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ABSTRACT 

Recent work has concentrated on the characterisation of the temporal and spatial impulse distribution of blast form 

buried charges. A new soil container preparation methodology has been created to allow for the generation of highly 

repeatable, tightly controlled clay beds which will allow clays of different undrained strengths to be generated. Tests 

using these well controlled beds has allowed for an improved understanding into which geotechnical parameters 

govern the impulse delivered by a buried charge. Namely in the current programme of work this is an investigation 

into the �undrained strength� of a cohesive material as an indicator of potential impulse output. 

Initial results are compared against previously published work on cohesionless soils (sands) to try to establish the full 

range of loading which can be generated by a buried charge. 

 

INTRODUCTION 

Our knowledge of the effect soil has on the output of buried charges has rapidly expanded over 

the past decade. We now understand that moisture content and density play an important role in 

the generated output from a buried charge. Over the past 6 years the Sheffield Blast and Impact 

Dynamics group have been developing and refining techniques to further our understanding of 

the behaviour of sands and gravels in blast events [1-3]. The aim of the research contained within 

this paper was to extend this knowledge to develop understanding of the effect of the 

geotechnical conditions on the blast generated by a buried explosive in cohesive soils (clays). The 

ultimate goal of this is to eventually develop a framework which looks at the grain sizes present 

within any given soil and is able from this to predict the impulse (and distribution) from a buried 

explosive for a range of moisture contents. 

To date there have been no tests carried out on clays where the geotechnical parameters have 

been scientifically controlled. Previous research has shown that for sands and gravels the 

saturation has an important role on the generated impulse [4-7]. The current paper aims to 

provide new insight into how the moisture content / air voids affects soils where the spaces 

between the soil particles are orders of magnitude smaller than in sands and gravels. The premise 

here is that soils with a greater percentage of fine particles, and hence lower permeability will 

give higher confinement to the blast and hence develop a greater impulse than in consummate 

tests with coarse grained soils [8]. 

The tests utilize a slurry made from Kaolin (a clay mineral), which is then consolidated under a 

hydraulic ram to achieve set moisture contents. Due to the relatively long time scales required to 



generate uniform large scale clay samples, testing of this nature has never been performed before, 

with some tests consolidating for as long as three months.  

The secondary, complementary aim of the testing conducted is to test the hypothesis that impulse 

is inversely proportional soil shear strength [9]. Whilst shear strength may be an indicator of 

impulse from coarse soils, there is currently no evidence to show that this same link is true for 

fine grained cohesive soils where the behaviour is essentially always governed by the soil�s 

permeability. 

This paper details the results from tests using a new consolidation apparatus to generate soils of 

differing water contents and hence also different densities and undrained shear strengths. In each 

tests the reflected pressures are measured by an array of Hopkinson pressure bars (HPBs) as 

described below. 

 

APPARATUS 

The University of Sheffield operates an explosive testing facility in Buxton, Derbyshire, UK. It is 

at this location that the testing has been conducted. The experimental apparatus has been 

described repeatedly in previous publications so only the most salient features will be repeated 

here; full details can be found in Ref. [3]. The apparatus enables pressure-time histories to be 

measured at specific locations on a rigid plane above a buried charge. In the current tests, a 100 

mm thick steel plate is attached to the underside of two massive reinforced concrete �goalpost� 

frames. 10.5 mm diameter holes are drilled through the plate in two perpendicular arrays at 25 

mm centre-to-centre spacing. Holes are drilled out to ±100 mm from the central hole, which is 

common to both arrays. 3.25 m long, 10 mm diameter steel HPBs are inserted through the target 

plate such that their faces sit flush with the loaded face of the plate. Pairs of semiconductor strain 

gauges are mounted onto the perimeter of the HPBs, 250 mm from the loaded faces, in a 

Wheatstone bridge circuit to cancel out any bending effects in the bars. The strain-time history 

from the gauges is therefore used to measure the reflected pressure-time history acting at specific 

points on the target plate. 

The explosives were encased in a 3 mm thick PVC container, with the cap removed to increase 

the repeatability of the tests [3]. Hence, the explosives were buried to a depth of 28 mm (25 mm 

to the top of the charge had the cap not been removed). The stand-off was increased to 140 mm to 

prevent excessive pressures from yielding the bars. The soil container measured 500 mm 

diameter and 375 mm height. The experimental apparatus is shown in Figure 1b. 

 

SOIL CONDITIONS 

Nine tests were conducted in total. The consolidation apparatus (Figure 1a) allows three samples 

to be prepared in parallel (with the aim of providing identical conditions). One of the advantages 

of using Kaolin is that it has been heavily utilised in the Geotechnical engineering community 

and so its behaviour is well documented. Previous researchers have formulated a link between the 

consolidation pressure and the undrained strength of the final sample [10]. The consolidation 

pressure also affects the density of the final sample and as in all the tests the clay was saturated, 

the water content also varies. Table 1 shows the target conditions for the three test series (with 

three tests in each series). 



 

 

Table 1: The designed test series 

Test  

series 

Consolidation  

pressure ( kPa) 

Undrained 

strength (kPa) 

Moisture 

content (%) 

Density 

 (Mg/m
3
) 

A (1-3) 72.9 24.0 55.9 1.75 

B (4-6) 139.4 45.8 51.2 1.87 

C (7-9) 207.5 68.2 48.3 1.95 

 

The method of mixing the kaolin from a 100 % moisture content slurry (1 kg of water : 1 kg of 

kaolin) is simplified by rounding the mixes for each test series to the nearest kilogram to aid 

preparation on site. This is the reason why the values in Table 1 are not simply scaled factors of 

each other, as they are a product of the mixing process. The mixes involved 57, 60 and 62 kg of 

kaolin for series a-c respectively. The kaolin used was Speswhite China Clay, which is a highly 

refined kaolin of ultrafine particle size. 76-83 % of the kaolin is finer than 2 microns with 99.5% 

being finer than 10 microns. Due to the mixing and consolidation process it is not possible to 

generate samples that are not fully saturated. 

 

EXAMPLE RESULTS 

In all test presented in this paper, the data were recorded at 14-bit resolution with a sample rate of 

1.56 MHz. The recording software was triggered via a voltage drop in a breakwire channel, with 

a new breakwire wrapped around the detonator for each test. The timebase of the pressure signals 

was shifted by 50 ȝs to correct for the delay between the pressure acting on the face of the HPB 

and being recorded at the strain gauge location. 

Figure 1: a) Schematic of consolidation apparatus, b) schematic of testing apparatus 



 

Figure 2: Example pressure-time and impulse-time histories for all 4 arrays,  

from a single test (a2) 



Figure 2 shows the pressure and specific impulse histories from a single test with the explosive 

buried to a depth of 28 mm. The specific impulse was determined from cumulative integration of 

the recorded pressure histories. Each subplot shows signals from the bars located between 0 and 

100 mm from the plate centre, in each of the −x, +x, −y and +y arrays respectively. The central 0 

mm bar is common to all 4 arrays and hence is repeated in each subplot.  

The peak pressure and peak specific impulse for the 75�100 mm bars show a marked decay when 

compared with the 0-50 mm region in which generally there is quite similar maximum peak 

pressure. The 0-50 mm bars appear similar in magnitude and form (some of the 50 mm traces are 

notable exceptions). As these five bars all lie within the projected area of the charge, it is likely 

that this is a feature of the charge geometry and that the central area of the target is confined by 

the expanding soil annulus. Figure 3 shows the test setup pre- and post-test. It should be noted 

that Figure 3b is not from a high speed video, but actually shows the static state of the clay 

material after the test. Here any areas of venting of the detonation products can clearly be seen. 

The clay �wall� seen in this image is likely due to the interaction of the shock wave with the steel 

boundary and lies outside the instrumented region of the plate.   

  

Figure 3: a) pre-test arrangement showing level surface of clay bed,  

b) post-test showing solidified flow of material across the target plate. 

The pressure histories shown in Figure 2 are indicative of the loading mechanism caused by the 

impact and lateral spreading of a highly pressurised fluid annulus, hypothesised by Grujicic [11], 

in fact Figure 3b actually shows the remains of this annulus. As the expanding soil annulus 

propagates across the loaded face, the form of the imparted pressure becomes lower in magnitude 

and longer in duration, and at any instant in time there appears to only be a small area of the 

target being loaded, with the pressure traces returning to zero shortly after arrival, and passing, of 

the soil annulus. Qualitatively, there appears to be a good degree of bar-to-bar repeatability for 

both pressure and impulse. 

 

COMPILED RESULTS AND DISCUSSION 

For each series the tests the results for each bar location have been averaged so that the effect of 

the undrained strength can be seen. Peak reflected pressure, peak specific impulse and time to 

peak pressure are presented in Figure 4.  

)a )b 



 

Figure 4: Compiled average a) peak reflected pressure, b) peak specific impulse,  

and c) time to peak pressure for each of the clay series. 
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The distribution of mean peak pressure distribution shows a rapid decay from with the peak 

pressure varying from ~ 325 MPa for the central bar to approximately 100 MPa at 100 mm from 

the centre. This is very similar to the Leighton Buzzard tests shown by Rigby et al. [8]. The peak 

specific impulse ranges from ~7 MPa.ms above the charge to ~4 MPa.ms at the 100 mm bar. 

The critical observation of the results presented is the lack of variation between the three test 

series. There are no notable differences between any of the series plots in Figure 4. This shows 

that while soil shear strength may be an indicator of impulse from charges buried in cohesionless 

soils, it is certainly not the case for undrained shear strength in cohesive soils. 

The effects of moisture content and density in the current test series are also designed to cancel 

each other out, as moisture content increases (+16%), so the density decreases (-11%). This 

would mean that any trends observed would only be attributable to the undrained strength rather 

than other geotechnical parameters. This gives a higher confidence in the fact that strength is a 

secondary factor in governing the output from a buried charge with moisture content and density 

being more important. 

 

SUMMARY AND CONCLUSIONS 

Three test series have been conducted in total on explosives buried in a Clay soil. Samples were 

generated using a hydraulic press to allow creation of ideal clay bed, whose geotechnical 

parameters are easily determinable. Between each series the undrained strength which the 

samples attained was varied in a linear manner allowing the investigation of undrained shear 

strength as a 1
st
 order predictor in the output of buried charges. 

In each test, reflected pressure was measured at 17 locations within the central 200 mm diameter 

region of a rigid target plate using Hopkinson pressure bars, allowing the spatial and temporal 

distribution of loading to be recorded. The individual pressure traces show a high degree of 

similarity with tests done on other saturated soils. 

The collated data for each test series shows clearly that the influence of undrained strength on the 

generated peak pressure, peak specific impulse and time to peak pressure is minimal, albeit for 

cohesive soils. Numerical models for soils based around such parameters should first focus on the 

effects of moisture content and density when predicting the output from buried charges, rather 

than focussing on second order factors. 
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