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Abstract

A theory of the probability distribution function (PDF) tails of the

blob density in plasma edge turbulence is provided. A simplified model

of the fast convective radial transport is used. The theoretically pre-

dicted PDF tails corroborate earlier measurements of edge transport,

further confirming the strongly non-Gaussian feature of edge trans-

port. It is found that increasing the cross sectional spatial scale length

(Lx and Ly) of the blob results in larger transport whereas increasing

the toroidal scale length (Lz) decreases the PDF. The results imply

that the PDF decreases for larger blob speed vb.
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I Introduction

It is well known that turbulent transport determines the confinement of plas-

mas in magnetic fusion devices. These inherently nonlinear phenomena are

rather complex and still not well understood since they vary from improved

confinement regimes to very violent disruptions. One important observation

from experiments is that overall improved confinement is found when the

edge turbulence is suppressed. Edge plasma turbulence is crucial for wall

erosion and plasma contamination through the transport of particles and

heat to the vessel walls, and thus for the confinement in future reactors [1]-

[2]. Interestingly, experimental measurements of edge turbulence has shown

the highly intermittent nature [3]- [5]. Furthermore simulations of statistical

properties of edge turbulence in 2D [6]- [8] and 3D [9]- [11] have revealed

generic non-Gaussian probability distribution functions (PDF) of fluctuation

levels. In particular, in the turbulence simulation a large fraction of large

events (or blobs) that ballistically propagate in the radial direction have been

observed [12]- [15], which are especially dangerous for confinement.

The so-called blob is a coherent structure with a higher density than the

surrounding plasma which is localized in a plane perpendicular to the mag-

netic field ~B while extended along the field line. When a charge dependent

drift such as those induced by curvature or centrifugal force is present, the

blob becomes polarized as the effective sheath resistivity creates an electric

field. The resulting ~E × ~B drift transports the blob to the outer wall. The

natural outward convective transport of blobs in edge plasmas indicates that

these coherent structures may play a crucial role in intermittency and the

non-Gaussian statistics in edge plasmas [2].

Coherent structures such as blobs, streamers or vortices are often asso-
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ciated with avalanche like events of large amplitude and can therefore be of

great importance for transport dynamics. Although these events are rela-

tively rare, they can carry more than 50% of the total fluxes [16]- [17]. Con-

ventional methods to characterize transport have been limited to mean field

theory, where the transport is described by one averaged coefficient. There

are however at present a lot of evidence that transport often involves events

of many different amplitudes or scales, some of which are intermittent and

bursty in time. Since these intermittent and bursty events are highly non-

linear phenomena contributing to the non-Gaussian structure of the PDF

tails, they are poorly described by mean field theory. To characterize the

intermittent turbulent transport a non-perturbative way is needed [18]- [22].

In this paper we present a non-perturbative analytical theory of the PDF

tails of density blob formation in tokamak edge plasmas. By adopting a sim-

ple nonlinear fluid theory of the blobs [23]- [25], we predict that the blob

density PDF tails have the exponential dependency (P (nb) ∼ exp {−ζn3
b}),

where nb is the blob density and ζ is a coefficient dependent on the blob

properties. Note that this scaling is similar to what was found for zonal

flow structure formation in ion-temperature-gradient mode turbulence [22].

Interestingly, this exponential scaling agrees rather well with previous ex-

perimental results with reasonable values of the coefficient ζ for parameter

values typical of plasma blobs [2].

Furthermore, we have found that increasing the cross sectional spatial

scale length (Lx and Ly) of the blob results in larger transport whereas

increasing the toroidal scale length (Lz) decreases the PDF. Interpreting the

constants in the blob speed seems to indicate that the PDF decreases for

larger vb. Note however that the blob speed is not a fundamental parameter

in our model, but rather a combination of other parameters.
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The paper is organized as follows. In Sec. II the physical model of

the blob density is presented together with preliminaries of the path-integral

formulation for the PDF tails of structure formation. In Sec III the instanton

solutions are calculated and in Sec IV the PDF tails of blob formation are

estimated. We provide numerical results in Sec. V and a discussion of the

results and conclusion in Sec. VI.

II Non-perturbative calculation of structure

formation PDF

The derivation of the physical model for radial plasma transport closely fol-

lows Ref. [23]. We assume that the Scrape-off-Layer (SOL) plasma temper-

ature, T , is constant. The electrostatic potential φ is constant along the

magnetic field ~B and can be calculated from the equation for electric current

∇~j⊥ + ∇‖
~j‖ = 0, (1)

with j⊥ = c( ~B ×∇P )/B2, where P = nT , n is the plasma density and c is

the speed of light. Performing an integration along the field line and using

the boundary conditions j‖|target = entcs
eφ
T

at the targets we find

eφ

T
=

ρi

2ntB

∫

dl∇ lnB · ( ~B ×∇n) (2)

where we have assumed that | eφ
T
| < 1; nt is the plasma density at the targets,

cs =
√

T/M is the sound speed, M is the ion mass, e is the electron charge, ρi

is the ion gyro-radius, and the coordinate l goes along the magnetic field line.

For a plasma blob with density nb with parallel length Lz situated around

the midplane, Eq. (2) gives

eφ

T
=

Lzρi

2Rnt

∂nb

∂y
, (3)
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where we have neglected the magnetic shear and used ∇ lnB = ex/R; R

is the major radius and x and y are the local coordinates along the radial

and poloidal directions, respectively. By using Eq. (3) for the ~E × ~B drift

velocity, we find the blob plasma continuity equation in the form

∂nb

∂t
+

csρ
2
i Lz

2R

(

∂

∂x
[nb

∂

∂y
(

1

nt

∂nb

∂y
)] − ∂

∂y
[nb

∂

∂x
(

1

nt

∂nb

∂y
)

)

= f (4)

When nt = ξnb for a constant ξ, the separation of variables gives

nb(t, x, y) = n0(x, t)e−(y/Ly)2 , (5)

reducing Eq. 4 to a ballistic equation for n0

(
∂

∂t
+ vb

∂

∂x
)n0(t, x) = 0, (6)

with

vb = cs

(

ρi

Ly

)2
Lz

R

nb

nt

. (7)

Note that the separable solution does not set the radial scale of the blob.

The forcing f is defined in Eq. 8.

There has been suggestion from both simulations and experiments is that

the blob is formed from the non-linear saturation of the linear instabilities

at the plasma edge [2]. Note that in the formation zone an approximately

equal amount of enhanced density blobs and holes are generated [2]. The

effective gravity (polarization) causes these newly formed coherent structures

to move, the blobs move outwards whereas the holes move inwards. The

ballistic equation describing the dynamics is symmetric under the change of

parameters (x → −x, n0 → −n0) [26]. Note also that the blob velocity vb

in Eq. (7) changes sign under this transformation. A detailed mechanism

for the source of blobs is outside the scope of the present paper. In the

following, we thus simply assume that there is a stochastic forcing (e.g. due to
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instabilities) and investigate the likelihood [probability distribution function

(PDF)] of blob formation triggered by this forcing. Due to the stochastic

forcing, blobs become short-lived in time, as shall be seen later.

In order to calculate the PDF tails of blob formation, we utilize the

instanton method [27]. To this end, the PDF tail is expressed in terms of a

path integral by utilizing the Gaussian statistics of the forcing f [27]. We

assume the statistics of the forcing f to be Gaussian with a short correlation

time modeled by the delta function as

〈f(x, t)f(x′, t′)〉 = δ(t − t′)κ(x − x′), (8)

and 〈f〉 = 0. The delta correlation in time was chosen for the simplicity of

the analysis. In the case of a finite correlation time the non-local integral

equations in time are needed. Note that the forcing f was chosen to excite

blobs; the source of the forcing is assumed to be the fluctuations due to

instability. The spatial overlap between the forcing and the blob is critical

for the generation of a blob.

The probability distribution function of blob density nb can be defined as

P (Z) = 〈δ(nb − Z)〉

=
∫

dλ exp(iλZ)〈exp(−iλnb)〉

=
∫

dλ exp(iλZ)Iλ, (9)

where

Iλ = 〈exp(−iλnb)〉. (10)

The angular brackets denote the average over the statistics of the forcing f .

The integrand can then be rewritten in the form of a path-integral as

Iλ =
∫

DnbDn̄be
−Sλ . (11)
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where

Sλ = −i
∫

d2xdtn̄b

(

∂nb

∂t
+

csρ
2
i Lz

2R

(

∂

∂x
[nb

∂

∂y
(

1

nt

∂nb

∂y
)] − ∂

∂y
[nb

∂

∂x
(

1

nt

∂nb

∂y
)

))

+
1

2

∫

d2xd2x′dtn̄b(x, t)κ(x − x′)n̄b(x
′, t)

+ iλ
∫

d2xdtnb(t)δ(t). (12)

Note that P (Z) represents the probability of blob density taking a value Z.

Note that the PDF tails of blob density can be found by calculating the

value of Sλ at the saddle-point in the case λ → ∞. This will be done in Sec.

III - IV.

III Instanton (saddle-point) solutions

We have now reformulated the problem of calculating the PDF to a path-

integral in Eq. (9). Although the path integral cannot in general be calcu-

lated exactly, an approximate value can be found in the limit λ → ∞ by

using a saddle point method to compute PDF tail. Since a direct application

of the saddle-point equations results in very complicated partial differential

equations for nb and n̄b, we assume that the instanton saddle-point solution is

a temporally localized blob. That is, we assume that a short lived non-linear

blob solution exists to the system of Eq. (4) in the form of a ballistically

traveling solution Eqs (5) and (6). The blob density instanton takes the

form nb(x, y, t) = n0(x, y, t)F (t) while the target density is assumed to be

nt = ξn0. Here n0(x, y, t) = n0(x − vbt)e
−(y/Ly)2 denotes the spatial form of

the coherent structure or blob and F (t) is a temporally localized amplitude,

representing the creation process.

The action Sλ consists of three different parts; the blob model, the forcing

and structure formation, respectively. The full action including the forcing
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and structure formation terms can then be expressed in terms of the time

dependent function F and the conjugate variable N̄ ,

Sλ = −i
∫

dtN̄

(

Ḟ +
vb

Lx

F + K
2

L2
yLxξ

F 2

)

+
1

2
κ0

∫

dtN̄2

+ iλN
∫

dtFδ(t). (13)

Here,

N =
∫

d2xn0(x − vbt)e
−(y/Ly)2 , (14)

N̄ =
∫

d2xn̄b(t, x)n0(x − vbt)e
−(y/Ly)2 , (15)

K =
csρ

2
i Lz

2R
, (16)

and the radial scale-length (Lx) is defined as

∂n0

∂x
= − 1

Lx
n0. (17)

κ0 in Eq. (13) is the strength of the forcing function κ(x − x′), which is

approximated by Taylor expansion in x and x′ for simplicity. Keeping only

the zeroth order terms in the expansion gives us the separable integral in

x and x′. The time dependent function N is the mean value averaged over

the blob, N̄ is the conjugate variable acting as a mediator between the real

variable (N) and the forcing (f) and K is a constant used to simplify the

expressions.

The saddle point equations for instantons (the equations of motion) are

obtained by minimizing the effective action Sλ with respect to the indepen-

dent variables F and N̄ :

δSλ

δN̄
= −i

(

Ḟ +
vb

Lx
F + K

2

L2
yLxξ

F 2

)

+ κ0N̄ = 0, (18)

δSλ

δF
= −i

(

− ˙̄N +
vb

Lx
N̄ + K

2

L2
yLxξ

F N̄

)

− λNδ(t) = 0. (19)
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The equation of motion for F is derived for t < 0 using Eqs. (18)-(19) as,

1

2

dḞ 2

dF
= η1F + 6η2F

2 + 8η3F
3, (20)

where

η1 = (
vb

Lx
)2, (21)

η2 =
vbK

L2
yL

2
xξ

=
√

η1η3, (22)

η3 =
K2

L4
yL

2
xξ

2
. (23)

Note that the constants η1, η2 and η3 all have the dimension of 1/[Time]2.

We first perform an integration in F and then use separation of variables to

find

∫

dF

F
√

η1 + 4η2F + 4η3F 2
=

1

2
√

η3

∫

dF

F (F + η2

2η3

)
√

η3

η2
ln(

F

F + η2

2η3

×
F0 + η2

2η3

F0
) =

∫

dt = t. (24)

We then solve for F to find

H(t) =
F0

F0 + η2

2η3

exp { η2√
η3

t}, (25)

F (t) =
η2

2η3

H(t)

1 − H(t)
. (26)

Note that H(t) < 1 and in Eq. (26) we impose the boundary conditions

F (t → −∞) → 0 and F (0) = F0. The initial condition for F (0) = F0 is

found by integrating Eq. (19) over the time interval (−ǫ, ǫ)

i(N̄(ǫ) − N̄(−ǫ)) = λN, (27)

where we use the fact that the conjugate field N̄ disappears for positive time

(t > 0), which gives a relationship between the conjugate field N̄ and the

large factor λ

N̄(−ǫ) = iλN. (28)
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The property of the conjugate variables to vanish for (t > 0) can be inter-

preted as a causality condition. Using Eq. (18) at t = 0, we obtain

− i

(

Ḟ +
vb

Lx
F0 +

2

L2
yLxξ

KF 2
0

)

= −κ0N̄ = −iλκ0N. (29)

In the large λ limit this gives

F0 = ± 1

2
√

K

√

L2
yLxξκ0N

√
λ. (30)

The instanton solution is localized within a time interval proportional to

1/
√

η1. The time scale of the blob or instanton solution can be estimated as

τblob = η1 = Lx

vb
= 10−4s, by using values in Ref. [2]. Comparing this blob time

scale with that of the ambient fluctuations (τturb = 10−5s) we find that τturb <

τblob. This suggests that blobs described by this model with lifetime longer

than the turbulence may significantly contribute to intermittent phenomena

in the tokamak edge.

IV The PDF tails

We will now compute λ dependence of Sλ in Eq (13) at the saddle point i.e.

the saddle point action which will then determine the PDF

Sλ = −i
∫

dtN̄
(

Ḟ +
vb

Lx
F + γF 2

)

+ iλN
∫

dtFδ(t) + i
κ0

2

∫

dtN̄2

=
1

2κ0

∫

dt
(

Ḟ +
vb

Lx
F + γF 2

)2

+ iλNF0 (31)

≈ i

2κ0

∫

dt 4Ḟ 2 + iλNF0 (32)

=
2iγ

3κ0

F 3
0 + iλNF0 (33)

Where,

γ =
K

L2
yLxξ

. (34)
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By using the initial condition for F [Eq. (30)], we find

Sλ = −iαλ3/2 (35)

α =
2

3
N3/2

√

L2
yLxξκ0

K
. (36)

The PDF is found from Eq. (8) by utilizing the saddle point method

P (Z) =
∫

dλe−iλZ−Sλ (37)

=
∫

dλe−iλZ−iαλ3/2

(38)

Let f(λ) = −iλZ − iαλ3/2 and find a λ0 such that f attains its maximum

and compute that value. This gives λ0 =
(

2Z
3α

)2
and

f(λ0) = − 4

27α2
Z3, (39)

thereby giving PDF

P (Z) = e−ζZ3

, (40)

ζ =
4

27α2
. (41)

According to the definitions, for all reasonable physical situations the pa-

rameters involved in ζ are positive definite. Note that the saddle point so-

lution justifies our assumption that λ → ∞ corresponds to Z → ∞. Eq.

(40) provides the probability of finding a blob density (Z normalized by N).

Note that when the forcing vanishes (κ0 → 0, α → 0) the PDF tails vanish

(P (Z) → 0).

V Results

We have presented first prediction of the PDF tail of blob formation. By us-

ing simplified model for the fast convective radial transport, we have found

an exponential PDF tails of the form ∼ exp{−ζn3
b} similar to what was found
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in Ref. [22] for zonal flow formation in ion-temperature-gradient mode turbu-

lence. In this section the parameter dependencies of ζ will be studied in de-

tail. The results will be compared with a Gaussian prediction ∼ exp{−ζn2
b}.

In Figure 1 (color online) the PDF tails of blob formation as a function

of blob density (nb) is shown by using the parameters γ = K
L2

yLxξ
= 0.33 (red

line, dash-dotted), γ = 0.66 (blue line, solid line) and γ = 1.35 (black line,

dashed line) with κ0 = 6.0. The Gaussian distribution (green line, dotted

line) is also shown for γ = 0.66 and κ0 = 6.0. It is clearly shown that the PDF

tails from the theoretical prediction recapture the experimental results shown

in Ref. [2], where the PDF tails can be approximately fitted as ∼ exp{−ζnΓ
b }

with Γ = 2.5 − 4.0. A decrease in the parameter γ in Eq. (34) increases the

PDF tails. The predicted PDF tails deviates significantly from the Gaussian

distribution.

To elucidate the parameter dependence of the constant ζ a plot of 1/α2

[α is given by Eq. (36)] as a function of the parameter γ with κ0 = 3.0

(black line, dash-dotted line), κ0 = 6.0 (blue line, solid line) and κ0 = 12.0

(red line, dashed line) is displayed in Figure 2 (color online). Note that the

PDF tails decrease as the parameter γ decreases. In physical terms this

means that increasing the cross sectional spatial scale length (Lx and Ly)

of the blob results in larger transport whereas increasing the toroidal scale

length (Lz) decreases the PDF. Interpreting the constants in the blob speed

seems to indicate that the PDF decreases for larger vb. However, as shown

in Sec. II the blob speed is not an independent parameter in our model but

rather a combination of other parameters [see Eq. (7)]. In order to fit the

theoretically predicted PDFs to experiments an estimation of the constant

1/α2 is needed. To this end, we used experimental values in Ref. [2] and

obtained an estimate for the constant 1/α2 as 1.5 ± 0.5.
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Figure 1: (Color online). The blob density PDF tail as a function of nb

normalized by N . The parameters are γ = K
L2

yLxξ
= 0.33 (red line, dash-

dotted), γ = 0.66 (blue line, solid line) and γ = 1.35 (black line, dashed line)

with κ0 = 6.0. the Gaussian distribution (green line, dotted line) is shown

with γ = 0.66 and κ0 = 6.0.
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Figure 2: (Color online). 1/α2 as a function of γ with κ0 = 3.0 (black line,

dash-dotted line), κ0 = 6.0 (blue line, solid line) and κ0 = 12.0 (red line,

dashed line).
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VI Discussion and conclusions

In order to elucidate the highly intermittent turbulent transport in the edge

and SOL we have considered a non-perturbative model of intermittent trans-

port driven by blobs. By using a non-linear model of fast convective edge

plasma transport derived in Ref. [23], we utilized the instanton calculus [27]

and [18]- [22] to calculate the PDF tails of blob formation. The result-

ing PDF tails have the exponential form ∼ exp{−ζn3
b}. Interestingly, this

prediction agrees with a number of experimental results showing a highly

non-Gaussian statistics of the transport at the edge [2]. Furthermore, the

PDF tails from experiments show a generic exponential form ∼ exp{−ζnΓ
b }

with Γ = 2.5 − 4.0, corroborating our prediction. Note that this is the first

calculation of PDF tails of blob formation, which were shown to be strongly

intermittent. Considerable transport can however be mediated by rare events

of large amplitude assuming that density blobs cause radial transport.

It is also of interest to study the momentum flux driven by blobs. To this

end, we replace blob formation (λ
∫

d2xdtnbδ(t)) in Eq. (13) by the blob flux

(λNγ
∫

d2xdt[nb
∂
∂y

( 1
nt

∂nb

∂y
)]δ(t)) to obtain the following action

Sλ = −i
∫

dtN̄

(

Ḟ +
vb

Lx

F + K
2

L2
yLxξ

F 2

)

+
1

2
κ0

∫

dtN̄2

+ 2iλNγ
∫

dtF 2(t)δ(t). (42)

Using Eq. (42) to find the instanton solutions gives us similar results as

before, but with the initial condition F0 ∝ λ. This initial condition then

makes the scaling for the PDF tails of momentum flux (here denoted by Z)

as P (Z) ∼ exp {−ζZZ3/2}. This is similar to what was found for momentum

flux in drift wave turbulence [18]- [21].
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It is interesting to note that the exponential scalings of the predicted

PDFs are similar to those found for zonal flow formation and momentum flux

in ITG turbulence. The reason for this ubiquitous exponential PDFs with

the same scaling is because the order of the highest non-linear interaction

terms in the governing equations is the same, giving the same dependence of

the large parameter λ in the initial conditions (F0 = F (0)), and thus similar

exponential scalings of the PDF tails. The non-linear term can be easily seen

to be quadratic in blob density nb from Eq. 4.

We have shown that the PDF tails of blob formation depends on the char-

acteristic scale lengths (Lx, Ly, Lz). Although, there is no direct dependency

on the blob velocity which is not an independent parameter in our model, it

is indicated that the PDF tail is inversely dependent on blob speed (due to

decreasing ζ). Moreover the size of the blob is crucial for the PDF, with a

larger poloidal (Ly) and larger radial extension (Lx) giving larger PDF tail.

We note that a non-Gaussian scaling of the PDF (the exponent of nb) is

found even when the forcing is Gaussian, although the exact exponent may

depend on the temporal and possibly spatial correlation of the forcing (f).

In the present paper, the forcing is chosen to be temporally delta correlated

for simplicity. The source of the forcing is assumed to be the fluctuations.

In general it would be desirable to identify a relation between the forcing

and the turbulence amplitude. However, this is still an open problem and

unfortunately outside the scope of the present paper.

Finally, we find a good agreement between our predicted PDFs and the

experimental results reported in Ref. [2]. In particular the exponential scal-

ing is very similar to that found in experiments for reasonable parameter

values. These findings strongly suggest that the experimental results are due

to intermittent phenomena coming from edge turbulence. In a future publi-
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cations we will consider the issues of blob generation and the asymmetrical

PDFs found in many experimental and numerical work.
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