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Statistical Theory of Plasmas Turbulence∗)
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We present a statistical theory of intermittency in plasma turbulence based on short-lived coherent structures

(instantons). In general, the probability density functions (PDFs) of the flux R are shown to have an exponen-

tial scaling P(R) ∝ exp (−cRs) in the tails. In ion–temperature–gradient turbulence, the exponent takes the value

s = 3/2 for momentum flux and s = 3 for zonal flow formation. The value of s follows from the order of the high-

est nonlinear interaction term and the moments for which the PDFs are computed. The constant c depends on the

spatial profile of the coherent structure and other physical parameters in the model. Our theory provides a pow-

erful mechanism for ubiquitous exponential scalings of PDFs, often observed in various tokamaks. Implications

of the results, in particular, on structure formation are further discussed.
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1. Introduction
The need for statistical theory of plasma turbulence

has grown significantly over the past decade with accumu-

lating evidence from simulation and experiments showing

highly intermittent and bursty turbulent transport [1–9].

Probability density functions (PDFs) inferred from these

experiments are strongly non-Gaussian, particularly in the

tails, due to rare events of large amplitude. For instance,

exponential scalings appear to be a robust feature of the

tails of heat, particle, and momentum fluxes in a variety

of tokamaks (for example, [10–13]). These observations

suggest that Gaussian statistics and average transport coef-

ficients based on mean field theory fail to capture essential

transport processes of intermittency and demand a proper

nonlinear theory for events of large amplitude. Given the

potentially disastrous impact of these events on confine-

ment, the importance of a predictive theory of PDF tails

cannot be overemphasized.

While these coherent structures mediate significant

transport, as mentioned above, they can also play a com-

plementary role in inhibiting transport via enhanced decor-

relation. Improvements in plasma confinement by mean

flows and zonal flows [14] are notable examples. Given

the importance of such structures in intermittency and

transport, the PDF of the formation of the structure itself

is a quantity of ultimate interest. For instance, an interest-

ing issue is the prediction of the PDF of the L→H transi-

tion [15].

This paper presents a non-perturbative theory of PDFs

in plasma turbulence and investigates the structure forma-

tion — in particular, zonal flow formation. Our theory

author’s e-mail: e.kim@shef.ac.uk
∗) This article is based on the invited talk at the 14th International

Congress on Plasma Physics (ICPP2008)

is motivated by the following key experimental observa-

tions. The first is that coherent structures (which tend to

form naturally in nonlinear systems) mediate fast transport

and are responsible for the intermittency in the PDFs. The

second is that coherent structures tend to be short-lived in

time, causing bursty events (for example, [12, 13]). Ex-

amples of such short-lived structures include streamers,

blobs, and vortices. This empirical fact that short-lived

coherent structures are responsible for intermittency and

PDF tails is precisely built into our theoretical tool: the so-

called “instanton method.” Section 2 provides a few brief

comments on the method. Sections 3 and 4 describe the

use of this method to develop a non-perturbative theory of

the PDFs of structure formation in the ion–temperature–

gradient (ITG) model. Section 5 presents a discussion and

conclusions.

2. Instantons
This section provides historic background on instan-

tons to help readers understand their physical significance

and why they are useful for the development of a statistical

theory of turbulence. Instantons originated in quantum me-

chanics as a non-perturbative way of computing the transi-

tion amplitude from one ground state to another [16]. The

basic idea is that the uncertainty relationship between posi-

tion and momentum allows one to formulate the transition

amplitude from the initial position xi to the final position

xf by a path integral as follows (see Fig. 1):

〈xf |eiHT/�|xi〉 = N

∫ x=xf

x=xi

Dx(t)eiS/� ,

where S =
∫

dt
[

mv2/2 − U(x)
]

is action, and H = mv2/2+

U(x) is a Hamiltonian with potential U. We can expand

the left side of the equation in terms of a complete set of

c© 2009 The Japan Society of Plasma

Science and Nuclear Fusion Research
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Fig. 1 Trajectories of a particle between initial position xi at

time t = 0 and final position xf at t = T .

energy eigenstates to obtain

〈xf |eiHT/�|xi〉 =
∑

n

〈xf |En〉〈En|xi〉eiEnT/� .

The previous equation implies that the transition ampli-

tude from one ground state to another can be isolated

by taking time to be imaginary. Expressed in terms of

imaginary time, action becomes “Euclidean action” S E =
∫

dt[mv2/2 + U]. An instanton is a saddle-point solu-

tion of Euclidean action and corresponds to one particular

path that leads to the transition amplitude between ground

states. For instance, in the case of double-well potential,

an instanton is a tunneling solution from the bottom of one

potential well to another (see Fig. 2 (a)). If a solution go-

ing from one ground state to the other is called an instan-

ton, a solution traveling in the opposite direction is called

an anti-instanton. As noted above, a distinguishing char-

acteristic of such solutions is temporal localization (see

Fig. 2 (b)). The instanton method was used in gauge field

theory to compute the transition amplitude from one vac-

uum to another vacuum [17]. About 20 years later, the

method was adapted to a classical fluid problem by several

authors [18–21].

3. PDF Tails in Plasma Turbulence
Armed with general concepts of instantons, in this

section, we develop a general theory of PDFs in plasma tur-

bulence. In plasma turbulence, unpredictability can arise

either from the chaos intrinsic to the system or from an ex-

ternal random forcing. Between the two, clearly, it is much

easier to formulate a PDF in the case of an external forc-

ing, to which the following discussion is limited. In fact,

it is well known that a similar path integral can be formu-

lated for stochastic equations with a random external forc-

ing [22, 23]. For instance, the effective action for classical

forced systems was formulated by Martin, Sigga, and Rose

in 1973 [24]. However, the non-perturbative evaluation

of a path integral had to wait until the (non-perturbative)

saddle-point (instanton) method was used to compute the

tail of the PDF [18, 19].

Fig. 2 (a) Double-well potential with a particle sitting at the bot-

tom of a potential well. A particle going from x = −a to

a is an instanton; a particle going from x = a to −a is an

anti-instanton. (b) Position of a particle as a function of

time, traveling between x = −a and a. The positive (neg-

ative) slope corresponds to an instanton (anti-instanton).

We consider a prototype nonlinear dynamical system

driven by an external (stochastic) forcing f

∂tφ + N(φ) = f , (1)

where N(φ) represents the sum of linear and nonlinear in-

teractions with the highest nonlinearity of n. For simplic-

ity, we take the statistics of the forcing in Eq. (1) to be

Gaussian with delta-correlation in time as follows:

〈 f (x, t) f (x
′, t′)〉 = δ(t − t′)κ(x − x

′) , (2)

and 〈 f 〉 = 0. For Gaussian statistics with a vanishing first

moment, the prescription for the second moment given by

Eq. (2) is sufficient, simply because all odd moments van-

ish while even moments can be expressed as a product of

second moments. Note that, even if the forcing is Gaus-

sian, φ statistics can be non-Gaussian because of the non-

linearity of the dynamical equation. An equivalent way of

prescribing the second moment (Eq. (2)) for the Gaussian

forcing is to introduce the PDF of f as follows [23]:

d[ρ( f )] = D f e−
1
2

∫

dxdx
′dt f (x,t)κ−1(x,x′) f (x

′,t). (3)

This is a generalization of a Gaussian distribution to a con-

tinuous variable f (x, t). The average value of a quantity Q

is then computed as

〈Q〉 =
∫

d[ρ( f )] Q , (4)
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where the angle brackets 〈〉 represent the average over the

statistics of the forcing f . From Eq. (3), we construct

the PDFs of flux, which are the m multiple products of φ

(that is, the mth moment). In the following, we call M(φ)

the “observable,” since we are interested in measuring its

PDFs. The PDFs of M(φ) to take a value of R can then be

represented in terms of a path integral as follows:

P(R) = 〈δ(M(φ) − R)〉

=

∫

dλeiλR
〈

e−iλM[φ]
〉

=

∫

dλeiλRIλ , (5)

where

Iλ =
〈

e−iλM[φ]
〉

.

By taking Q[φ] = exp [−iλM[φ]] in Eq. (4) and using

Eq. (3), we can rewrite Iλ in terms of a path integral as

Iλ =

∫

DφDφ e−S λ , (6)

where S λ is the effective action given by

S λ = −i

∫

dxdtφ[∂tφ + N(φ)]

+
1

2

∫

dxdx
′dtφ(x)κ(x − x

′)φ(x
′)

+ iλ

∫

dtM(φ)δ(t) . (7)

In Eq. (7), φ is the conjugate variable to φ, introduced to

impose the constraint given by the equation of motion of φ

in Eq. (1) in the form

N =

∫

Dφ exp

{

i

∫

dxdtφ[∂tφ + N(φ) − f ]

}

,

with a normalization constant N. Although φ appears to be

simply a convenient mathematical tool, it does have a use-

ful physical meaning: it arises from the uncertainty in the

value of φ due to stochastic forcing. That is, the dynami-

cal system with a stochastic forcing should be extended to

a larger space involving this conjugate variable, whereby

φ and φ constitute an uncertainty relationship (see Fig. 3).

The instanton solution is a particular path out of all pos-

sible (functional) values of φ and φ which minimizes the

action S λ. Furthermore, the conjugate variables have the

interesting physical property of mediating the forcing κ and

the flux M(φ) (oberservable) whose PDFs are sought (see

Fig. 4).

3.1 Instanton solution
The key concept underlying the instanton method is

that coherent structures that are localized in time are re-

sponsible for the rare events of large amplitude, causing

strong intermittency in the PDF tails with possibly signifi-

cant transport. Assuming that such a coherent structure has

a spatial profile φ0(x) and a temporal evolution governed

Fig. 3 Uncertainty in φ = F(t)φ0 and φ = µ(t)φ (or in F(t) and

µ(t)) due to stochastic forcing.

Fig. 4 Schematic diagram showing the relationship among the

PDFs of the observable M(φ), dynamical quantity φ, its

conjugate variable φ, and the stochastic forcing with the

correlation function κ(x − x
′) (see Eq. (2)).

by F(t) as φ(x, t) = φ0(x)F(t), and similarly φ = φ0(x)µ(t),

we can rewrite the action S λ and minimize it with respect

to F and µ to obtain equations for F and µ. Since the

instanton φ propagates forward in time and its conjugate

variable φ backward in time while the PDF is computed at

t = 0, the boundary conditions on F and µ are (see also

Fig. 3):

F(−∞) = 0 , (8)

µ(t > 0) = 0 . (9)

To make further progress, we need to specify the profile

of φ0. The key question is thus “what should we use

for φ0?” or, alternatively, “what are the possible coher-

ent structures that are likely to form in a given nonlinear

system?” As noted previously, exact solutions to nonlin-

ear equations that tend to be supported naturally are exam-

ples of such structures. In the presence of stochastic forc-

ing, these structures can readily be created, being local-

ized in time. Ramps in Burgers equations, and modons in

Hasagawa-Mima and ITG turbulence models are examples

of such coherent structures. In the presence of stochastic

forcing, these structures are likely to form and decay with

a short lifetime. By using the profiles of these structures
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and expanding the correlation functions in terms of those

as

κ(x − y) ∼ κ0
∑

m,n

φm
0 (x)φn

0(y),

where κ0 is the strength of forcing, we can, in principle,

cast the action in terms of a time-integral only. Schemati-

cally, computation of the PDFs then requires the following

main steps:

I. Minimize S λ with respect to µ and F to obtain the

equation of motion for F and µ.

II. Solve those equations with the boundary conditions

(Eqs. (8) and (9)) to compute optimal paths.

III. Use those solutions to obtain the minimum action S λ.

IV. Evaluate λ integral in Eq. (5) to find the PDFs.

4. PDFs of Structure Formation in
ITG Turbulence
This section predicts the PDFs of structure formation

in ITG turbulence by the preceding steps. As a specific ex-

ample, we investigate the PDFs of the formation of zonal

flows. Since zonal flows are self-driven from turbulence

by Reynolds stress, this problem is closely related to the

PDF of momentum flux. We thus consider the PDFs of

momentum transport and zonal flow formation. The PDFs

of the local Reynolds stress in Hasagawa-Mima [25, 26]

and toroidal ITG turbulence models were investigated by

Kim et al. [27,28]. In the following, we consider a slightly

different ITG model and compute the PDFs of (global) mo-

mentum flux and zonal flow formation [29, 30]. Specifi-

cally, we model ITG turbulence using the continuity and

temperature equation for the ions, assuming Boltzmann

electrons, and ignoring the effects of parallel ion motion,

magnetic shear, trapped particles, and finite beta on the

ITG modes [31]. We incorporate the effect of an imposed

poloidal shear flow in the time-evolution equations for the

background fluctuations in the form of sheared velocity V0.

The main governing equations are given by

∂tn −
(

∂t − αi∂y
)

∇2
⊥φ + ∂yφ +

[

φ, n
]

+ ν∇4φ

+V0∂y
(

1 − ∇2
⊥
)

φ − ǫngi∂y (φ + τ (n + Ti))

=
[

φ,∇2
⊥φ
]

+ τ
[

φ,∇2
⊥ (n + Ti)

]

+ f ,

(∂t + V0∂y)Ti −
5

3
τǫngi∂yTi +

(

ηi −
2

3

)

∂yφ

−2

3
(∂t + V0∂y)n = −[φ,Ti] +

2

3
[φ, n].

(10)

Here, f is the forcing, and V0 is an imposed shear flow.

Notations are standard: [A, B] = (∂xA)(∂yB) − (∂yA)(∂xA);

n = (Ln/ρs)δn/n0 is the normalized ion particle density;

φ = (Ln/ρs)eδφ/Te is the eletrostatic potnetial; Ti =

(Ln/ρs)δTi/Ti0 the ion temperature; τ = Ti/Te; ρs = cs/Ωci

where cs =
√

Te/mi; Ωci = eB/mic; ν is collisional-

ity; LT = − (dlnT/dr)−1, and Ln = − (dlnn/dr)−1; ηi =

Ln/LTi
, ǫn = 2Ln/R̄ where R̄ is the major radius; and

αi = τ (1 + ηi). Length scale and time are normalized by ρs

and Ln/cs, respectively. The geometrical quantities are cal-

culated in the strong ballooning limit (θ = 0, gi (θ = 0) = 1,

with ω⋆ = kyv⋆ = ρscsky/Ln). Physically, the forcing f

is envisioned to arise from the instability of toroidal ITG

modes due to unfavorable magnetic curvature, or an exter-

nal particle source.

We assume that a coherent structure responsible for

the PDF tails has the spatial profile given by modons prop-

agating with speed U in the local poloidal y direction as

φ0(x, y) = φ0(x, y − Ut) (for example, [26]). Further-

more, we assume a linear relationship between φ and Ti

as Ti = χφ with

χ =
ηi − 2

3
(1 − U + V0)

U − V0 +
5
3
τǫngi

.

The coupled equations (10) then effectively reduce to one

equation for φ with the nonlinear interaction term N[φ] in

Eq. (7) given by

N[φ] = −(∂t − αi∂y)∇2
⊥φ + V0(1 − ∇2

⊥)φ

+(1 − ǫngiβ)∂yφ − β[φ,∇2
⊥φ] + ν∇4φ, (11)

where β = 1 + τ + τχ. By substituting Eq. (11) in S λ and

using φ = F(t)φ0, we obtain the effective action S λ as a

function of F(t) and φ̄(x, t). We note that for a nonlinear

modon solution to exist, the ITG mode should be linearly

unstable (for example, [32]).

4.1 Momentum flux
We first consider the observable to be momentum flux

M[φ] = 〈vxvy〉 =
〈

−∂φ
∂x

∂φ

∂y

〉

, (12)

where angle brackets 〈〉 denote spatial average, and com-

pute the PDFs of the momentum flux M[φ] to take a value

of R (that is, P(R)).

By substituting Eq. (12) into S λ Eq. (7) with φ =

F(t)φ0, and following Sect. 3 Steps I-IV, we obtain the de-

sired PDFs of the momentum flux P(R) as

P(R) ∼ exp{−c1R3/2}, (13)

where c1 is a constant that depends on the profile of the

coherent structure (modon) and the values of the physi-

cal parameters (U − V0, ηi, τ, etc). Equation (13) clearly

shows that the PDF tails are strongly intermittent with ex-

ponential scaling exp (−cR3/2). Our prediction thus offers

a powerful mechanism for ubiquitous exponential scal-

ings observed experimentally (for example, [10–13]). No-

tably, exactly the same exponential scaling exp (−cR3/2) of

Reynolds stress was reported in [11]. Of particular impor-

tance, we find that the PDF is enhanced over the Gaussian

prediction exp (−cR2), highlighting the importance of in-

termittency in understanding momentum transport. Simi-

lar exp (−cR3/2) was also obtained in the PDFs of local mo-

mentum flux and heat flux in Hasagawa-Mima and toroidal
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ITG turbulence models [27,28]. These results follow from

the fact that (i) the highest nonlinearity in our model is

quadratic and (ii) the observable is the second-order mo-

ment (momentum flux) [33]. Were it not for a linear re-

lationship between Ti and φ, a different exponential scal-

ing would have followed. On the other hand, the constant

c1 depends on the spatial profile of the coherent structure

(modons), U − V0, and other physical parameters (ηi, τ,

etc.), which is investigated in detail in [30].

4.2 Zonal flow formation
We consider zonal flows, driven by Reynolds stress

(momentum flux), as

∂φZF(t)

∂t
= −〈vxvy〉 . (14)

To include the dynamics of zonal given in Eq. (14), we

need to introduce the conjugate variable for zonal flows

as φ̄ZF. The additional contribution from zonal flows to the

action S λ is then given by

∆S λ = −i

∫

dtφ̄ZF(t)

(

∂φZF(t)

∂t
+ 〈vxvy〉

)

. (15)

To compute the PDFs of zonal flows, we consider the ob-

servable to be zonal flows

M[φZF] = φZF . (16)

By incorporating ∆S λ (Eq. (15)), substituting Eq. (16) into

Eq. (7), and following Sect. 3 Steps I-IV, we obtain PDFs

of zonal flows to take the value of R (that is, P(R)) as fol-

lows:

P(R) ∼ exp{−c2R3}. (17)

Here, c2 is the model-dependent constant that determines

the amplitude of the PDFs. The exponential scaling in

Eq. (17) again indicates a strong intermittency in the tails.

The exact scaling here follows from the fact that (i) the

highest nonlinearity in our model is quadratic and (ii) the

observable is the first order moment (zonal flow). Note

that, for the same reason, a similar exp (−cR3) scaling was

found in the tails of the PDFs of positive velocity gradients

in Burgers turbulence [18]. While the exponential scaling

is robust, the amplitude of the PDFs rather sensitively de-

pends on parameter values in the model through the value

of the constant c2 [30, 33]. Similar exponential PDFs are

thus expected when the effect of toroidal coupling is incor-

porated, with the same (quadratic) highest nonlinearity in

Eq. (10). The toroidal effect will however change the over-

all amplitude of PDFs by effectively altering the forcing

strength (κ0).

Note that, in this model, the back reaction of zonal

flows is neglected, by assuming an imposed shear flow.

Computation of the PDFs in a more consistent model is

in progress where zonal flows are treated dynamically by

allowing them to modify the evolution of fluctuations. Fi-

nally, note that a simplified 1D model for a shear flow

has been proposed in terms of a nonlinear diffusion equa-

tion, where a shear flow is driven by a stochastic forcing

while damped through a nonlinear diffusion of the form

D(ux) = γu2
x [34]. Here, ux = ∂xu; γ is constant. Analysis

of this model was recently done by [35].

4.3 Summary
The instanton method predicts exponential PDFs of

momentum flux (second moments) and structure formation

(first moments) with exp (−cR3/2) and exp (−c2R3) scal-

ings, respectively. Our theory thus explains similar ex-

ponential PDF tails often observed in various tokamaks

[11–13]. Furthermore, we can show that PDFs of higher

moments such as 〈nvxvy〉 have exponential PDFs that are

much more enhanced compared to the Gaussian distribu-

tion, possibly explaining the numerical results in [10].

5. Discussions and Conclusion
We presented a statistical theory of turbulence and in-

termittency that is rather insensitive to the details of a dy-

namical system and depends on only the highest nonlinear

interaction. The method is motivated by various experi-

mental results that show that coherent structures tend to

arise from complex, multi-scale interactions in plasmas,

manifesting a tendency toward self-organization. These

coherent structures are often associated with bursty events,

causing a significant transport, such as, for instance, ham-

pering plasma confinement in laboratory plasmas. This

empirical fact is built into the instanton method, employed

for our study. The predicted scaling is exponential, offer-

ing a powerful mechanism to explain similar exponential

PDF tails observed in various tokamaks [11–13].

The instanton method is not a new theory; it was orig-

inally introduced in quantum field. However, it appears

to be a useful technique for examining plasma turbulence,

with much scope for further investigation. While the lead-

ing order prediction of instantons is limited to exponential

PDFs, there is much hope that extension of this method

will give more diverse scaling predictions, including the

combination of exponential and power-law, power-law, etc

that can explain not only the tails but the form of the PDFs

near the center. Note that in Burgers turbulence, the left

tail of the PDF for the velocity difference due to shocks

satisfies a power-law scaling.

The few steps to improve the present predictability

of the instanton method include: (i) keep contributions

from the perturbations around the instanton (that is, the

higher-order corrections in the action and path integral); in

other words, incorporate both coherent structures and fluc-

tuations (turbulence); (ii) incorporate contributions from

anti-instantons (see Fig. 2), multi-instantons, and multi-

structures; (iii) generalize the method to account for a

finite-correlation time of the forcing and for non-Gaussian

statistics; and (iv) derive consistently the forcing that may

arise from some instabilities in a system, rather than taking
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it to be given. These improvements are expected to provide

a theoretical framework in which a broad range of exper-

imental data, including finite size scaling with power-law

PDFs [36], can be understood. Finally, while the exact

value of the PDF amplitude requires knowledge of the spa-

tial form of coherent structures (for example, exact nonlin-

ear solutions), a good estimate can be obtained by finding

an approximate nonlinear solution, or by empirically con-

structing it from numerical or experimental results even if

the exact form may not be available.
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