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Abstract

The probability distribution functions (PDFs) of momentum flux and

zonal flow formation in ion-temperature-gradient (ITG) turbulence

are investigated in two different models. The first is a general five

field model (ni, φ, Ti, Te, vi‖) where a reductive perturbation method

is used to derive dynamical equations for drift waves and a zonal

flow. The second is a reduced two-field model (φ, Ti) that has an

exact non-linear solution (bipolar vortex soliton). In both models the

exponential tails of the zonal flow PDFs are found with the same

scaling (PDF ∼ exp{−cZF φ3
ZF}), but with different coefficients cZF .

The PDFs of momentum flux is however found to be qualitatively
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different with the scaling (PDF ∼ exp{−cMRs}), where s = 2 and

s = 3/2 in the five and two field models, respectively.
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I Introduction

One of the main challenges in magnetic fusion research has been the pre-

diction of the turbulent heat and particle transport originating from various

micro-instabilities. The ion-temperature-gradient (ITG) mode is one of the

main candidates for causing the anomalous heat transport in core plasmas

of tokamaks [1]. Significant heat transport can however be mediated by

coherent structures such as streamers and blobs through the formation of

avalanche like events of large amplitude, as indicated by recent numerical

studies [2]- [4]. These events cause the deviation of the probability distribu-

tion functions (PDFs) from a Gaussian profile on which the traditional mean

field theory (such as transport coefficients) is based. A crucial question in

plasma confinement is thus the prediction of the PDFs of the transport due

to these structures and of their formation [5]- [9]. Note that a renormalized

perturbative theory can easily make an considerably large error in predicting

PDFs where the coherent structures are crucial.

In previous papers the Hasegawa-Mima model of drift wave turbulence

was used to show that the PDF tails of global momentum flux and heat

flux are significantly enhanced over the Gaussian prediction [5]- [6]; this was

later shown to hold also in ITG mode turbulence [7]- [9]. Specifically, the

tails of PDF of global momentum flux and heat flux have been shown to

be stretched exponential with the form ∼ exp{−c(R/R0)
3/2} [5]- [9], which

is broader than a Gaussian. These results provided a novel explanation for

exponential PDF tails of momentum flux found in recent experiments at

CSDX at UCSD [10]. Note that considerable transport can be mediated

by rare events of high amplitude at the PDF tails even if the latter have a

low amplitude. Since the PDF tails of momentum flux are enhanced over
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the Gaussian prediction in this case, these events are more likely to mediate

considerable transport. In fact, it was found that for certain values of param-

eters, large events are crucial for transport. Specifically, the overall amplitude

was shown to be larger in ITG than in HM turbulence for reversed modon

speed (U < 0). The PDF tail of zonal flow in ITG turbulence was also sig-

nificantly increased compared to that in HM turbulence. Furthermore, zonal

flows are shown to be generated more likely further from marginal stability,

which will then regulate ITG turbulence, leading to a self-regulating system.

Namely, while ITG turbulence is a state with high level of heat flux, it also

generates stronger zonal flows that inhibit transport. This also suggested

that stronger zonal flows are generated in ITG turbulence compared with

ETG turbulence. It was also shown that shear flows can significantly reduce

the PDF tails of Reynolds stress and zonal flow formation [5]- [9].

The purpose of the present paper is to investigate the likelihood of the

formation of coherent structures by computing the PDF (tails) of zonal flow

formation and the PDFs of momentum flux [11] by using the two different

ITG turbulence models. The first model is a widely applicable five field

model (ni, φ, Ti, Te, vi‖) of the ITG turbulence coupled to an ion vorticity

equation for the zonal flows. For the computation of the PDFs, a reductive

perturbation method is used to obtain dynamical equations for drift waves

and zonal flows. Due to the perturbation method, this model is only valid

for weak drift wave and zonal flow electric potential. Moreover an exact

non-linear solution in this model is not available that can be used as an

ansatz for a coherent structure for the intermittent transport. However, the

computation of the PDF tails requires only mean values over the coherent

structures. The second is the two field (φ, Ti) model which has an exact non-

linear bipolar vortex soliton (modon) solution that will be utilized in the
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computing PDFs. Note that the two-field fluid model for the ITG mode [12]-

[15] has been successful in reproducing both experimental [16] and non-linear

gyro-kinetic results [17].

The theoretical technique used here is the so-called instanton method, a

non-perturbative way of calculating the PDF tails. The PDF tail is first for-

mally expressed in terms of a path integral by utilizing the Gaussian statistics

of an external forcing with a short correlation time. An optimum path will

then be associated with the creation of a coherent structure (among all possi-

ble paths) and the action is evaluated using the saddle-point method. In the

second model this coherent structure is identified as the modon. The saddle-

point solution of the dynamical variable φ(x, t) of the form φ(x, t) = F (t)ψ(x)

with F (t) which is localized in time is called an instanton. Since the instan-

ton exists during the formation of the coherent structure, the bursty event

can be associated with the creation of a coherent structure. Note that the

function ψ(x) here represents the spatial form of the coherent structure.

One of our main results is that the PDF tail of the zonal flow formation

is PDF ∼ exp{−cZFjφ
3
ZF}, (j = 1, 2 to denote the different constants in

the two models), in agreement with earlier findings [9]. Interestingly the

predicted PDF tails of momentum flux are Gaussian when the feedback of

zonal flow on the turbulence is incorporated. This result differs from what

has theoretically been found earlier [9] whereas it is in agreement with pre-

dictions from non-linear simulations of turbulence [19]- [20] and gyro-kinetic

toroidal simulations [21]- [22]. The reason for this is that previously the

zonal flow has been treated as passively evolving by the turbulence without

the feedback loop to turbulence. This feedback gives a cubic non-linearity in

Eq. (7) describing the ITG fluctuations which changes the characteristics of

the turbulence. Physically, it is because the feedback of zonal flow regulates
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turbulence, limiting its growth from turbulence.

The result from both models support the conclusion that while ITG tur-

bulence maintains high level of transport, this may be suppressed by shear

flow. Zonal flows are also shown here to have an enhanced likelihood of the

generation further from marginal stability which will then regulate the ITG

turbulence (which is more prominent with increased shear flow) leading to a

self-regulating system.

The paper is organized as follows. In Sec. II the drift wave - zonal flow

system is presented and in Sec. III and IV the computation of the PDF and

a numerical study of the five field model are presented. In Sec. V and VI

the PDF tails are computed and a numerical study of the reduced two field

model are outlined. The paper is concluded by Discussion and summary in

Sec. VII.

II The drift wave - zonal flow system

In the five-field model the ITG mode turbulence is modeled using the conti-

nuity and temperature equations for the ions and assuming the electrons to

be Boltzmann distributed, closely following previous papers Ref. [12]- [15].

The ion continuity, temperature and parallel ion momentum equations then

become,

∂n

∂t
−
(

∂

∂t
− αi

∂

∂y

)

∇2
⊥φ+

∂φ

∂y
− ǫngi

∂

∂y
(φ+ τ (n+ Ti))

+ν∇4φ = − [φ, n] +
[

φ,∇2
⊥φ
]

+ f0 (1)

∂

∂t
Ti −

5

3
τǫngi

∂Ti

∂y
+
(

ηi −
2

3

)

∂φ

∂y
− 2

3

∂n

∂t
=

− [φ, Ti] +
2

3
[φ, n] + ST i, (2)

∂vi‖

∂t
= −

(

∂φ

∂z
+ τ

∂

∂z
(n+ Ti)

)

. (3)
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Eqs. (1)-(3) are closed by using the quasi-neutrality condition. Here [A,B] =

(∂A/∂x)(∂B/∂y) − (∂A/∂y)(∂B/∂x) is the Poisson bracket; ν = 0.78 ×

10−12(n0/T
3/2
i0 )(r/R̄) is a neoclassical damping; f0 is a forcing; n = (Ln/ρs)δn/n0,

φ = (Ln/ρs)eδφ/Te, Ti = (Ln/ρs)δTi/Ti0 and vi‖ = (Ln/ρs)δvi‖/cs are the

normalized ion particle density, the electrostatic potential, the ion temper-

ature, and the ion parallel velocity respectively. In equations (1) and (2),

τ = Ti/Te, ρs = cs/Ωci (cs =
√

Te/mi, Ωci = eB/mic). We also used

Lf = − (dlnf/dr)−1 (f = {n, Ti}), ηi = Ln/LTi
, ǫn = 2Ln/R̄ where R̄ is

the major radius and αi = τ (1 + ηi). The perpendicular length scale and

time are normalized by ρs and Ln/cs, respectively. The geometrical quan-

tities are calculated in the strong ballooning limit (θ = 0, gi (θ = 0) = 1.0)

with ω⋆ = kyv⋆ = ρscsky/Ln. In the ion temperature equation [Eq. (2)] we

have included a heat source ST i given in Appendix. For the zonal flow Eq.

(3) vanishes (k‖ = 0) and we cannot use Boltzmann distributed electrons.

Thus we will employ the following ion vorticity equation [Eq. (4)] and simple

electron energy equation [Eq. (5)]

(

∂

∂t
− αi

∂

∂y
− ν∇2

⊥

)

∇2
⊥φ+ ǫngi

(

(1 + τ)
∂n

∂y
+
∂Te

∂y

)

= [φ,∇2
⊥φ] (4)

∂Te

∂t
= −ηe

∂φ

∂y
(5)

Here ηe = Ln/LTe. The damping (with strength ν) represents a neo-classical

damping of the zonal flow. Note that the damping will affect the full dynam-

ical system in Eq. (7)-(8). The simple electron energy equation is motivated

by the fact that we are interested in the modes propagating in the ion drift

direction.

In order to find the coupled system of equations for the ITG mode and

the zonal flow we utilize the reductive perturbation method wherein the
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perturbed variable σ is written

σ(x, y, t) =
∑

n

∑

l 6=0

ǫ
1+(2/3)n
0 σ

[1+(2/3)n]
l (x, ξ, ζ) × exp{il(k‖z + kyy − ωt)} + c.c.

+
∑

n

ǫ
(4/3)+(2/3)n
0 σ

[(4/3)+(2/3)n]
0 (x, ξ, ζ) (6)

Here the coordinates are scaled as ξ = ǫ
2/3
0 (y−λt) and ζ = ǫ4/3t with a small

expansion parameter ǫ0 ∼ eφ
Te

∼ 10−2. The drift wave - zonal flow system

then becomes

C1
∂φ̃1

∂ζ
+ iC2

∂2φ̃1

∂ξ2
+ C3φ̃0φ̃1 = −iνC4φ̃1 + f, (7)

D1
∂φ̄0

∂ζ
+D2

∂φ̃0

∂ξ
= D3

∂|φ̃1|2
∂ξ

. (8)

Here, the coefficients C1, C2, C3, C4, D1, D2 and D3 are complex numbers

whose forms are provided in the appendix; the variables with tilde and bar

denote average over x. Note that if the time derivatives are neglected in Eqs.

(7)-(8), a non-linear Schrödinger (NLS) equation for the fluctuating potential

is obtained [15].

III Non-perturbative calculation of zonal flow

PDF in the five field model

We calculate the PDF tails of momentum flux and zonal flow formation by

using the instanton method. To this end, the PDF tail is expressed in terms

of a path integral by utilizing the Gaussian statistics of the forcing f [18].

The PDF of Reynolds stress and zonal flow formation can be defined as

P (Z) = 〈δ(Z0 − Z)〉

=
∫

dλ exp(iλZ)〈exp(−iλZ0)〉

=
∫

dλ exp(iλZ)Iλ, (9)
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where

Iλ = 〈exp(−iλZ0)〉. (10)

Iλ in (9)-(10) can then be rewritten in the form of a path-integral as

Iλ =
∫

Dφ̃1Dφ̄1Dφ̃0Dφ̄0e
−Sλ . (11)

In the following we assume that the zonal flow potential is stationary ∂φ̄0

∂t
= 0

on the time-scale of the fluctuations. The effective action Sλ in Eq. (11) can

be then expressed as,

Sλ = −i
∫

dξdζφ̄1

(

C1
∂φ̃1

∂ζ
+ iC2

∂2φ̃1

∂ξ2
+ C3φ̃0φ̃1 + iνC4φ̃1

)

+
1

2

∫

dζdξdξ′φ̄1(ζ, ξ)κ(ξ − ξ′)φ̄1(ζ, ξ
′)

+ iλ2

∫

dζφ̃0(ζ)δ(ζ)

− i
∫

dξdζφ̄0(ζ)(D2φ̃0 −D3|φ̃1|2). (12)

Recall ξ and ζ are the scaled spatial and time variables, respectively. To

obtain Eq. (12) we have assumed the statistics of the forcing f to be Gaussian

with a short correlation time modeled by the delta function as

〈f(ξ, ζ)f(ξ′, ζ ′)〉 = δ(ζ − ζ ′)κ(ξ − ξ′), (13)

and 〈f〉 = 0. The delta correlation in time was chosen for the simplicity of

the analysis. In the case of a finite correlation time the non-local integral

equations in time are needed.

IV The PDF tails and numerical studies for

the five field model

We have expressed the PDF in terms of a path-integral. An approximate

value of this path-integral can be found for large values of the parameter
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λ → ∞, by using a saddle point method. The action in Eq. (12) can be

expressed using the instanton ansatz φ̃1(ξ, ζ) = ψ1(ξ)F (ζ) and φ̃0(ξ, ζ) =

ψ0(ξ)G(ζ) as,

Sλ = −i
∫

dζ
(

C1Ḟ F̄1 + iC2k
2
ξFF̄1 + C3GFF̄2 + iνC4FF̄1

)

+
κ0

2

∫

dζ
(

F̄ 2
1 + F̄ 2

2

)

+ iλΦ0

∫

dζG(ζ)δ(ζ)

− i
∫

dζF̄3(D2G−RD3F
2). (14)

Here κ0 is the strength of the forcing κ. The parameter kξ(∈ C) is the inverse

length scale in the ξ direction. In Eq. (14) we have defined the variables,

Φ0 =
∫

dξψ0, (15)

F̄1 =
∫

dξφ̄1ψ1, (16)

F̄2 =
∫

dξφ̄1ψ
2
1 , (17)

F̄3 =
∫

dξφ̄0ψ0, (18)

F̄4 =
∫

dξφ̄0ψ
2
1 = RF̄3. (19)

Note that the relation between the conjugate variables F̄3 and F̄4 is based

on the fact that the zonal flow is driven by the Reynolds stress and also that

the parameter R(∈ C) has to be determined in such a way to make Reynolds

stress real. Since the saddle point action is determined by the extremum of

the action, we require the first functional derivatives of the action to vanish;

δSλ

δF
= −i(−C1

˙̄F 1 − iC2k
2
ξ F̄1 + C3F̄2G+ iνC4F̄1)

− 2iRD3FF̄3 = 0, (20)

δSλ

δF̄1
= −i(C1Ḟ − iC2k

2
ξF + iνC4F ) + κ0F̄1 = 0, (21)

δSλ

δF̄2
= −iC3FG+ κ0F̄2 = 0, (22)

δSλ

δF̄3
= D2G− RD3F

2 = 0, (23)
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δSλ

δG
= −iC3F̄2F − iF̄3D2 + iλΦ0δ(ζ) = 0. (24)

The initial conditions F (0) = F0 and G(0) = G0 are found from Eqs. (23)-

(24) as,

F0 =

(

− iD2Φ0

C2
3RD3

)1/4

λ1/4, (25)

G0 =
RD3

D2

(

− iD2Φ0

C2
3RD3

)1/2

λ1/2. (26)

The instanton solution is found from Eqs. (20) - (24) for ζ < 0. Starting

with Eq. (20) and then by substituting the conjugate variables in Eqs. (21)

- (24) we obtain

F̈ =
1

2

d

dF
Ḟ 2 = η1F + 3η2F

5, (27)

where

η1 =
1

C2
1

(

−C2
2k

4
ξ + 2C2C4νk

2
ξ − ν2C2

4

)

, (28)

η2 =
1

C2
1

(

C2
3R

2D2
3

D2
2

)

. (29)

The integration of Eq. (27) in time, gives us the instanton solution as,

F (ζ) =

√

2η1H

1 − η1η2H2
, (30)

H(ζ) = H0 exp{2√η1ζ}, (31)

H0 =
F 2

0

η1 +
√
η1

√

η2F 4
0 + η1

, (32)

where F0 is given in Eq. (25). The next task is to compute the action

integrals and estimate the λ dependence of Sλ in the large λ→ ∞ limit. We

start by substituting Eqs. (20) - (23) into the action in Eq. (14) keeping

only the highest powers of λ,

Sλ ≈ i
∫ 0

−∞
dζ

(

C2
1 Ḟ

2 + C2
3

R2D2
3

D2
2

F 6

)
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+ iλΦ0
RD3

D2
F 2

0 (33)

≈ i
∫ F0

0
dF

(

2C2
1 Ḟ
)

+ iλΦ0
RD3

D2
F 2

0

≈ iλ3/2Φ0
RD3

D2

(

− iD2Φ0

C2
3RD3

)1/2

(34)

= ihZFλ
3/2. (35)

Here,

hZF = Φ0
RD3

D2

(

− iD2Φ0

C2
3RD3

)1/2

. (36)

The PDF is then found from Eq. (9) by utilizing the saddle point method

P (Z) =
∫

dλe−iλZ−Sλ (37)

=
∫

dλe−iλZ−ihZF λ3/2

. (38)

We find a λ0 such that f(λ) = −iλZ − ihZFλ
3/2 attains its maximum and

compute that value. This gives λ0 =
(

2Z
3hZF

)2
and

f(λ0) = − 4

27h2
ZF

Z3, (39)

with the PDF

P (Z) ∼ e−ΘZ3

, (40)

Θ =
4

27h2
ZF

. (41)

The PDF tails found in the five field model [Eq. (41)] has the same expo-

nential form as in Ref. [9]. Although no exact non-linear solution was used

as an ansatz for the coherent structure the system, we still obtain the PDFs

with the same exponential form. To elucidate on the quantitative differences

the results between the two and five field models we show the PDF tails by

using different values of temperature gradient (ηi) in Figures 1 and 3.

In Figure 1 the PDF tails of zonal flow formation obtained in the five-field

model [Eq.(40)] is presented for ηi = 2.0 (red, dashed line), ηi = 4.0 (blue,
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Figure 1: The PDF tail of zonal flow formation in the five field model for

ηi = 2.0 (red, dashed line), ηi = 4.0 (blue, solid line) and ηi = 6.0 (black,

dashed-dotted line). The parameters are τ = 2.0, ǫn = 1.0, gi = 1, kx = 0.3,

ky = 0.3, ηe = 0.0, κ0 = 3000.

solid line) and ηi = 6.0 (black, dashed-dotted line). Other parameter values

are τ = 2.0, ǫn = 1.0, gi = 1, kx = 0.3, ky = 0.3 and ηe = 0.0, κ0 = 3000. It

is interesting to notice that the PDF tails of zonal flow formation in Fig. 1

are suppressed in comparison with the results found in the reduced two field

model shown in Figure 3A for similar parameter values.

Note that the usefulness of the predicted PDF of zonal flow formation

above is limited since the coefficient Θ in Eq. (40) is dependent on complex

coefficients C1, C2, C2, C3, C4, D1, D2 and D3 from the original system of

Eqs. (7) - (8). As is seen in the appendix due to the complexity of the

coefficients it is rather difficult to give an explicit region where the analysis

is useful.

The analysis can easily be extended to find PDFs of the momentum flux
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in the system of Eqs. (7) - (8), with the action Sλ

Sλ = −i
∫

dζ
(

C1Ḟ F̄1 + iC2k
2
ξFF̄1 + C3GFF̄2 + iνC4FF̄1

)

+
κ0

2

∫

dζ
(

F̄ 2
1 + F̄ 2

2

)

+ iλR0

∫

dζF (ζ)2δ(ζ)

− i
∫

dζF̄3(D2G−RD3F
2), (42)

where R0 is the Reynolds stress

R0 = −
∫

dξ

(

ψ1
∂ψ1

∂ξ

)

. (43)

Note that an average over x has already been taken and that the momentum

flux is non-zero since there is a natural phase shift introduced by the electron

physics. A similar equation for the instanton can be found, but with different

values of F and G at t = 0,

F0 =

√

2iκ0Φ1

C2
1

√
λ, (44)

G0 =
RD3

D2

2iκ0Φ1

C2
1

λ. (45)

The PDF tail of momentum flux can then be computed by following a similar

analysis with the result

P (R) ∼ exp{−ΘM(
R

R0

)2}, (46)

ΘM =
1

2hM

, (47)

where

hM =
1

4

√
η2 +

2κ0

C2
1

. (48)

Interestingly the exponential forms of the PDFs of momentum flux are qual-

itative different from what was found in ITG turbulence [7]- [9] and in

Hasegawa-Mima turbulence [5]- [6] which was the stretched PDF ∼ exp{−cR3/2}.
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Specifically the predicted PDF tails of momentum flux are Gaussian when

zonal flow feeds back on the turbulence. This result differs from what has

theoretically been found earlier [9] where the zonal flow is treated kinemati-

cally. It is however in agreement with predictions from non-linear simulations

of turbulence [19]- [20] and gyro-kinetic toroidal simulations [21]- [22]. The

reason for this is the cubic non-linearity in Eq. (7) describing the ITG fluctu-

ations while previously the zonal flow was treated as passively evolving by the

turbulence. Physically, it is because the feedback of zonal flow regulates tur-

bulence, limiting its growth from turbulence. It is interesting that although

our model for turbulence and zonal flows is expected to have a limited region

of validity due to the perturbation expansion, it captures the main features

of what has been found in numerical simulation of plasma turbulence with

zonal flows.

Note that non-linear models with cubic non-linearities for turbulent fluc-

tuations was obtained using perturbation theory and are thus valid only for

small values of the amplitude (small φ1). The statistical property of the fluc-

tuations differs radically in systems with cubic and quadratic non-linearities

as shall be discussed in more detail in Sec. VII. The predictive power of the

method used here should be able to discriminate between models since the

statistics of the fluctuations and zonal flow may change qualitatively. We

note that, in ETG turbulence an evolution equation for the fluctuations with

a cubic nonlinearity has previously been found [23].
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V The PDF tails in the reduced model two

field model

Due to the perturbation method, the five field model considered in Sec. III-IV

is only valid for weak drift wave and zonal flow electric potential. Moreover

an exact non-linear solution in this model is not available that can be used

as an ansatz for a coherent structure for the intermittent transport. We will

thus now consider the reduced two field model where a non-linear solution

(modon) can be found and no reductive perturbation expansion is needed.

It is a reduced model where the ITG mode turbulence is modeled using the

continuity and temperature equation for the ions with adiabatic electrons [8]-

[9]. In this model the effects of parallel ion motion, magnetic shear, trapped

particles and finite beta on the ITG modes are neglected since they were

shown to be not critical in previous work. Unlike the five-field model, the

generation of a zonal flow is treated passively while the background fluctu-

ations are affected by an imposed sheared velocity V0. We note that, the

effects of mean flow on the zonal flow are weak [26]- [27] while the effects of

mean flow on the turbulence itself is much more prominent.

We formally calculate the PDF tails of momentum flux and zonal flow

structure formation by using the instanton method. The probability distri-

bution function for Reynolds stress Z1 = R or zonal flow structure formation

Z2 = φZF can be defined as in a generalized Eq. (9) where

Iλj
= 〈exp(−iλjZj)〉. (49)

The integrand can then be rewritten in the form of a path-integral as

Iλj
=
∫

DφDφ̄DφZFDφ̄ZFe
−Sλj . (50)

Here, the parameter j refers to the two specific cases included in the present
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study. The angular brackets denote the average over the statistics of the

forcing f . By using the ansatz Ti = χφ, the effective action Sλj
in Eq. (11)

can be expressed as,

Sλj
= −i

∫

d2xdtφ̄

(

∂φ

∂t
− (

∂

∂t
− αi

∂

∂y
)∇2

⊥φ+ V0(1 −∇2)φ

+ (1 − ǫngiβ)
∂φ

∂y
− β[φ,∇2

⊥φ]

)

+
1

2

∫

d2xd2x′φ̄(x)κ(x− x′)φ̄(x′)

+ iλ1

∫

d2xdt(−∂φ
∂x

∂φ

∂y
)δ(t)

+ iλ2

∫

d2xdtφZF δ(t)

+
∫

d2xdt(φ̇ZF +R0〈vxvy〉). (51)

In Eq. (51),

β = 1 +
1

τ
+

1

τ
χ, (52)

χ =
ηi − 2

3
(1 − U + V0)

U − V0 + 5
3τ
ǫngi

, (53)

R0 =
∫

d2x

(

−∂ψ
∂x

∂ψ

∂y

)

. (54)

The PDF tails are found by calculating the value of Sλj
at the saddle-

point in the two cases; the PDF tail of momentum flux by taking into account

the effect of a shear flow (λ1 → ∞, λ2 = 0) and the PDF tail of structure

formation of zonal flow (λ1 = 0, λ2 → ∞). The integral in Eq (51) is divided

in five parts; K1 the ITG integral; K2 the forcing integral; K3 the momentum

flux integral; K4 the zonal flow integral; and finally K5 represents the zonal

flow evolution integral. The action in the first case can be found as;

Sλ1
≃ −1

3
ihλ3

1, (55)

h = K1 +K2 +K3 +K4 +K5, (56)
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K1 =
1

2κ0

(

γ2(1 + ǫ2)[(
4H0

H0 − 1
− 1)3/2 − 1]

C3/2

A
(57)

+ 24(1 + 6ǫ2)γ2
2

C3/2

A5/2
(
1

3

H0

(H0 − 1)3
− 1

4

H0

(H0 − 1)2
)

)

, (58)

K2 =
1

2κ0

(

γ2(1 + ǫ2)[(
4H0

H0 − 1
− 1)3/2 − 1]

C3/2

2A
(59)

+ 24(
1

2
+ 2ǫ2)γ2

2

C3/2

A5/2
(
1

3

H0

(H0 − 1)3
− 1

4

H0

(H0 − 1)2
)

)

, (60)

K3 = R0F
2(0), K4 = 0, (61)

K5 =
2R0

√
C

A

1

H0 − 1
, (62)

H0 = 4A− 2, A =
η

(1 + ǫ2)γ2
. (63)

Here C = 2κ0λ
2
1/((1 + ǫ2)γ), γ = c1(1 + k2 + 2α/k3) (k is the modon wave

number), c1 = αa/J1(ka) (a is the modon size), α = A1 − k2A2, A1 =

(1 − ǫn − U + V0)/β, A2 = (αi + U − V0)/β, γ2 = kβα/2, η = (1 + 6ǫ2)γ2
2

and κ0 is the strength of the forcing κ(x− y). To obtain the integrals in Eq.

(51) we have used the localized modon solution, involving the parameter ǫ

as done in Refs. [8]- [9]. The PDF tail of the Reynolds stress (R) can now

be found by performing the integration over λ1 in Eq. (51) using the saddle-

point method in the same fashion as done in Ref. [8]- [9] i.e. recall Eq. (9)

gives P (R) ∼ ∫

dλ1 exp{−iλ1R − Sλ1
} ∼ ∫

dλ1 exp{−iλ1R + ihλ3
1}. Now,

the saddle point integral is evaluated at the saddle point λ1MAX =
√

R/(3h)

which maximizes P (R) with the result

P (R) ∼ exp{−ξ1(
R

R0

)3/2}, (64)

ξ1 =
2

3

1√
3h
. (65)

This result is similar to the previous ones where a similar exponential PDF

was found [5]- [9]. However, here the focus will be on how the coefficient ξ1

depend on the imposed shear flow (V0).
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In the second limit where the limit of λ1 = 0 and λ2 → ∞ gives the PDF

tail of the structure formation itself, the action can be shown to be

Sλ2
≃ −ihλ3/2

2 , (66)

with

K3 = 0, (67)

K4 = 2φZF0

√
C

A
, (68)

C = 2κ0λ2/((1 + ǫ2)γ). (69)

The PDF tail can now be computed by following similar analysis, with the

result

P (φZF ) ∼ exp{−ξ2(φZF/φZF0)
3}, (70)

ξ2 =
4

27

1

h2
. (71)

Recall that in the computation of the PDF tails of the momentum flux

or zonal flow structure formation, the latter was assumed to be driven by a

modon in the ITG turbulence. Since this modon is created by the forcing and

that F (t) = 0 as t→ −∞, we could treat Eqs (66) and (70) as the transition

amplitudes from an initial state with no fluid motion to a state with different

values of momentum flux R/R0 or zonal flow formation φZF/φZF0.

Note that all physical quantities are included in the parameters ξ1 and ξ2,

through the ion temperature gradient (ηi), density gradient (ǫn), temperature

ratio (τ = Ti/Te), modon size (a), modon speed (U) and wave number (k).

It is also important to note that ξj → ∞ (i.e. PDF vanishes) as the the

forcing disappears (κ0 → 0); the instanton cannot form and the PDF vanishes

(P (R) → 0 and P (φZF ) → 0) without forcing.
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VI Numerical results of the reduced two field

model

We have presented a theory of the PDF tail of structure formation and how

the PDF tail of momentum flux is modified by the presence of an imposed

shear flow (V0). The exponential forms of the two PDF tails are completely

different, signifying the difference in the physical interpretation. In the case

of structure formation the PDF tails are found as ∼ exp{−ξ2φ3
ZF}, while the

momentum flux PDF tail ∼ exp{−ξ1R3/2}. The origin of these scalings are

the quadratic non-linearity in the dynamical system (Eqs 1-2). Mathemat-

ically, the difference in scaling of the PDF tails momentum flux and zonal

formation comes from the difference in the scaling of the initial condition

(F0) with the large parameter λ. The spatial structure of the modon is of

less importance in determining the exponent in the exponential PDF tails

than the temporal behavior, but changes the overall amplitude through the

coefficients ξ1 and ξ2. Therefore an approximate spatial structure is sufficient

to determine the exponential scaling whereas the correlation time of f may

affect the scaling. The spatial structure of the flow is incorporated in the ini-

tial condition of the flow φZF0. In this section the parametric dependencies

of ξj will be studied in detail.

First the PDF tail of momentum flux in ITG turbulence incorporating

the effects of shear flow is shown in Figure 2. The parameters are τ = 2.0,

ǫn = 1.0, gi = 1, a = 2, U = 2.0, κ0 = 3000, ǫ = 0.1, k ≈ 1.91 with

V0 = 0.0 (Figure 2A), V0 = 5.0 (Figure 2B), V0 = 10.0 (Figure 2C) and

V0 = 15.0 (Figure 2D) for ηi = 2.0 (red, dashed line), ηi = 4.0 (blue, solid

line) and ηi = 6.0 (black, dashed-dotted line). When V0 = 0, the result

recovers the previous finding in Ref. [8]. It is clearly shown that the PDF
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Figure 2: The PDF tail of momentum flux in ITG turbulence incorporating

the effects of shear flow for V0 = 0.0 (Figure 2A), V0 = 5.0 (Figure 2B),

V0 = 10.0 (Figure 2C) and V0 = 15.0 (Figure 2D) for ηi = 2.0 (red, dashed

line), ηi = 4.0 (blue, solid line) and ηi = 6.0 (black, dashed-dotted line).

tail of momentum flux is significantly reduced if a strong shear flow is present

whereas weak flow can increase the PDF tail. In the equations the flow speed

and the modon velocity come in as a combination of the form (U − V0),

determining the behavior of the resulting PDF tails. When (U−V0) decreases,

the PDF tail increases until it eventually decreases. This means that there

exists a negative value (U −V0) that gives maximum PDF tail, depending on

all other parameters. Note that although the Galilean invariance of Eq. (1)-

(2) may allow us to perform Galilean transformations to find other instanton

solutions, those solutions correspond to different ground states in the field

theory and must be discarded since they have nonzero velocity in the infinite

past [28]. Thus, our instanton solutions are not Galilean invariant [28].

Second, the PDF tails of structure formation in ITG turbulence incorpo-

rating the effects of shear flow is shown in Figure 3. The parameters and the
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Figure 3: The PDF tail of structure formation in ITG turbulence incorporat-

ing the effects of shear flow for V0 = 0.0 (Figure 2A), V0 = 5.0 (Figure 2B),

V0 = 10.0 (Figure 2C) and V0 = 15.0 (Figure 2D) for ηi = 2.0 (red, dashed

line), ηi = 4.0 (blue, solid line) and ηi = 6.0 (black, dashed-dotted line).

interpretation of the results are the same as those in Figure 2.

VII Discussion and conclusions

In summary, this paper presents the first prediction of the PDF tails of zonal

flow formation from a dynamic system of turbulence and zonal flows. The

PDF tails of zonal flow is PDF ∼ exp{−cZFjφ
3
ZF} (where j = 1, 2 represent

the different constants depending on the models) which corroborate earlier

findings [5]- [9].

In the first part a general five field model (ni, φ, Ti, Te, vi‖) where a re-

ductive perturbation method is used to derive dynamical equations for drift

waves and a zonal flow is studied. Interestingly the predicted PDF tails of

momentum flux in the five field model of ITG turbulence are Gaussian when

the feedback of zonal flow on the turbulence is incorporated. This result
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differs from what has theoretically been found earlier in Ref. [9] and found

in the reduced two field model of ITG turbulence in Sec. V whereas it is in

agreement with predictions from non-linear simulations of turbulence [19]-

[20] and in gyro-kinetic toroidal simulations [21]- [22]. Mathematically it is

due to the different highest non-linearity between the two models (i.e. cubic

in the five-field model and quadratic in the two field model). Physically, it is

because in the two-field model the feedback of zonal flow on the fluctuations

was not treated self-consistently, which will regulate turbulence, inhibiting

its growth.

Note that non-linear models with cubic non-linearities for the turbulence

fluctuations was obtained perturbatively and thus valid only for small values

of the amplitude (small φ1). The statistical property of the fluctuations

differs in systems with cubic and quadratic non-linearities. To elucidate

these differences it is instructive to discuss a general formula for PDF tails

of any moment in non-linear systems derived previously [24]. By using the

instanton method, the PDF of the m-th moment was shown to be

P (Z) ∼ exp{−cZs}, (72)

s =
n + 1

m
(73)

in the case where n is the highest non-linearity in a dynamical system.

For instance, in the case of the five-field model, n = 3 [Eq. (9)] while in

the case of the two-field model, n = 2 [Eq. (1)]. For PDFs of momentum

flux, m = 2 while for PDFs of zonal flow formation m = 1. According to Eqs.

(72)-(73) there is a significant difference in the PDF tails of the first moment

in a system with cubic non-linearity where s = 4 and one with a quadratic

non-linearity where s = 3 [25]. For weak zonal flow Eq. (7) becomes linear

and we expect Gaussian statistics (s = 2) for the fluctuations. Note that for
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the five-field model, Eq. (72)-(73) suggest that the PDF tails of zonal flow

formation are determined by the quadratic non-linearity in the dynamical

equation for the zonal flow whereas the cubic non-linearity determines the

PDF tails of momentum flux.

Finally, in the second part a reduced two-field model (φ, Ti) that has

an exact non-linear solution (bipolar vortex soliton) of ITG turbulence and

zonal flows are studied to compute the PDFs of zonal flow formation and

momentum flux. One of the important results from the numerical study in

this reduced two-field model, which is also supported in the five field model, is

that shear flows can significantly reduce the PDF tails of momentum flux and

zonal flow formation. Since zonal flows are more likely to be generated further

from marginal stability, they will then regulate ITG turbulence, leading to

a self-regulating system. Namely, while ITG turbulence is a state with high

level of heat flux, it also generates stronger zonal flows that inhibit transport.
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A Coefficients

We have balanced the non-linear transport due to the imaginary parts of α

[ℑ(α)] (A.15) with the source term ST i,

ST i + 2iky

(

ℑ(α)
∂

∂x
(φ

(5/3)∗
1 φ

(1)
1 − φ

(5/3)
1 φ

(1)∗
1 )

− ℑ(
∂α

∂ky

)
∂

∂x
(φ

(1)
1

∂φ
(1)∗
1

∂ξ
− φ

(1)∗
1

∂φ
(1)
1

∂ξ
)



 = 0. (A.1)
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C1 = −k3
y(1 + τ)ǫn(3τ 2ǫn[10ǫn + 3τ(2 − 3ηi)]

× ω(−kyλ+ ω)2 + k2
‖(25k3

yǫ
2
n[5(1 + τ)ǫn

+ τ(−2 + 3ηi)]λ
2 + 45k2

yτǫn[5(1 + τ)ǫn

+ τ(−2 + 3ηi)]λ
2ω + 27kyτ

2[5(1 + τ)ǫn

+ τ(−2 + 3ηi)]λ
2ω2 + τ{50ǫ2n + 15τǫn[(2 − 3ηi) + 4λ]

+ 9τ 2λ[(4 − 6ηi) + 5 + 3τ)λ]}ω3), (A.2)

C2 = k3
yL(1 + τ)ǫnω(5kyǫn + 3τω)(τω2{k2

yǫn[5(−7

+ 5D2
⊥)ǫn + 3τ(−2 + 3ηi)] + 30ky(−1

+ D2
⊥)τǫnω + 9(−1 +D2

⊥τ
2ω2}

− k2
‖[5k

2
yǫn[5(1 + τ)ǫn + τ(−2 + 3ηi)]

+ 6kyτ [5(1 + τ)ǫn + τ(−2 + 3ηi)]ω

+ 3τ 2(5 + 3τ)ω2]), (A.3)

C3 =

√

2

Lx

(CNL1km − 4k3
mCNL2

+ CNL3[(k
2
m + l2k2

y)km − 4k3
m]), (A.4)

CNL1 =
1

λ(5ǫn + 3τλ)
{k4

yl
2τǫnω

2(5kyǫn + 3τω)

× [k‖(ky{−50ǫ2nλ− 3τ 2[10ǫn + 3(2 − 3ηi)]λ
2

+ 9τ 3(−2 + 3ηi)λ
2 − 10τǫn[3λ2 + 5ǫn(ηe + λ)]

− 3τ 2[10ǫnηe + 3(1 + τ)(−2 + 3ηi)λ]ω)

+ ω(k2
yǫn[175ǫnλ+ 9τ 3(2 − 3ηi)λ

2

+ 35τǫn[3λ2 + 5ǫn(ηe + λ)] + 3τ 2λ[3(2 − 3ηi)λ

+ 5ǫn(5ηe + 7λ)]} + 3kyτǫn[50ǫnλ

+ 3τ 2λ[(−2 + 10ηe + ηi) + 10λ]

+ τ [10ǫn(6ηe + 5λ) + 3λ(−2 + 3ηi + 10λ)]}ω

+ 9τ 2(5ǫn + τλ)[λ+ τ(ηe + λ)]ω2)]}, (A.5)
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CNL2 =
1

(5ǫn + τλ)
(k4

yl
2τ(1 + ηi + τλ)ω2(5kyǫn

+ τω)2{10k2
‖ǫn − ω[5kyǫn(7ǫn + 3τλ)

+ 3τ(5ǫn + 3τλ)ω]}), (A.6)

CNL3 = D2
⊥k

4
yl

2τ(1 + τ)ǫnω
3(5kyǫn + 3τω)3, (A.7)

C4 = D4
⊥k

3
ylτ(1 + τ)ǫnω

3(5kyǫn + 3τω)3, (A.8)

D1 =
1

(1 + τ)ǫnλ2(5ǫn + 3τλ)
× (25ǫ4nηe

+ 5τǫ3nλ(6ηe − 5D2
⊥λ) + 9D2

⊥τ
2λ4(1

+ 2ηiτλ) +D2
⊥τǫnλ

3[10(1 + ηi) + (22

− 3τ)τλ] + ǫnλ
2{3τ [2 + τ(2 + 5ηe − 3ηi) − 3ηi]

+ 5D2
⊥[7(1 + ηi) + 2(7 − 3τ)τλ]}), (A.9)

D2 = −(3D2
⊥τλ

3(1 + ηi + τλ) + 5ǫ3n[ηe − (1 + τ)λ]

+ ǫ2nλ{[7 + τ(7 + 10ηe − 3ηi) − 3ηi + 5D2
⊥(1 + ηi)]

+ τ [5D2
⊥ − 3(1 + τ)]λ}

+ ǫnλ
2[3τ(1 + τ + τηe) +D2

⊥(−7 + 3τ)(1 + ηi + τλ)])

× 1

λ(1 + τ)ǫn
, (A.10)

D3 =

√

2

Lx

kml
2(k2

yDNL1 +DNL2), (A.11)

DNL1 = − τ

(1 + τ)ǫn
[5ǫ2n + (−7 + 3τ)ǫnτ − 3τλ2], (A.12)

DNL2 = 3ǫnkyℜ{
∂α

∂ky
}, (A.13)

∂α

∂ky
= (

ω

ky
− λ)

10ǫn

3τ
− (ηi − 2

3
)

ky(
5ǫn

3τ
+ ω

ky
)2
, (A.14)

α =
ηi − 2

3
+ 2ω

3ky

5ǫn

3τ
+ ω

ky

, (A.15)

λ =
ω

ky
− 2

ky

λn

λd
, (A.16)

λn = ωk2
y{ω(1 +

5

3τ
) + kyΓ}, (A.17)
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λd = (1 + k2
y(1 +

5

3τ
))ω − ky

2
(1 − ǫn[1 +

5

3τ
+ αr])

− k2
yΓ − i[

ǫns

2q
(1 +

5

3τ
)], (A.18)

αr =
5

3τ
, (A.19)

Γ =
1

τ
(ηi −

2

3
) +

5

3τ
ǫn(1 +

1

τ
). (A.20)
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