-0.40-0.43] 28 19 0.20 [-0.21-0.62] 0.63
IL-10 31 19 0.03 [-0.25-0.31] 28 19 0.31 [0.01-0.60] 0.12
PfRBC
TNF 26 17 0.33 [-0.13-0.78] 22 15 0.15 [-0.38-0.67] 0.35
IFN-ˠ 26 17 0.34 [-0.03-0.71] 22 15 -0.00 [-0.42-0.41] 0.18
AscAg
IL-2 31 20 0.08 [-0.36-0.53] 28 19 -0.08 [-0.54-0.39] 0.83

The analysis of the effect of anthelmintic treatment was stratified based on helminth infection status at baseline. By comparing the responses in the
albendazole versus placebo group, the estimated outcome (beta) of the treatment effect after 9 and 21 months of albendazole treatment were
obtained.The number of the total population examined (N). *˟ (beta) and 95% confidence interval are based on linear mixed models. An overall p-value
(ptime) is indicated for the effect of treatment over time. Statistically significant results (p<0.05) are given in bold.

Fig. 2. Effect of deworming on cell subsets and marker expressionFlow cytometry was performed on PBMC from a subset of schoolchildren. Gating strategy
is shown for (A) lymphocytes and CD4+ T-cells,from which (B) CD25hiFOXP3+ Treg cells, (C) PD-1- and (D) CTLA-4 expression on CD4+ T-cells, were derived. (E)
CTLA-4 expression on CD25hiFOXP3- cells, was gated from B. The estimated effect of albendazole treatment is shown for the time points 9 and 21 months
after start of treatment for percentages of CD25hiFOXP3+ (F), PD-1+ (G), CTLA-4+ (H) ofCD4+ T cells, and CTLA-4+ ofCD4+FOXP3ದcells (I). Estimates, ˟(beta) were
obtained by linear mixed models; 95% confidence intervals and overall p-values over time (ptime) are indicated. As an indication of magnitude of change, the
actual percentage of CTLA-4+ ofCD4+FOXP3ದcells in placebo and albendazole groups is shown at 9 months (J).
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cerning the effects of anthelmintic treatment on cellular immune
responses.

Results

Albendazole treatment reduces but does not eliminate helminth
infections

Characteristics of the study participants (n=1059) are shown
in table 1. At baseline one ormore helminth species were found in
88.7% of individuals, hookworm being the most prevalent (77.1%
of total). The trial consort diagram with follow-up data can be
found in the supplementary information (fig. S1). Albendazole
treatment reduced the prevalence of geohelminths after 9 (51.9%
vs. 84.1% for placebo) and 21months (39.2% vs. 80% for placebo)
(table S1). In the whole IMMUNOSPIN trial the prevalence
of geohelminth infection was 87.3% and albendazole treatment
reduced prevalence of geohelminths after 9 (51.4% vs. 82.8% for
placebo) and 21months (41.9% vs. 78.8% for placebo). As for the
whole IMMUNOSPIN trial, the greatest effect was on hookworm
followed by Ascaris, while the effect on Trichuris infections was
less pronounced. Albendazole also reduced intensities of hook-
worm and Ascaris infections, as assessed by PCR (fig. S2).

Helminth-specific and nonspecific whole blood cytokine re-
sponses are increased after albendazole treatment

Figure 1 shows the effect of treatment on cytokine responses
at 9 months (A) and 21 months (B).

Regarding helminth-specific cytokines, Ascaris antigen
(AscAg)-induced interleukin-2 (IL-2) production was
significantly enhanced by treatment over the study period
(ptime=0.018), with a significant increase in the treated group at
9 months (estimate [95% CI]: 0.17 [0.05ದ0.28], fig. 1A).

In response to plasmodial antigens (Plasmodium falciparum-
infected red blood cells; PfRBC), there was an increase over
time in pro-inflammatory cytokines tumor necrosis factor (TNF;
ptime<0.0001) and interferon-gamma (IFN-ˠ; ptime=0.036) after
albendazole treatment. As shown in fig. 1A, both TNF and IFN-
ˠ were significantly higher in the albendazole compared to the
placebo group at the 9-month time point (0.37 [0.21-0.53] for
TNF and 0.14 [0.03-0.24] for IFN-ˠ). To get an indication of the
absolute changes in cytokine levels, TNF production to PfRBC
in the two groups at the 9-month time point is shown in fig. 1C.
The differences in other statistically significant cytokine changes
are shown in fig. S3. None of the significant changes in antigen
specific responses were correlated with worm burden before
treatment (table S2).

Regarding the general adaptive response (cytokine responses
to phytohemagglutinin, PHA), albendazole treatment signifi-
cantly increased TNF and IL-10 secretion (ptime=0.011 and
ptime=0.003 respectively) over the trial period; for TNF, alben-
dazole treatment resulted in elevated responses at 9 months,
whereas for IL-10 the response was significantly higher after 21
months (for TNF at 9 months 0.14 [0.05ದ0.24], fig. 1A; for IL-
10 at 21 months 0.12 [0.05ದ0.19], fig. 1B). The IFN-ˠ and IL-2
responses to PHA were transiently increased at 9 months post-
treatment and PHA-induced IL-5 was higher at the 21-month
time point, but this did not reach statistical significance over the
whole trial time period (IFN-ˠ ptime=0.076, IL-2 ptime=0.11, IL-5
ptime=0.068, fig. 1).

Albendazole did not affect responses to lipopolysaccha-
ride (table S3). Cytokines in unstimulated blood revealed no
treatment-related differences (table S3). IFN-ˠ responses to un-
infected RBC (uRBC) were not significantly different between
treatment arms (ptime=0.91), however TNF production was in-
creased post-treatment (ptime=0.018). This was only significant at
9 months (9-month estimate 0.13 [0.01-0.25], at 21 months -0.13
[-0.26-0.003], although to a much lesser extent than the response
to PfRBC.

The enhancement of cytokine responses is not a direct albenda-
zole effect

To rule out albendazole as a direct cause of enhanced
immune responses, we stratified the analysis on STH infec-
tion status at baseline (table 2). Enhanced PfRBC-induced
TNF and AscAg-induced IL-2 by albendazole treatment was
seen in helminth-infected (ptime=0.0004 and ptime=0.006, respec-
tively, table 2A) but not in uninfected subjects (table 2B), at
9 months post-treatment. The effect of anthelmintic treatment
on PHA-stimulated TNF in the stratified analysis was seen at
9 months post-treatment in the helminth-infected individuals
but over the trial period this was not statistically significant
(ptime=0.098, table 2A). Corresponding background (unstimu-
lated and uRBC-induced) cytokine responses were not increased
in either helminth-infected or -uninfected subjects (table S4).

Changes in cell counts after albendazole treatment do not ex-
plain changes in cytokine responses

To determine whether increased cellular responses could
be explained by higher cell numbers, we analysed complete
blood counts and sought associations with cytokine responses.
Total leukocytes ದmost markedly monocytesದ were increased in
the albendazole group compared to placebo at 9 months post-
treatment but not subsequently (table S5). Leukocyte counts
were positively associated with IL-2 to AscAg, however the rest
were mainly negative associations, of which the one with TNF
responses to PfRBC was significant. No association was found
between monocyte numbers and cytokine responses to any of
the stimuli (table S6). This indicates that increased leukocyte
numbers did not account for the general enhancement of cytokine
responses. Moreover, when analysis of the treatment effect on cy-
tokine responses was adjusted for leukocyte or monocyte counts,
similar effect sizes were observed. No treatment effect was noted
on other hematological parameters (table S5).

Albendazole does not affect Treg frequencies however does ex-
pand CTLA-4-expressing CD4+ T cells

To identify potential mechanisms of immune hyporespon-
siveness and their reversal by anthelmintics we examined Treg
(defined as CD4+CD25hiFOXP3+ T-cells) as well as CD4+ cells
expressing the suppressive molecules PD-1 and CTLA-4 in CD4+

T-cells (fig. 2). The frequency of Tregs did not change in the
albendazole group compared to placebo (estimates [95% CI] at
9 months -0.027 [-0.090 ದ 0.036], at 21 months -0.022 [-0.089 ದ
0.046]; ptime=0.65, fig. 2B& 2F). Similarly, treatment did not alter
the expression of PD-1 expressing CD4+ T-cells over the whole
trial period, although at 9 months there was a significant decrease
(-0.074 [-0.145 ದ -0.002] and 0.015 [-0.057 ದ 0.086]; ptime=0.089,
fig. 2C & 2G). However, the proportion of CTLA-4-expressing
CD4+ T-cells decreased after treatment and was significantly
lower in the albendazole group at both time points post-treatment
(-0.060 [-0.107 ದ -0.013] and -0.057 [-0.105 ದ -0.008] respectively;
ptime=0.017, fig. 2D & 2H). Similar to total CD4+ T cells,
the frequency of CTLA-4-expressing CD4+FOXP3ದ effector T
cells decreased significantly after treatment with albendazole (-
0.07 [-0.125 ದ -0.015] and -0.072 [-0.129 ದ -0.014] respectively,
ptime=0.013 (fig. 2E & 2I). The absolute change in CTLA-4
expression on effector T cells is shown in fig. 2J.

Discussion
This is the first report of cytokine responses as well as regulatory
cells and molecules analysed in a community before and after
repeated long-term placebo-controlled anthelmintic treatment.
We show that treatment of STH infections ablates their immuno-
suppressive effects, enhancing immune responses to helminth and
unrelated antigens as well as to mitogen. Most pronounced were
elevated pro-inflammatory cytokine responses after stimulation
with plasmodial antigens and mitogen. In addition, we observed
a reduction in CTLA-4-expressing CD4+ T-cells in albendazole-
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treated children, indicating that immuno-inhibitory mechanisms
could be affected by deworming.

The strongest effect of anthelmintic treatment was on anti-
plasmodial responses. These had not been specifically inves-
tigated in anthelmintic treatment RCTs. However, in cross-
sectional studies examining the effect of helminths on malaria-
specific cytokine responses, results are inconsistent (17-19). The
increase in response tomalaria antigens, could be due to a concur-
rent increase in malarial parasitemia in the albendazole-treated
group 6 months after initiation of treatment (20), coincident with
peak transmission season. By performing the analysis without
malaria-positive subjects, we ruled out that this could explain the
enhanced plasmodial-specific cytokine responses.

With regard to immune regulation, no treatment-related
change in Treg frequencies was seen, consistent with the find-
ing of similar Treg frequencies in STH-infected and -uninfected
children reported from the same study area (12). The proportion
of PD-1-expressing CD4+ T-cells was not significantly altered by
albendazole treatment over two years, although in the first year
post-treatment this was significantly lower. This is consistent with
studies that show increased PD-1 expression is associated with
helminth infections (13,18). The significant decrease in CTLA-
4ದexpressing CD4+ T-cells adds support to the important role
of this molecule in suppression of immune responses in general,
and its suggested role in immune hyporesponsiveness induced by
helminths (21).When put in the context of the blockade of CTLA-
4 (as well as PD-1) in treatment of melanoma and other cancers
(22), these findings lend further support to the suggested simi-
larities between immunoregulation in chronic infectious diseases
and cancers (23).

Three-monthly albendazole treatment over a two-year period
did not eliminate helminths. In earlier reports, the efficacy of one-
time single or double doses of albendazole and/or mebendazole
treatment has been low for Ascaris and Trichuris (24). Here we
show that this is the case even after 7 doses of albendazole
at three-monthly intervals. By using a household-clustered ran-
domization design, repeated treatments and observed intake, we
expected a more effective reduction in prevalence of STH. For
better deworming results, more intensive treatment or inclusion
of environmental control would be needed. However, it is clear
that even a 50% reduction in helminth infections in the com-
munity can start to reverse immune hyporesponsiveness and that
more effective deworming might give even more pronounced
immunological effects.

Subsequent to the increased pro-inflammatory responses af-
ter 9 months, IL-5 and IL-10 responses increased 21 months
post-treatment. Stratified analyses revealed that the increased
mitogen-stimulated IL-5 and IL-10 was not specific to helminth-
infected subjects, suggesting that factors other than the elimi-
nation of helminths may be responsible. This increased IL-10
response after two years of treatment might account for the fact
that immune responses are not higher in the albendazole versus
placebo at this time point.

Enhanced cytokine responses could also be the result of a
boosted immune response due to the release of antigens from
dying or dead worms. However, the strongest increases in re-
sponses were not to worm antigen but to the unrelated malar-
ial antigen. Moreover, using pre-treatment worm burden as a
proxy for antigen release, the modest increase seen to Ascaris
antigen was not correlated with burden of A. lumbricoides at pre-
treatment, nor were responses to non-related antigens correlated
with baseline worm burden. These argues that observed boosted
immune responses would not be due to release of antigens from
dying worms, which has been shown to account for part of the
increase in immune responses after treatment in schistosomiasis
(25), but rather due to the decrease in immune regulation.

A number of factors other than reduction in helminths could
contribute to the findings of this study, such as a direct effect of
albendazole, alterations in immune cell counts or changes in nu-
trients. Albendazole has been shown to affect cytokine responses
in vitro (26). The higher effect sizes in the stratified analysis of
helminth-positives than those in the total group indicate that the
enhancement of pro-inflammatory cytokine responses is unlikely
to be due to albendazole directly affecting the immune system.
Immune hyporesponsiveness could stem from alteration in cell
counts and changes in nutrients essential to functioning of the
immune system (27). Although cell counts were affected by treat-
ment, cell numbers did not account for cytokine responses. Since
improved energy resources can enhance immune responses, we
assessed BMI, and fasting glucose level as proxies for nutritional
status, but these parameters were not affected by deworming (20).

Our study shows significant effects of deworming on the
immune system. The effects could lead to enhanced immune
responses to other pathogens and vaccines. With respect to vac-
cines there is increasing concern regarding poor immunogenicity
in rural areas of developing countries (28, 29), therefore any
measure to alleviate hyporesponsiveness would havemajor public
health impact. It is also important to consider the long-standing
evolutionary coexistence between humans and helminths, the
disturbance of which might lead to the emergence of pathological
conditions (30), However, for this, long- rather than short-term
treatment courses are expected to reveal any clinical impact (31).
Considering this, it will be important to include immunological
measurements in future deworming programs and anthelmintic
therapy trials, to better understand and predict clinical outcomes.

Methods
Study design

The study was nested within the ImmunoSPIN trial, a double-blind
placebo-controlled trial conducted in two villages on Flores island, Indonesia
(20). All households were randomized to receive either a single dose of
400 mg albendazole or placebo once every three months for two years.
Treatment was allocated to households to minimise the risk of reinfection,
and was provided to all household members older than two years, except for
pregnant women, according to Indonesian guidelines. Intake was observed
by field workers. Participants gave written informed or parental consent.
The study was approved by the Ethics Committee of the Medical Faculty,
University of Indonesia, Jakarta and was filed by the Ethics Committee of the
Leiden University Medical Center, the Netherlands. The trial was registered
as ISRCTN83830814.

Study population
Randomization was based on 954 households in total, comprising 2022

(481 houses) and 1982 (473 houses) subjects in placebo and albendazole
groups, respectively. For immunological studies, 250 households in the main
village were randomly selected and individuals older than 4 years of age
were invited for venous blood sampling and assessment of anthropometric
parameters. Thereby 882 individuals were included, of which 858 provided
sufficient blood for whole-blood cultures. In the other village, 250 children
were randomly selected from the total population and children from the
same households were also included, giving 295 children in total with whole-
blood cultures. After cleaning the data (see below), at baseline 839 and 220
subjects were included from the two areas, comprising 572 placebo- and 487
albendazole-treated individuals.

Since STH infection and associated immunological changes were an-
ticipated to be most prevalent in school-age children, detailed analyses
of regulatory components were only performed in this age group (4-12
years old). From a randomized selection separate from the above-mentioned
subset, 145 children were included (71 randomized for placebo; 74 for
albendazole) of which 121 (61 and 60, respectively) had sufficient numbers
of cells. After 9 and 21 months 116 (56/60) and 107 (52/55) were followed up,
respectively.

Whole-blood culture and cytokine measurements
Whole-blood was stimulated in vitro as described before (32), for 24h

(lipopolysaccharide (LPS) stimulation) and 72h (Ascaris lumbricoides antigen
(AscAg), Plasmodium falciparum-parasitized red blood cells (PfRBC), unin-
fected (u)RBC and phytohemagglutinin (PHA) stimulations). PfRBC and uRBC
were prepared according to a standardized procedure (32). AscAg was a
homogenate of adult worms A. lumbricoides obtained from infected hu-
mans. Supernatants were stored at -20°C until quantification using Luminex
kits (Biosource, Camarillo, USA) on a Liquichip 200® Workstation (Qiagen,
Venlo, the Netherlands). Tumor necrosis factor (TNF) and interleukin (IL)-
10 were quantified in all supernatants whilst interferon (IFN)-ˠ, IL-2 and IL-
5 were quantified only in 72h supernatants. Samples with TNF levels ุ250

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

Footline Author PNAS Issue Date Volume Issue Number 5

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680



Submission PDF

pg/mL in unstimulated blood were excluded from the analyses, as they
were considered possibly contaminated. This cut-off value was derived from
outliers in the data distribution. Cytokine concentrations below the assayಬs
detectable range were replaced by half the detection limit provided by the
manufacturer.

Stool examination by microscopy and PCR
Stool samples were collected annually. Trichuris trichiura was detected

by microscopy after formol-ether concentration, whilst multiplex real-time
PCR detected hookworm (Ancylostoma duodenale, Necator americanus), A.
lumbricoides and Strongyloides stercoralis DNA, as described previously (32).

Complete blood counts
Complete blood counts (CBC) before and one year post-treatment were

determined using heparinized blood on a cell counter (Coulter® Ac-Tറ diff
Analyser, Beckman Coulter Inc., Fullerton, USA), while CBC 2 years post-
treatment were determined on a Sysmex KX-21N hematology analyser (PT
Sysmex Indonesia, Jakarta, Indonesia). Since both heparinized and EDTA
blood samples were used at the last time point, 325 samples were tested
in parallel analysis. All outcomes were highly comparable except for throm-
bocyte counts, thus the data of all parameters but thrombocyte counts were
pooled.

Flow cytometry
Peripheral blood mononuclear cells (PBMC) from 121 schoolchildren

were isolated by Ficoll gradient centrifugation. PBMC were fixed with FOXP3
Staining Buffer (eBioscience Inc., San Diego, USA) and cryopreserved until
further analysis. After thawing, cells were permeabilized and stained with
anti-CD3, anti-CD4, anti-FOXP3, anti-CD25, anti-CTLA-4, anti-PD-1 and anti-
Ki67 antibodies (table S7). Data were acquired on a FACSCanto (BD Bio-
sciences) and analysed using FlowJo software (Treestar Inc., Ashland, USA).

Statistical analysis

Log transformation was used for cytokines (log10(concentration+1)) and
most flow cytometry (log10(value)) data to obtain normally distributed vari-
ables. For childrenಬs BMI age-standardized z-scores were calculated according
to WHO references (33). To assess treatment effects, linear mixed models
were used; these are described in more detail in the supplement. Parameter
estimates and 95% confidence intervals for treatment effects at 9 and 21
months are reported. The analysis was intention-to-treat, and involved all
participants as assigned randomly at the start of the trial.
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