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Abstract9

Currently, there is no airborne in-situ method to reconstruct with high10

fidelity the instantaneous elevation of a dynamically rough surface of a turbu-11

lent flow. This work proposes a new holographic method that reconstructs the12

elevation of a 1-D rough water surface from airborne acoustic pressure data.13

This method can be implemented practically using an array of microphones14

deployed over a dynamically rough surface or using a single microphone which15

is traversed above the surface at a speed that is much higher than the phase16

velocity of the roughness pattern. In this work, the theory is validated using17

synthetic data calculated with the Kirchhoff approximation and a finite dif-18

ference, time domain method over a number of measured surface roughness19

patterns. The proposed method is able to reconstruct the surface elevation20

with a sub-millimetre accuracy and over a representatively large area of the21

surface. Since it has been previously shown that the surface roughness pattern22

reflects accurately the underlying hydraulic processes in open channel flow (e.g.23

[Horoshenkov, et al, J. Geoph. Res.,118(3), 18641876 (2013)]), the proposed24

method paves the way for the development of new non-invasive instrumen-25

tation for flow mapping and characterization that are based on the acoustic26

holography principle.27

PACS: 43.20.Ye, 43.30.Hw, 43.28.Gq28

Keywords: Acoustic scattering, roughness, dynamic surface, inverse method29
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I Introduction30

Understanding the spatial and temporal hydraulic changes in rivers and other types31

of open channels is of paramount importance for predicting flood risk, sediment32

movement and consequent morphological change. Understanding the spatial and33

temporal variability of flows has become a core element in assessing the water quality34

and ecological status of rivers (EU Water Framework Directive (WFD)). However,35

there is a significant shortcoming in our ability to monitor these flows at sufficient36

temporal and spatial resolution particularly during extreme events because there is37

no technology that can be deployed rapidly to accurately map the hydraulic and38

topographical information of rivers at a reach scale. Although attempts have been39

made to measure the dynamic surface roughness pattern underwater (e.g. [1, 2]),40

there is still a lack of real time airborne methods to measure the instantaneous surface41

elevation with sub-millimeter accuracy and at a very high temporal resolution. This42

information is of great importance for us to advance the existing theoretical link43

between the free surface behaviour and the underlying turbulent flow structures44

which carry information about the flow and sediment bed [3]. This link can be45

used to study the changes in the turbulent flow structures and velocity depth profile46

remotely for a range of open channel flows in the laboratory and in the field using an47

array of acoustic sensors deployed on a large scale, e.g. with a swarm of unmanned48

aerial vehicles (UAV).49

The main focus of this paper is to present a new method based on acoustic50

boundary integral equations and a pseudo-inverse technique applied to a matrix51

based equation to recover the instantaneous elevation of a dynamically rough surface52

at sub-millimeter accuracy, high temporal resolution and a representatively large53

spatial scale. In particular, this approach enables us to study the acoustic scattering54
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from an inhomogeneous roughness that supports multiple scales.55

The paper is organized in the following manner. Section II presents the underlying56

theory of acoustic scattering. This theory is then used in combination with the matrix57

inversion method which is described in Section III. Section IV presents the results58

of the application of the proposed inversion method to the acoustic pressure data59

which were predicted with the standard Kirchhoff approximation and with the Finite60

Difference Time Domain (FDTD) method. The conclusions are drawn in Section V.61

II Scattering of acoustic waves from a rough sur-62

face63

Let us consider a semi-infinite space in Cartesian coordinate system Oxyz bounded64

by rough surface S which mean plane S0 coincide with Oxy coordinate plane. Spatial65

scales and distribution of surface elevation ζ(x) are assumed to be arbitrary within66

the validity range of the proposed method and in this paper both deterministic67

and random profiles are tested. In order to simplify the numerical calculations, it68

is assumed that the surface is uniform in Oy-direction and the acoustic source is a69

directional line source which directivity pattern A(x, z) is defined in Section IV. This70

makes the stated problem one dimensional. The main axis of the far-field directivity71

pattern is inclined at the angle ψ0 with respect to the Ox axis and it is aligned with72

the centre of coordinates. The coordinates of the source and receiver are defined73

by (x1, z1) and (x2, z2), respectively. The source emits a continuous harmonic wave74

exp(−iωt) with angular frequency ω and constant amplitude in time.75

In this paper the roughness is defined by the dynamic behaviour of the water flow76

free surface. To maintain harmonic dependence on time, as suggested above, it is77
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assumed that the roughness is frozen over a short time period at which the complex78

acoustic pressure of the scattered harmonic wave needs to be measured. This is true79

because the speed of sound in air c0 = 340 m/s is much faster than the maximum80

phase velocity U = U0+cp at which the surface roughness pattern on the flow surface81

of a typical shallow water river with the mean depth h will propagate, i.e. c0 ≫ U .82

Here U0 denotes the flow velocity and cp =
√
gh is the phase velocity of the gravity83

waves, g is the gravity.84

In this paper the scattering from a rough surface is approximated by the tan-85

gent plane approximation as suggested in [4]. We assume that the surface is rigid86

which is a good approximation for the case when sound propagates in air above a87

dynamically rough water surface, e.g. free surface of a turbulent open channel flow.88

The approximation is based on the Kirchhoff method and principles of geometrical89

optics (e.g. [5]), and it is valid if local curvature radius a of the rough surface is90

much greater than the acoustic wavelength λ = 2π/k, where k is wavenumber of the91

acoustic wave. For the diffraction on a sphere, this condition can be stated in the92

following form93

sinψ ≫ 1

(ka)1/3
, (1)

where a is a radius of the sphere locally inscribed in rough surface. The condition in94

eq. (1) can be relaxed to [6]95

sinψ >
1

(ka)1/3
, (2)

so that the Kirchhoff approach remains accurate for the incident angles far from the96

low grazing angles. In this paper condition (2) is used in the numerical simulation97

to define the surface.98

Assuming that the distances from the source R1 and receiver R2 to a given point99

on the mean surface (see Figure 1) are much greater than the acoustic wavelength100
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Figure 1: The geometry of the acoustic problem of rough surface scattering.

and using the Kirchhoff method, the scattered acoustic pressure can be approximated101

by [4, 7]102

p(x2, z2) = − i

2πk

∫

S0

A(x)√
R1R2

exp [ik(R1 +R2)− iqzζ(x)]

[

qz − q
∂ζ(x)

∂x

]

dx, (3)

where ζ(x) is surface elevation and

qz =k

(

z1
R1

+
z2
R2

)

, (4)

q =− k

(

x1 − x

R1

+
x2 − x

R2

)

, (5)

R1 =

√

(x− x1)
2 + z21 , (6)

R2 =

√

(x− x2)
2 + z22 . (7)

Assuming that the surface is smooth, ∂ζ(x)/∂x ≪ 1, equation (3) can be simplified103
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to104

p(x2, z2) = − i

2πk

∫

S0

A(x)√
R1R2

exp [ik(R1 +R2)− iqzζ(x)] qzdx. (8)

If the profile of the surface ζ(x) is known than the integral in equation (8) can be105

solved numerically. However, the surface in the above integral is assumed to be106

unknown and it is the acoustic pressure in the left hand side which is known from107

experiments or from synthetic data (obtained with the Kirchhoff approximation and108

FDTD method in this paper). This formulates an inversion problem where the109

variable ζ(x) needs to be recovered from the available acoustic pressure data.110

III Matrix inverse method111

In order to invert the surface elevation ζ(x) it is proposed to use a numerical approach112

to solve integral equation (8). For this purpose the integral is discretised over the113

surface S0 with the M uniform spatial elements ∆x = xm+1 − xm, m = 1, ...,M114

and approximated by the sum over these elements. It is noted that the size of the115

element ∆x has to be at least five times smaller than the acoustic wavelength λ[6]116

(i.e. ∆x < λ/5). The scattered acoustic pressure at the receiver position (x2, z2) can117

be approximated by118

p(x2, z2) = − i

2πk

M
∑

m=1

A(xm)
√

R1,mR2,m

exp [ik(R1,m +R2,m)− iqz,mζ(xm)] qz,m∆x, (9)

where all the terms with the index m are defined at points xm, m = 1, ...,M on the119

surface S0. Equation (9) can be rewritten in the form of a scalar product of two120

vectors121

p(x2, z2) = DMEM , (10)
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where

DM =

{

− i

2πk

A(xm)
√

R1,mR2,m

exp [ik(R1,m +R2,m)] qz,m∆x

}

m=1,...,M

, (11)

EM = {exp [−iqz,mζ(xm)]}m=1,...,M . (12)

In order to retrieve the surface profile ζ(x) it is necessary to have acoustic pressure122

data recorded at more than one receiver positions that the acoustic pressure vector123

P with N elements can be formed. With multiple receiver positions defined by the124

coordinates (x2,n, z2,n), n = 1, ..., N , equation (10) needs to be converted into the125

matrix form in order to apply the matrix inversion.126

One way of deriving the matrix form is to isolate the unknown elevation of the127

rough surface ζ(x) at the points xm, m = 1, ...,M for all receiver positions in one128

single vector EM . In doing so it is assumed that for fixed index m the variability of129

qz,mn, n = 1..N with respect to the position on the surface is negligible in the vicinity130

of the specular point defined by the angle ψ0 as shown in Figure 1. This gives131

PN×1 = HN×MEM×1, (13)

where the elements of the matrix HN×M are defined by132

hmn =

{

− i

2πk

A(xmn)
√

R1,mnR2,mn

exp [ik(R1,mn +R2,mn)] qz,mn∆x

}

m=1,...,M,n=1,...,N

(14)

and unknown vector EM×1 is given by equation (12) with qz,m defined by the receiver133

positioned at the specular angle ψ0. The form of equation (13) is identical to that134

used in inverse frequency response function (IFRF) techniques with HN×M repre-135

senting transfer matrix for an array of microphones and vector EM×1 representing136

velocity potentials on the surface [11]. This allows us to apply previously developed137

techniques to recover surface profile.138
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It is practical to assume that the number M of unknown points on the surface is139

greater than the number of receivers N (M > N). However, this leads to an under-140

determined system of equations which may result in an ill-conditioned matrix and a141

non-unique inverse solution to problem stated in equation (13). In order to invert142

the matrix HN×M in equation (13) it is proposed to use a pseudo-inverse method143

based on the singular value decomposition technique (SVD) (e.g. [8]). Applied to144

matrix HN×M this gives145

HN×M = UN×NSN×M V̄
T
M×M , (15)

where UN×N and V M×M are unitary matrices (defined by AĀ
T

= I), SN×M is146

a diagonal matrix with nonnegative elements arranged in the descending order of147

smallness, Ā stands for complex conjugate and AT denotes matrix transpose. In148

order to apply pseudo-inverse techniques and decrease the computational time, in149

this paper the truncated form of matrices S and V in equation (15) was used so that150

HN×M = UN×NSN×N V̄
T
N×M . (16)

Applying the SVD to equation (13) and using the definition of the unitary matrix151

the unknown vector EM×1 can be expressed in the following form152

EM×1 = V M×NS
−1

N×N Ū
T
N×NPN×1, (17)

where S−1

N×N indicates the matrix inverse. The matrix SN×N may contain small153

order elements resulting in singular values in the inverted matrix S−1

N×N . In order to154

regularize ill-conditioned matrix and to filter the singular elements from the inverse155

matrix it is proposed to use the Tikhonov regularization technique (e.g. [11] and [9])156

that gives157

EM×1 = V M×NS
−1

β,N×NŪ
T
N×NPN×1, (18)
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where S−1

β,N×N =
[

SN×N + β2S−1

N×N

]

−1
and β is the regularization parameter. In or-158

der to adjust parameter β we used the generalised cross validation (GCV) technique.159

This technique requires to minimize the following function160

F (β) =
r2β

Tr
(

IN×N −UN×NSN×NS
−1

β,N×NŪ
T
N×N

)2
, (19)

in which rβ is the residue defined by l2-vector norm161

rβ =
∣

∣

∣

∣

∣

∣

(

IN×N −UN×NSN×NS
−1

β,N×NŪ
T
N×N

)

PN×1

∣

∣

∣

∣

∣

∣
. (20)

The argument (phase) of each element of vectorEM×1 provides information about162

the surface elevation. In order to retrieve the phase from matrix equation (18)163

the complex natural logarithm is applied element-wise to the results of the matrix164

product. This yields165

QζM×1
= −ℑ[Ln(EM×1)], (21)

where166

QζM×1
= {qz,mζ(xm)}m=1,...,M , (22)

with ℑ(< · >) representing the imaginary part of the natural logarithm. It is noted167

that the application of Ln in equation (21) is restricted to the case when −π <168

qz,mζ(xm) < π that enables us to uniquely define the elements of the vector QζM×1
.169

This condition holds in the vicinity of a specular point defined by the angle ψ0170

and fails as distance between specular point and xm, m = 1, ...,M increases. The171

discretized roughness profile {ζm} at the points {xm} can then be deduced as172

{ζm}m=1,...,M =

{−ℑ[Ln(em)]
qz,m

}

m=1,...,M

, (23)

where em is an element of the vector EM×1.173
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The fact that the proposed inversion largely depends on the proximity of a surface174

point to the specular point leads to the idea of replacing the directional source with175

simple monopole with a unit amplitude. As a result, the elements of the matrix176

HN×M can be simplified to177

hmn =

{

− i

2πk

exp [ik(R1,mn +R2,mn)]
√

R1,mnR2,mn

qz,mn∆x

}

m=1,...,M,n=1,...,N

. (24)

This reduces input data to geometrical parameters defined by the position of source178

and receivers with respect to the surface S0 and data recorded on the array of re-179

ceivers.180

IV Results181

In this paper, validation of the proposed inversion method (equation (23)) is based on182

two sets of synthetic data generated using the Kirchhoff integral and FDTD method.183

The former demonstrates the implementation of the proposed inverse technique and184

the latter shows application of this technique to independent set of data obtained in185

order to retrieve unknown surface profile.186

A Simulated roughness187

In this section the acoustic pressure scattered by the rough surface was modelled with188

the Kirchhoff integral (equation (8)). In order to reconstruct the surface elevation it189

was proposed to use an array ofN = 121 receivers arranged on a circular arch with the190

radius of R = 0.4 m as illustrated in Figure 2. The receivers and source are positioned191

on the opposite sides of the arch. The arch is suspended at d = 0.01 m above the192

mean surface of water, S0, and the centre of the arch coincides with the centre of193
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U
0

10mm

Source Receiver

φ45o

Figure 2: The acoustic setup used to reconstruct the rough surface in the numerical

experiment.

Ox axis. The source was installed at the angle of ψ0 = 45o and its coordinates were194

(R cosψ0, R sinψ0 + d), where d is the vertical distance of the circular arch base to195

the plane S0. The position of receivers is defined by (−R cosφ,R sin φ+ d), where φ196

varies from 15o to 75o with 0.5o resolution that produces 121 receiver positions. The197

sound source emitted a continuous harmonic wave at f = 43 kHz and its far-field198

directivity pattern was defined by199

A(θ) =
J1(ka sin θ)

ka sin θ
, (25)

where a = 0.02 m is the radius of the source aperture. The position of the receivers200

was characterized by the angle φ which was taken from the horizontal line. The201

number of the receivers in the array, N , and the adopted geometry were consistent202

with that used in the experiments reported by Nichols [10]. Increasing the number203

of receivers may result in more singular values and it may lead to a more unstable204

inverse solution. Decreasing the number of the receivers may lead to a poorer spatial205

resolution of the surface elevation and higher ambiguity.206
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In the calculations reported in this section the 1-D rough surface ζ(x) was sim-207

ulated with the Fourier series containing random phase and amplitudes assigned in208

accordance with the typical characteristics of gravity-capillary waves [12]. This gives209

ζ(x) = σ
∑

n

Cn cos (Knx+ τn) , (26)

where σ is the standard deviation of the rough surface elevation (mean roughness210

height), Kn is wavenumber in the surface roughness spatial spectrum, τn is phase211

which value is randomly generated and amplitude Cn is defined by the correlation212

function of the waves of which the surface roughness pattern is composed and it is213

proportional to the wavelength ln of the n-th harmonic in the Fourier expansion so214

that215

Cn ∼
(

2π

ln

)α/2

. (27)

In particular the amplitude of each term in the Fourier expansion is linked to the216

power spectrum slope defined by the power of α = −4 [13]. The surface elevation217

constructed with this kind of spatial spectrum supported multiple scales ranging218

from 8 mm to 115 mm and satisfied the condition (2) on the validity of Kirchhoff219

approximation. The standard deviation of the surface is set to σ = 1 mm.220

Figure 3(a) shows the surface elevation simulated with the Fourier series using221

the range of spatial wavelengths of 8mm < ln < 115 mm and compared with surface222

elevation reconstructed with the proposed inversion method. This figure also shows223

the absolute error in the surface reconstruction which was calculated as ǫζ(x) =224

|ζp(x)−ζs(x)|, where ζp(x) is the surface elevation predicted with the inverse method225

and ζs(x) is the surface elevation simulated with equation (26). The inversion was226

applied to the surface interval containing M = 3000 surface points that included the227

specular reflection point and its vicinity. It can be seen from the data presented in228

Figure 3 that the range of x for which the surface roughness reconstruction could be229
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Figure 3: (a) An example of the surface realization, ζ(x), (dashed line) used in

equation (8) and its reconstruction from the Kirchhoff approximation (solid line)

based on equation (23). (b) Absolute error of the reconstructed surface.

achieved was limited by the position of the specular reflection point which was in the230

range of -0.1 m < x < 0.1 m. In particular, this is illustrated in Figure 3(b) where the231

absolute error of the surface reconstructed within this interval is limited and does not232

exceed 0.22 mm which is considerably smaller than the maximum roughness height233

of 2.5 mm. The root mean square (RMS) error for this range does not exceed 0.12234

mm that is 12% of the true mean roughness height. In this analysis the root mean235

square error was calculated as236

ǫrms =

√

√

√

√

1

N

N
∑

n=1

[ζp(xn)− ζs(xn)]2, (28)

where the deduced surface elevation ζp(xn) and simulated surface elevation ζs(xn)237

are taken at the point xn. It is noted that these errors are comparable or smaller to238

those which are typical for an alternative laser-induced fluorescence (LIF) method239
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Figure 4: An example of the behaviour of the function F (β) for the range of 10−20 <

β < 105.

(e.g. ±0.14 mm for the LIF method used in ref. [10]).240

The regularization parameter β was selected in accordance with equation (19).241

Figure 4 illustrates the variation of the GCV function F for the reconstruction process242

for the surface shown in Figure 3(a). The parameter β is small (β ∼ 10−12) and243

defines the threshold below which equation (18) becomes unstable. It increases with244

the decrease in the number of receivers causing the inversion process to become more245

unstable.246

In order to understand the range of scales which can be recovered with equation247

(18) we compared the power spectrum of the surface roughness for a representative248

number of realizations obtained by varying randomly phase with the amplitudes249

of the Fourier expansion (equation (26)). The power spectrum was calculated by250

applying the Hanning window and Fourier transform to the original and recovered251

surface elevation data for each of the surface realization. It was then averaged over252

all the surface realizations. It was found that the average power spectrum converges253
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Figure 5: The normalized power spectrum averaged over 100 surface elevation re-

alizations. Dash-dot line - the spectrum based on equation (27); dashed line - the

inverted spectrum; solid line - the spectrum of the surfaces generated with equation

(26).

to the true mean value to within 1% provided that at least 100 surface realizations254

were used. The average power spectrum inverted with the proposed method follows255

the slope α = −4 defined by equation (27) for K < 800 1/m (Figure 5). This256

corresponds to the lowest scale present in the simulated surface roughness wavelength257

of ln ≈ 8 mm. For the spectrum of larger scales (centimetre scale) when K < 800258

the agreement between the average spectrum inverted with the proposed technique259

and that defined by equation (26) was within 15%.260
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B Measured roughness261

In order to illustrate the application of the inversion method developed in Section III262

we used the acoustic pressure dataPN×1 calculated with the Kirchhoff approximation263

and with the full-wave 2-D FDTD method [14] for a range of roughness realizations264

measured with the light-induced fluorescence method detailed in [10]. In the case of265

the Kirchhoff approximation the acoustic pressure was calculated as described in the266

previous section.267

In the case of the FDTD method the acoustic pressure was computed for a source268

with directivity pattern defined by (25). This source directivity was simulated by269

setting up a 33 mm long line array of 49 point sources operated in phase. The270

frequency of the acoustic wave emitted by the source was f = 43 kHz. The time and271

space discretization intervals in the FDTD calculations were 1.03 µs and 0.5 mm,272

respectively [15].273

The surface roughness data used in this work were obtained in a hydraulic flume274

with the method detailed in [10] and these were assumed to be exact in our calcu-275

lations. The flume had a bed of hexagonally packed spheres with a diameter of 25276

mm, and was tilted to a slope of S0 = 0.004. The flow was turbulent, uniform and277

constant velocity was maintained across the length of the measured spatial interval.278

The surface elevation data was collected for four flow regimes which corresponded to279

the flow with the 60, 70, 80 and 90 mm of uniform water depth, respectively. These280

regimes corresponded to the mean flow velocity of 0.43, 0.50, 0.57 and 0.65 m/s,281

respectively. The arrangement of the receiver positions in the models was identical282

to that detailed in the previous section for a given realization of ζ(x).283

In Figure 6 the real and imaginary parts of the angular dependent acoustic pres-284

sure predicted with the FDTD method is compared against that predicted with the285

16
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Figure 6: The scattered acoustic pressure for a single realization of the rough sur-

face elevation for flow depth 60 mm predicted with FDTD method(solid line) and

Kirchhoff approximation (8) (dashed line). (a) Real part, (b) imaginary part.

Kirchhoff approximation (8). These results correspond to a realistic flow surface286

roughness realization measured for the 60 mm deep flow regime. The results suggest287

that the Kirchhoff approximation generally underpredicts the acoustic pressure in288

comparison to that predicted by the FDTD method. This is particularly notice-289

able in the case of the imaginary part and for the angles of incidence close to 45o.290

These acoustic pressure data were then used with the proposed inversion technique291

to reconstruct the flow surface roughness.292

Figures 7 (a)-(d) present the results of the application of the inverse technique293

to the acoustic pressure data predicted with the Kirchhoff approximation and with294

the FDTD method for flow surface realizations representing each of the four flow295

regimes. The inversion results are shown in the range −0.1 < x < 0.1 m where the296

maximum relative error was within 45% when the acoustic pressure was predicted297
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with the FDTD method and 20% when the acoustic pressure was predicted with the298

Kirchhoff approximation. Within this interval the effects of shadowing and multiple299

scattering are relatively small that enables us to use equation (8) as an accurate300

approximation to the full-wave FDTD results. In all cases the minimum of β was301

in the interval [0, 1] and its values is listed in Table 1. The accuracy we achieved302

depended on how far the point on the surface was from the nominal specular reflection303

point.304

Figure 8 presents the mean spatial spectra which demonstrate the range of scales305

of roughness which were recovered through the proposed inversion technique. These306

spectra were inverted using the acoustic pressure data predicted with the Kirchhoff307

approximation and with the FDTD method. As it was noted in the previous section308

IV A, the normalized power spectrum provides information on the contribution of309

different roughness scales to the pattern of waves observed on the surface. For the310

four flow regimes considered in this work the recovered surface predicts the actual311

slope of the power spectrum closely for K < 1000 1/m. However, it is clear that312

the accuracy of the proposed inversion techniques deteriorates as K approaches 1000313

1/m that limits the use of the technique to identify the correct range of roughness314

scales, i.e. those scales which are at a ln < 6.3 mm spatial wavelength. This can315

be explained by the limitations of the Kirchhoff approximation (equation (8)) as the316

local radius of curvature increases with the decrease of the surface scales. It is also317

noted that, although in this paper the coordinates of the receivers are exact, the318

implementation of the method can be limited by the uncertainties in the receiver319

positions. The sensitivity of the proposed method is analysed on Appendix A.320

It is difficult to obtain a useful measure of the error between the measured spec-321

trum and that reconstructed with the proposed inversion method by comparing these322

spectra directly. This is because the spectral power shown in Figure 8 varies by 10323
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Figure 7: Examples of the surface elevation ζ(x) for the four flow regimes. Solid

line - measured with the LIF method; dashed line - reconstructed with the sound

pressure data predicted with the FDTD mode; dashed-dot line - reconstructed with

the acoustic pressure data predicted with the Kirchhoff approximation. (a) Flow

depth 60 mm, (b) flow depth 70 mm, (c) flow depth 80 mm, (d) flow depth 90 mm.
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Figure 8: The normalized power spectrum of rough surface (solid line) compared

against the power spectrum of the reconstructed surface where dashed and dashed-

dot lines represent the use of FDTD and Kirchhoff approximation data, respectively.

Thick solid line represents slope of the reconstructed power spectrum. (a) Flow depth

60 mm, (b) Flow depth 70 mm, (c) Flow depth 80 mm, (d) Flow depth 90 mm.
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orders of magnitude over the considered range of wavenumbers. For this purpose324

all results in Figure 8 are compared against slope of the measured surface which is325

deduced with the linear regression technique between K > 100 and K < 1000 1/m.326

The slope of the measured power spectrum for all flow regimes is approximated by327

α = −5. A comparison between fitted line with slope −5 and spectra recovered with328

the proposed acoustic method suggests that the method provides adequate prediction329

of the surface power spectrum.330

V Conclusion331

In this paper we demonstrate the derivation of an inversion method based on the332

Kirchhoff approximation of the boundary integral equation and the application of an333

inverse technique based on SVD and Tikhonov regularization to an underdetermined334

system of equations. The surface roughness data we used in our work were simulated335

surface roughness and surface roughness measured with the LIF method that were336

assumed to be exact. The proposed inversion method enables us to determine the337

1-D surface roughness with a maximum RMS error of 45% (FDTD method) and 20%338

(Kirchhoff approximation), both being sub-millimeter scale errors. This method also339

enables us to estimate the average spatial power spectrum of the surface roughness for340

the range of wavenumbers K < 1000 1/m. This corresponds to spatial wavelengths341

of ln > 6.3 mm. For the simulated surface roughness this spectrum converges to its342

true mean value to within 15% provided that at least 100 realizations are used in343

the averaging process. The area of the rough surface which can be reconstructed344

with the proposed acoustic setup and with the reported accuracy is within ±0.1 m345

range. This range determines the maximum wavelength in the spatial spectrum of346

surface which can be estimated with the proposed acoustic setup and it is limited347
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by the wavelength of the incident acoustic waves, by the number and arrangement348

of the receivers in the microphone array and by the adopted directivity of the sound349

source. It is shown that the reconstructed surface roughness power spectrum follow350

a power law characterising the simulated/measured surfaces.351

The inversion method requires further improvements to increase accuracy for the352

scales in the centimeter and sub-centimeter range of spatial wavelength. This should353

involve the use of an extension of Kirchhoff approximation which can account for354

higher roughness slopes or a more refined 3D numerical model for 2D roughness.355

The retrieved roughness profiles can be used to find key statistical and spectral356

characteristics of the water surface. The proposed method can potentially be used357

together with the acoustic array measurements to accurately retrieve the temporal358

and spatial profile of the dynamic shallow water flow.359
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Appendix A: Sensitivity365

In order to test the sensitivity of the proposed inverse method it is necessary to

simulate some type of geometrical uncertainty. In the case when position of all

receivers are fixed the uncertainty in position is linked to the coordinates of the

array frame. In this paper the frame is circular arch with radius R = 0.4 m. For

22



-3 -2 -1 0 1 2 3
0

50

100

150

200

δ⋆ × 100%

ǫ⋆ r
m
s
×

10
0%
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position
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the 1D surface roughness the coordinates of the array frame can be varied along Oz

and Ox axis. Introducing a small perturbation δ = δ⋆R, where δ⋆ is dimensionless

small parameter, to the distances R1 and R2 shown in equations (6) and (7) the

uncertainty along Ox axis can be defined by

R1 =

√

(x− x1 + δ)2 + z21 , (29)

R2 =

√

(x− x2 + δ)2 + z22 . (30)

whereas the uncertainty along Oz axis is given by

R1 =

√

(x− x1)
2 + (z1 + δ)2, (31)

R2 =

√

(x− x2)
2 + (z2 + δ)2. (32)

In both cases dimensionless parameter δ⋆ varies within 3% of frame radius R around366

frame initial coordinates. The results are shown in Figure 9 where the uncertainty367

is introduced in the inversion with the FDTD simulation of acoustic scattering. It is368

observed that the variation along the Oz axis depicted in circles results in a higher369

relative deviation in the RMS roughness height defined by370

ǫ⋆rms(δ
⋆) =

√

∑N
n=1

[ζp(xn, δ⋆)− ζp(xn, δ⋆ = 0)]2
√

∑N
n=1

[ζp(xn, δ⋆ = 0)]2
, (33)

within which ζp represents the predicted surface roughness with the inverse method.371

The root mean square (RMS) roughness hight reconstructed in the [−0.1, 0.1] m372

spatial interval deviates linearly from the predicted initial (δ = 0) RMS roughness373

hight as the position of the frame varies within 3% from the initial position. The374

uncertainty in Ox coordinate of the frame δ⋆ × 100% = ±1% with respect to its375

radius R results in 25% variation in the RMS roughness height. Applying the same376
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Figure 10: Relative variation in RMS surface roughness height computed for ran-

domly perturbed positions of the receivers

uncertainty to the z coordinate of the receiver position results in approximately 50%377

deviation in the RMS roughness height from the initial solution.378

To test the uncertainty in the receiver position it is proposed to introduce a ran-379

dom perturbation. The coordinates of all the 121 receivers are perturbed randomly380

with a uniform distribution in the circle which radius δ⋆ does not exceed half of the381

distance between two adjacent receivers which is approximately 3 mm. The results382

are shown in Figure 10. It is suggested that increasing the radius of the perturbation383

results in a significant increase in the variation of the RMS roughness height calcu-384

lated with equation (33). For 0.1% uncertainty in the position of each sensor the385

relative variation of the RMS roughness height is below 20% whereas at uncertainty386

approaching 0.5% (i.e. receiver is randomly positioned in the circle with radius ap-387

proaching 1.5 mm) of frame radius R the relative variation ǫ⋆rms×100% is above 50%388
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that makes the inverse method invalid for reconstruction of roughness in the given389

spatial interval. It is clear that method is 10 times more sensitive to the uncertainty390

in the individual position of each receiver in the array compared to the uncertainty391

in the position of the whole array.392
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Table 1: Examples of the minimum values of the regularization parameter β ob-

tained for 4 realizations of the surface elevation associated with the four adopted

flow regimes.

60 mm 70 mm 80 mm 90 mm

β × 107 8.4 8.4 8.4 13

.433
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