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Abstract 9 

A key aspect of the current debate about the Anthropocene focuses on defining a new geological 10 

epoch. Features of the Anthropocene include a biodiversity crisis with the potential ƚŽ ƌĞĂĐŚ ͞ŵĂƐƐ 11 

ĞǆƚŝŶĐƚŝŽŶ͟ ƐƚĂƚƵƐ alongside increasing global CO2 and temperature. Previous geological boundaries 12 

associated with mass extinctions, rises in atmospheric CO2 and rises in global temperature are more 13 

usually associated with transitions between geological periods. The current rapid increase in species 14 

extinctions suggest that a new mass extinction event is most likely imminent in the near-term future. 15 

Although CO2 levels are currently low in comparison to the rest of the Phanerozoic, they are rising 16 

rapidly along with global temperatures. This suggests that defining the Anthropocene as a new 17 

geological period, rather than a new epoch, may be more consistent with previous geological 18 

boundaries in the Phanerozoic. 19 

 20 

 21 
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 24 
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Interest in the Anthropocene concept has increased exponentially across science, social science and 27 

the humanities in recent years (Oldfield et al., 2013). However, formalising the Anthropocene within 28 

standard stratigraphic terms is extremely difficult as it must rely on what is observed in the 29 

stratigraphic record while being intrinsically a present- and future-facing issue. There has already been 30 

much debate over whether a new epoch should be defined (e.g. Zalasiewicz et al., 2008; Autin & 31 

Holbrook, 2012; Devries Klein, 2015; Finney & Edwards, 2016; Waters et al., 2016), the timing of the 32 

potential HoloceneʹAnthropocene boundary (Zalasiewicz et al., 2015a), and appropriate stratigraphic 33 

markers that may be used to demarcate its onset (Zalasiewicz et al., 2014; Swindles et al., 2015), if 34 

indeed it is accepted by the International Stratigraphic Commission (ICS). Some of the times that have 35 

been proposed for the beginning of the Anthropocene have been based on ambiguous or regionally-36 

variable stratigraphic markers (see Zalasiewicz et al., 2015b). For the purposes of continuity within the 37 

International Chronostratigraphic Chart, unambiguous, globally-widespread markers in the geological 38 

record are needed to define the Anthropocene; such as the appearance/disappearance of indicator 39 

fossils, chemical signatures or abiotic markers. Two stratigraphic markers ʹ spheroidal carbonaceous 40 

particles (SCPs) (Rose, 2015; Swindles et al., 2015) and radionuclides from nuclear weapons testing 41 

(Zalasiewicz et al., 2015a) may be well placed to provide a globally-synchronous marker for a mid-42 

twentieth century date, as they can be found in sediment successions across the globe. This 43 

corresponds with the onset of the Great Acceleration which is a period defined by rapidly increasing 44 

impact of human activities on the Earth system since the 1950s (Steffan et al., 2007). Data detailing 45 

the rapid increase in human impact (e.g. CO2, nitrous oxide, ocean acidification, human population 46 

increase, and fertilizer consumption) on the Earth system since the 1950s were first published in 2004 47 

and recently updated to reflect changes up to 2010 by Steffen et al., (2015). If the Anthropocene is 48 

formalised by the ICS, then the transition from the Holocene to the Anthropocene must be supported 49 

by the identification of a clear signal in the geological record, and given that human activity is the 50 

driver of the Anthropocene, such a signal should ideally reflect the impact of human activity on the 51 

Earth system (Hamilton, 2015).  52 
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Williams et al. (2015) have suggested that the Anthropocene may potentially mark a third stage in the 53 

evolution of the biosphere, characterised by the dominant impact of humans across planet Earth. 54 

Williams et al. (2015) discuss potential trajectories for human influence on the biosphere, both with a 55 

potential collapse of the human-dominated Anthropocene leaving only a minor trace in the geological 56 

record at one extreme and a potential major increase in human influence that leaves a much more 57 

significant mark in the geological record at the other. The authors suggest that, with the latter 58 

potential trajectory, the Anthropocene may come to mark the beginning of a third phase in the 59 

development of the biosphere. This possibility far exceeds the definition of a new geological epoch. 60 

The formalisation of the Anthropocene as an epoch may be premature as the Earth system is still in 61 

transition, and future trajectories are currently unclear. However, without significant action, the scale 62 

ŽĨ ŚƵŵĂŶŝƚǇ͛Ɛ ŝŵƉĂĐƚ ŽŶ ƚŚĞ EĂƌƚŚ ƐǇƐƚĞŵ ŝƐ more likely to at least match transitions between periods 63 

in the geological timescale.   64 

A key feature of this transition is a major decline in the number of species across the planet that may 65 

reach levels similar to previous mass extinction events. This potential mass extinction has been coined 66 

͚ƚŚĞ ƐŝǆƚŚ ŵĂƐƐ ĞǆƚŝŶĐƚŝŽŶ͛ ŝŶ ƚŚĞ ůŝƚĞƌĂƚƵƌĞ ;e.g. Barnosky et al., 2011; Ceballos et al., 2015). The 67 

International Union for Conservation of Nature (IUCN) reports over 800 confirmed extinctions in the 68 

last 500 years, and global extinction rate is increasing at an unprecedented pace (e.g. Ceballos et al., 69 

2015; De Vos et al., 2014; Urban, 2015; Waters et al., 2016). The current extinction rate has already 70 

far exceeded the one extinction per million species years (E/MSY) ͞ďĂĐŬŐƌŽƵŶĚ͟ ŐĞŽůŽŐŝĐĂů ůĞǀĞů 71 

(Pimm et al., 1995) and will continue to increase in the near future (Pimm et al. 2014; De Vos et al., 72 

2014). True background extinction rates are difficult to estimate with wide variation between studies. 73 

For example, the value of 1 E/MSY rate was proposed based on terrestrial vertebrate fossil record 74 

(Pimm et al., 1995), but even higher rates have been suggested for mammals. For example, Barnosky 75 

et al., (2011) suggest 1.8 E/MSY whereas Ceballos et al., (2015) assessed mammal extinctions based 76 

on a 2 E/MSY background level and found that rates of extinction in the last 500 years were over 100 77 

times this level. De Vos et al (2014) suggested even greater current extinction rates approximately 78 
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1,000 times higher than natural background levels of 0.1 E/MSY based on phylogenetic analysis and 79 

diversification rates. Regardless, current extinction rates exceed all of these projections of 80 

͞ďĂĐŬŐƌŽƵŶĚ͟ ĞǆƚŝŶĐƚŝŽŶ ;Pŝŵŵ Ğƚ Ăů͕͘ ϮϬϭϰͿ͕ ǁŚŝĐŚ ƐƚƌŽŶŐůǇ ƐƵggests that a major extinction event is 81 

beginning or about to begin.  82 

The previous five mass extinctions, three of which occur over several tens to hundreds of thousands 83 

of years or more towards the end of geological periods, are characterised by a decline of at least 75% 84 

of species (Sepkoski 1996; Jablonski & Chaloner, 1994; Barnosky et al. 2011; Table 1). The fossil record 85 

is clearly imperfect, with certain plants and animals more likely to become fossils than others due to 86 

their abundance, habitat, life form and chemical composition as well as how they were actually 87 

preserved (e.g. Spicer, 1989; Greenwood, 1991; Benton et al., 2000; Gastaldo, 2001; Kidwell, 2001; 88 

Benton and Harper, 2009; McNamara et al., 2012; Bacon et al., 2015). Shallow marine invertebrates, 89 

for example, have a much more complete fossil record (Jablonski, 1991; Alroy et al., 2008) than small 90 

mammals such as bats and rodents (Plotnick et al., 2016). Different organisms also have different 91 

sensitivities to mass extinction events. For example, plants do not show globally severe responses to 92 

most previous mass extinctions with the exception of the end-Permian (Cascales-MŝŸĂŶĂ Ğƚ Ăů͕͘ ϮϬϭϱ͖ 93 

McElwain & Punyasena, 2007). These differences are reflected in the fossil record by an often much 94 

clearer signal of mass extinction in the marine  compared with the terrestrial realm (Jablonski, 1991; 95 

McElwain & Punyasena, 2007), ĂŶĚ ƚŚĞ ͞BŝŐ ϱ͟ mass extinction events were first identified in the 96 

marine invertebrate record (Raup and Sepkoski, 1982; Sepkoski, 1996).  97 

The disparities between marine and terrestrial fossil records and between modern ecological and 98 

palaeobiological data make comparing modern extinction likelihoods to past mass extinctions 99 

problematic. Plotnick et al., (2016) compared IUCN mammal data to palaeoecological data and found 100 

that many of the currently at risk species do not have a fossil record. They suggest that, for mammals, 101 

greater than 75% species decline is required to generate an extinction event that would leave a fossil 102 

record similar to one ŽĨ ƚŚĞ ͞BŝŐ ϱ͟ mass extinction events. Although modern extinctions are severe, 103 
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they have not yet reached a level comparable with previous mass extinctions (Bamback, 2006). 104 

Although the 75% species decline is somewhat arbitrary and may over-estimate the likelihood of a 105 

mass extinction event, it remains a useful starting point to investigate current threat levels.  106 

The IUCN assesses species of plant, animal and fungi to determine their extinction risk. Currently, just 107 

under 5% (4.6%) of species within these groups have been assessed (IUCN, 2015). Within classes, this 108 

ranges from 100% of species assessed (e.g. Aves) to under 1% of species assessed (e.g. 109 

Anthocerotopsida (Hornworts) and Insecta).  interpretation of IUCN data must be considered with the 110 

caveat that only a small fraction of most classes have been assessed for their conservation status and 111 

extinction risk. This is particularly the case for several classes of invertebrate and plant. However, the 112 

assessments provide an interesting sample of species current extinction risk across groups. In order 113 

for a mass extinction to be considered in progress, a minimum of 75% observed extinctions would be 114 

needed in at least two classes (Bamback, 2006).  115 

An examination of IUCN extinction status for the species currently assessed, shows that, with the 116 

exception of Turbellaria (flatworms), for which only one species has been assessed, no class of 117 

assessed plant or animal has experienced known extinction rate at or exceeding 18% (Figure 1(a)). 118 

When data are included for species highly likely to be extinct, but not confirmed to be extinct 119 

(classified informally by the IUCN as critical, probably extinct and critical, probably extinct in the wild) 120 

(Figure 1(b)), no class of plant or animal has confirmed or likely extinct numbers at or above 35%. 121 

These percentage species extinctions across classes are far below the required 75% species extinction 122 

level needed to define a mass-extinction event. Figure 1(c) combines known extinctions, likely 123 

ĞǆƚŝŶĐƚŝŽŶƐ ĂŶĚ ƐƉĞĐŝĞƐ ĐůĂƐƐŝĨŝĞĚ ĂƐ ͚ƚŚƌĞĂƚĞŶĞĚ͛ ďǇ ƚŚĞ IUCN͘ The inclusion of the threatened species 124 

categories highlights groups that are at greatest risk of reaching the 75% threshold in the near-term 125 

future. When these threatened species are considered, 14 classes reach or exceed 75% of species 126 

either extinct or at risk of extinction. Similar to previous studies (Barnosky et al., 2011; 2012), these 127 
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data suggest that although not all these species are condemned to extinction, this is a clear warning 128 

that the mass extinction may be almost imminent.  129 

Observations of increasing CO2 (130ppm rise since ~1880; IPCC, 2013), temperature (1°C higher than 130 

the pre-industrial level; IPCC, 2013), and changes to ecosystem structure (urbanisation, agriculture, 131 

deforestation, acidification of freshwater and marine environments), although not directly 132 

comparable to events in the geological record, are not dissimilar to  the early onset stages of previous 133 

mass extinction events (Wagner et al., 2006; McElwain et al., 2009; Roopnarine & Angielczyk, 2015).  134 

In comparison to the three most recent mass extinctions that are all associated with changes to the 135 

global carbon cycle, these current rises are quite modest. For example, the end-Permian mass 136 

extinction was characterised by an increase in CO2 of ~2,000ppm (Payne et al., 2010; Clarkson et al., 137 

2015; van de Schootbrugge & Wignall, 2015; see Table 1) and a rise in global average temperature of 138 

~8°C (Payne et al., 2010; Retallack, 2013; van de Schootbrugge & Wignall, 2015; see Table 1). Similarly, 139 

the end-Triassic mass extinction was characterised by an increase  in CO2 by ~1,500ppm (McElwain et 140 

al., 2007; Steinthorsdottir et al., 2011; Schaller et al., 2011; van de Schootbrugge & Wignall, 2015; see 141 

Table 1) and in global average temperatures by ~4°C (McElwain et al., 2007; Schaller et al., 2011; 142 

Retallack, 2013; van de Schootbrugge & Wignall, 2015); see table 1). Therefore, while these modern 143 

increases are highly concerning, once again they are not at the level associated with a major 144 

environmental change linked to mass extinction events.  145 

The current increases in extinction rate, temperature and CO2 are characteristic features of the 146 

Anthropocene. These environmental variables have been linked with mass extinction events, many of 147 

which occur towards the end of geological periods in the Phanerozoic. However, extinction is not yet 148 

at a level that can be clearly identifiable in the geological record across the globe (Plotnick et al., 2016). 149 

Currently, increases in global temperature and CO2 concentrations are in transition and have yet to 150 

reach their peak levels (IPCC, 2013). However, these variables are on track to match or exceed the 151 

levels seen across the most severe mass extinction events in Earth history (Barnosky et al., 2012; 152 



7 
 

Ceballos et al., 2015). Modern extinction levels, alongside increases in temperature and CO2 are driven 153 

by human activity. Therefore, depending on the near-future trajectories of these environmental 154 

variables which remain uncertain (Williams et al., 2015; IPCC, 2013), proposing the Anthropocene as 155 

an epoch may be in haste. Although the more conservative definition of the Anthropocene as an epoch 156 

may be approved by the ICS in the short-term, it is perhaps useful to be mindful of geological and 157 

biological signals that may support the definition of a new geological period in the medium-term (next 158 

100ʹ200 years). Perhaps debates over the timing of the Anthropocene boundary would be better 159 

focussed on considering the likelihood of a new period in the next century rather than a new epoch in 160 

the 20th Century to define the age of human dominance on the Earth system. In the mid-term future, 161 

a new period boundary may completely overwrite the proposed epoch boundary for the 162 

Anthropocene. 163 
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 372 

Figure caption: 373 

Figure 1: Percentages of species within classes that are listed as (a) extinct (b) extinct and likely extinct, 374 

and (c) extinct and threatened by the IUCN red lists of threatened species (red line indicates 75% 375 

species extinction level). Relevant IUCN categories of species risk are: extinct ʹ EX (known extinct 376 

species) plus EXW (known extinct in the wild species);  likely extinct ʹ CR(EX) critically endangered 377 

species thought to be extinct plus CR(EXW) critically endangered species thought to be extinct in the 378 

wild [these are not formal categories in the IUCN red list but are part useful indicators of likely extinct 379 

species]; threatened species ʹ CR (critically endangered), EN (endangered) plus VU (Vulnerable) 380 

species. These figures include all species and classes of animal, fungi, and plant assessed by the IUCN 381 

as of November 2015 (other than Turbellaria, which is not included because it obscures the scale and 382 
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represents one group described as 100% assessed extinction by the IUCN). Data available from tables 383 

3, 4, and 9 on the IUCN website (www.iucnredlists.org). Data downloaded December 2nd 2015.  384 
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