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ABSTRACT 

Since standard engineering-level blast models are typically developed to predict airblast parameters (pressure and 

impulse) from TNT bursts, prediction of airblast from other materials uses an equivalence factor by which an 

equivalent TNT weight is computed and used in the source term of the model. This approach is widespread in the 

industry and has been codified in numerous manuals, books, and papers. 

A recent effort co-sponsored by TSWG (U.S.) and FSTD (Singapore) collected and compiled equivalence data for a 

wide variety of explosive materials (both military grade as well as home-made) into a single software tool named 

STREET. The database thus assembled provides a comprehensive and expandable repository for equivalence data. 

Two of the main achievements in STREET are the consideration of equivalence as a function of scaled standoff 

(rather than a scalar), and the documentation of uncertainty in the estimated value. 

In this paper, we consider specifically the manual- and test-derived data related to Composition C-4, and as a first 

step, we draw some judgments regarding the equivalence implicit in blast curves provided by UFC 3-340-02, for 

both pressure and impulse.  

Next, we consider PE4, which is similar in composition to C-4 and is used widely in the UK. A significant body of 

blast data for this explosive has been generated, from which equivalence is computed and is compared to the 

available data for C-4, with a view towards determining whether these two materials can in fact be considered as a 

single explosive (with two alternate names). 

Finally, considering the combined data for both C-4 and PE4, new curve fits are provided that represent the pressure 

and impulse equivalence of the C-4/PE4 material (and its uncertainty) as a function of scaled standoff. 

 

INTRODUCTION 

Of all explosive materials, trinitrotoluene (TNT) remains the single most well-characterized 

explosive with regard to its airblast parameters such as time of arrival, peak pressure, and 

impulse. In particular, the Kingery-Bulmash model [1] has been widely accepted as providing 

reliable airblast metrics as a function of scaled standoff, and the corresponding curves have been 

adopted in numerous publications including government manuals for explosive safety design [2] 

and design of hardened structures [3]. Calculating blast loads from a TNT explosion, whether a 

spherical burst in free air or a hemispherical charge at ground surface, can thus be easily 

accomplished with these curves. Additionally, the uncertainty in the model has been well 

characterized with reference to a large body of experimental data, data not available at the time of 

the original model�s derivation [4]. 

To predict the effects of an explosive other than TNT, recourse is generally made to the concept 

of an equivalence factor, a factor which, when multiplied by the weight of the explosive of 

interest, converts its weight to an equivalent TNT weight. When the equivalent TNT weight is 



used in the engineering models, a reasonable approximation of the airblast from the subject 

explosive can be obtained. In equation form, then: 

 Weq-TNT = K Wmat (1) 

where Wmat is the weight of the material, K is the equivalence factor, and Weq-TNT is the equivalent 

TNT weight.  

In most practical contexts, the selection of K for a particular explosive proceeds to tables found in 

common references. For example, the DAHS Manual [3] provides a table listing the equivalence 

of 50 different materials, most of them military grade explosives; a portion of this table is 

reproduced in Table 1. Different equivalence values are provided for pressure than for impulse, 

and these are typically given as scalars. In a few instances (such as C-4 in our extract), two 

different domains are defined in terms of pressure (or its analog, scaled standoff) with the 

equivalence essentially exhibiting a step function from one to the other. 

 

Table 1: Sample equivalence factors from DAHS Manual [3] (extract). 

 

In recent work jointly sponsored by the U.S. Department of Defense (TSWG) and Singapore 

Ministry of Defence, a new code has been developed which incorporates a wide range of both 

manual data (as above) as well as experimental data on the explosive equivalence of nearly 200 

different materials, including not only military grade explosives but also homemade explosives 

(HMEs). The Scenario- and Target-Relevant Explosive Equivalence Tool (STREET) [5] 

improves on the prior status quo of equivalence in three important ways: 

 It provides equivalence as a function of scaled standoff, rather than a scalar, by fitting 

numerical functions to the available data. 

 It provides uncertainty in the equivalence, due to both measurement uncertainty as well as 

fitting uncertainty. 

 It gathers, under a common umbrella, data from both tests and published references 

related to the equivalence of hundreds of military and home-made explosives. 

The third bullet cited above, in particular, allows comparison between equivalence data from 

various sources that would have been difficult previously. Taking advantage of this convenience, 

this paper seeks to re-evaluate the data for one explosive in particular, Composition C-4, and 

draw some conclusions regarding the validity of data from one traditional and well-regarded 

source. Following that discussion, we consider a new source of data (new even to STREET) 



using the material PE4 which is a variant of C-4 and draw conclusions as to whether those two 

materials can in fact be treated as a single material. Finally, we provide recommended 

equivalence curves for C-4/PE4 to be used in future applications. 

 

UFC 3-340-02 EQUIVALENCE FOR C-4 

Within the STREET database, C-4 equivalence data is available from two manuals (UFC 3-340-

01 as shown earlier in Table 1, and a 1975 publication by Swisdak [6]). On the experimental side, 

two papers [7][8] provide test data, one of which (Veldman) has both pressure and impulse while 

the other (Nansteel) only documents impulse equivalence; the D-BREIE III study [9] is the other 

source of experimental data. The resulting plots are shown in Figure 1 and Figure 2 for pressure 

and impulse, respectively. The step function from the DAHS manual is clearly seen in Figure 1, 

while for impulse the value is flat. The Swisdak data for pressure is relatively smooth and shows 

a pronounced decrease with increasing standoff, but although shifted to the right, it is close in 

value to the data from DAHS. For impulse, Swisdak indicates a sine wave�like shape that defies 

explanation; the average of that curve, however, agrees quite well with DAHS.  

The test data is far more scattered than the manual data, as one might expect. The Veldman data 

for pressure roughly agrees with the DAHS value at close standoffs, but the D-BREIE data spans 

a much larger range of standoffs and is quite scattered. Broadly speaking, though, its values are 

only slightly higher than the DAHS value, if one excludes the apparent outlier at about 2.5. In the 

impulse plot, the Nansteel data is very internally consistent and also in excellent agreement with 

DAHS, particularly considering its very small standoff. The Veldman impulse data is somewhat 

lower than DAHS, as is D-BREIE III overall. Generally speaking, considering all the data 

together, both plots are suggestive of an essentially flat-line relationship between equivalence and 

standoff; in other words, they suggest a scalar relationship that is not markedly dependent on 

standoff.  

 

Figure 1: Pressure equivalence data for C-4 in STREET. 
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Figure 2: Impulse equivalence data for C-4 in STREET. 

We turn now to UFC 3-340-02, whose approach to calculating blast from non-TNT charges 

differs markedly from all the sources cited earlier. Rather than providing a table of equivalence 

factors for converting the explosive to TNT, UFC 3-340-02 provides curves of pressure and 

impulse as a function of scaled standoff, such as the example shown in Figure 3 for C-4. Note 

from the graph heading in that figure that the curve applies to an orthorhombic (i.e., brick-

shaped) charge with aspect ratio of 1.6:1:1.3, which is to say roughly cubic.  

We note that the curves in Figure 3 are exactly analogous to 

those of Kingery-Bulmash for TNT. Thus, one can directly 

get pressure and impulse for C-4 without the need to obtain 

an equivalence, convert the C-4 to TNT, and then use the 

TNT curves for the appropriate scaled standoff. 

Nevertheless, the existence of these C-4 curves implies an 

equivalence between the two, and the implicit equivalence 

can be calculated as demonstrated in Figure 4.  

First, we plot the pressure and scaled impulse curves for the 

two materials (TNT and C-4) against one another. For 

pressure, we note that the C-4 curve is consistently higher 

than that for TNT (except for a small portion around  

15-25 ft/lb
1/3

). This indicates that over most of the domain, 

C-4 will have a pressure equivalence greater than 1.0 (i.e., it 

produces a higher pressure for the same charge weight and 

standoff). For impulse, however, the situation is somewhat 

reversed, as C-4 underperforms TNT over most of the 

domain and is going to have an equivalence lower than 1.0.   
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Figure 3: Pressure and impulse 

from a C-4 charge, from [2]. 
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Figure 4: Calculation of equivalent scaled standoffs for C-4 relative to TNT. 

It may be demonstrated, from the definition of equivalence, that the equivalence factor is simply: 

 

3
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Z

Z
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For peak pressure, the values of the two standoffs are easily obtained by taking a horizontal line 

at constant pressure and determining where that line intersects the two curves, as shown 

graphically in Figure 4. For impulse, since the value provided is the scaled impulse, the line is not 

horizontal but angled at 45° so that both impulse and standoff are scaled by the same amount as 

the shift is made. Taking these values across the spectrum of scaled standoff, we can obtain 

curves of equivalence vs. scaled standoff, which can then be plotted against the available data 

from the sources shown earlier.
1
  

These plots are shown in Figure 5 for pressure, and in Figure 6 for impulse. In both cases, the 

UFC curve seems to diverge drastically from all of the remaining data, not only in terms of 

magnitude but also in its basic shape. The curves indicate an equivalence that is highest at the 

two ends of the domain but lowest in the middle (around 25 ft/lb
1/3

 for pressure, or 15 ft/lb
1/3

 for 

impulse); this sort of behavior is not easily explained in physical terms. Additionally, the curves 

                                                 
1 Note that to perform this transformation, the Kingery-Bulmash curves for a hemisphere at ground surface were 

utilized. Clearly the C-4 curves in UFC 3-340-02 are applicable to a brick rather than to a hemisphere, however the 

aspect ratio of the brick is not far from that of a hemisphere (2:2:1) and at distances greater than a few scaled feet, 

one would not expect the charge shape to be of any significance. 
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reach very high values (as much as 4 in the case of pressure) that are not entirely credible. One 

might suppose that these relationships were chosen out of a desire for conservatism.
2
 However, 

using the UFC�s curves would lead to significant non-conservatism if one�s problem was in the 

regime of 15�25 ft/lb
1/3

.  

 
Figure 5: Pressure equivalence from UFC 3-340-02 compared to other sources. 

 
Figure 6: Impulse equivalence from UFC 3-340-02 compared to other sources. 

In our judgment, this comparison indicates that the UFC 3-340-02 pressure and impulse curves 

should only be used�if they are used at all�with extreme caution, as they produce airblast 

parameters that disagree quite visibly from the community�s consensus on the equivalence of  

C-4. Perhaps the curves could be used in the very limited case of a brick with aspect 1.6:1:1.3, 

but even then, the dip observed in the middle range of the curves would seem counter-intuitive. 

                                                 
2 UFC 3-340-02 is well known for its overall conservatism in such areas as response criteria. 
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With regard to STREET, the curve fits provided for C-4 were re-calculated after excluding the 

UFC 3-340-02 data, which had a modest effect on the median curve but had a very pronounced 

effect in reducing the fitting uncertainties. 

 

PE4 BLAST DATA AND EQUIVALENCE 

We turn next to a consideration of PE4 as an explosive material similar to C-4. Like C-4, PE4 is 

composed of RDX mixed with a plasticizer, but the proportion of RDX may vary slightly (91% 

in C-4, 88% in PE4) as would the plasticizing compound. In most descriptions, PE4 is stated to 

be �nearly identical� or �very similar� to C-4 in its explosive properties. An earlier study using 

numerical simulations of TNT charges to replicate experimental measurements from PE4 charges 

[10] concluded that an equivalence of about 1.2 is appropriate for both pressure and impulse, a 

value fully consistent with those in the DAHS manual for C-4 (1.20 for pressure, 1.19 for 

impulse). Our interest here is to determine whether the equivalence of PE4 is sufficiently similar 

to C-4 (i.e., within the statistical uncertainty associated with C-4 equivalence) that it may be 

considered the same material. 

A voluminous body of blast data 

was obtained from four separate 

series of trials conducted by 

researchers at Sheffield University, 

and documented in four different 

papers ([11], [12], [13], [14]) which 

we shall identify by the prime 

author and year of publication. The 

trials used hemispheres of PE4 

weighing between 180 and 350 g 

and positioned on a concrete slab. 

Active pressure gauges were fielded 

in rigid, non-responding walls 

between 4 and 10 m from the 

charge. A typical test setup is shown 

in Figure 7. Even though gauges 

were often positioned at varying 

angles of incidence, only the G1 gauge (normal to the charge) was used in the current study. In 

some cases, the walls were of sufficient size to prevent clearing effects; in others, clearing effects 

were observed and measured. For the current study, data from gauges fielded in tests with 

clearing effects were considered for peak pressure only; impulse from those records was not 

utilized. 

The test series produced a quantitatively substantial body of data. A summary of the number of 

measurements is provided in Table 2. Due to some of the tests having a finite reflector, the 

number of impulse points is about half that of the pressure points, but the numbers are still 

respectable.  

For each gauge record, a peak pressure was determined by fitting a Friedlander waveform to the 

bulk of the active gauge data, excluding the initial early-time spikes, which can be subject to 

noise from gauge ringing and overshoot. An example of such a fit is shown in Figure 8, where the 

 

Figure 7: Typical experimental setup for PE4 tests (from 

[13]). 



measured peak is close to 70 kPa while the curve fit produces a much more meaningful peak 

pressure estimate of 58 kPa. The impulse for the gauge was then calculated by integrating the 

fitted curve, rather than the original data, although the two produce essentially identical impulses. 

Table 2: Number of measurements from PE4 tests. 

 Number of measurements 

Reference Study Pressure Impulse 

[11] Tyas 2011 16 � 

[12] Rigby 2012 4 4 

[13] Rigby 2014 14 14 

[14] Rigby 2015 4 � 

TOTAL 38 18 

 

 

To estimate TNT equivalence for each gauge, a 

similar approach was used as was described 

earlier for the data from UFC 3-340-02. Namely, 

the pressure and impulse were compared to the 

Kingery-Bulmash curves for a hemispherical 

charge at ground surface, the corresponding 

scaled standoffs were determined for either a 

constant pressure or an impulse along a 45° line, 

and the equivalence calculated as the cube of the 

ratio of scaled standoffs. We thus obtained 38 

data points for the pressure equivalence of PE4 

and 18 data points for its impulse equivalence. 

These results are now plotted, as a function of the 

scaled standoff, in Figure 9 and Figure 10. As the 

plots show, the covered range of scaled standoffs 

is fairly small relative to our overall range of 

interest, and the data fall in the regime of far field (roughly 10-40 ft/lb
1/3

). The pressure data is 

somewhat more scattered than the impulse, but both form reasonably consistent data sets. An 

exponential function was fit to the data and is shown in each plot as a black line; the arrangement 

of the data led to a nearly straight-line fit (in log-log space) for both sets. In both cases, the line 

has a slight downward slope (decreasing equivalence at farther standoffs). 

Using the curve fit for pressure, the PE4 equivalence is between 1.20 at the closest standoff and 

1.15 at the farthest. For impulse, once again using the curve fit, the equivalence ranges from 1.19 

to 1.18 (i.e., is essentially flat). These values are generally similar to those provided by DAHS for 

C-4, and we are therefore encouraged that PE4 may indeed be compared favorably to C-4 with 

regard to equivalence.  

Figure 8: Typical curve fit used to determine 

peak pressure from gauge record (from 

[13]). 



 
Figure 9: Pressure equivalence data for PE4 vs. scaled standoff. 

 
Figure 10: Impulse equivalence data for PE4 vs. scaled standoff. 

COMPARING PE4 TO C-4 

We are now prepared to address the question of whether PE4 is �similar to� or �the same as� C-4 

with regard to its TNT equivalence. The plots in Figure 11 and Figure 12 provide the necessary 

data for this determination. In those plots, the original C-4 data are plotted in gray, while the new 

data for PE4 is plotted in color. The straight lines shown in the plots are the curve fits used in 

STREET to represent C-4, along with the ±2-sigma uncertainty bounds. The uncertainty bounds 

represent a 95% confidence interval due to fitting of the functional curve to the scattered data.
3
  

                                                 
3 Note that an entirely separate source of uncertainty is due to scatter in the individual gauges measuring pressure and 

impulse. That uncertainty is not included in the bounds being plotted and the values of the uncertainty factor reported 

below, but it has been quantified in STREET.  
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Figure 11: Comparison of PE4 pressure equivalence data to C-4 data and curve fit. 

 
Figure 12: Comparison of PE4 impulse equivalence data to C-4 data and curve fit. 

From the pressure plot, we see that most of the PE4 data points lie within the 95% confidence 

interval. In fact, 2 of the 38 points lie (just) below the lower bound, which happens to coincide 

exactly with the proportion of points (5%) that would be expected to fall outside the two-sigma 

bounds. The PE4 data does tend to be low compared to the curve fit, with only 3 of the 38 points 

being above the median. Nonetheless, the fact that 95% of the points are within the 95% 

confidence interval indicates excellent consistency. Turning to the impulse plot, the consistency 

is even more pronounced: none of the 18 points lie outside the two-sigma bounds. Here, most of 

the PE4 data lies above the median (only one point lies below), but again, the comparison is most 

favorable. 

Consequently, we can conclude that PE4 is in fact the same as C-4 with regard to its pressure 

and impulse equivalence, within the reasonable scatter observed in the data. This conclusion is, of 

necessity, limited to the far-field standoffs where PE4 data was available for the current study, 
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and it remains to be determined through future analysis of existing data (or testing to generate 

new data) whether it is equally applicable in the mid- and near-field regimes. 

 

UPDATED CURVE FITS FOR C-4/PE4 

Now that C-4 and PE4 are considered as a single material, we can re-calculate the curve fits for 

both pressure and impulse equivalence, using all the data combined into a single data set. We first 

see the pressure curve fit in Figure 13, in which all the C-4 data is in purple while the PE4 data is 

in orange. The two-sigma uncertainty bounds are also shown parallel to the median curve fit. The 

curve represents the data quite well, even though there is a significant amount of scatter. It is 

worth noting that the new PE4 complements the older C-4 data quite well, since there was only 

one study (D-BREIE III) that provided data in the > 10 ft/lb
1/3

 regime, and none of it was in the 

18�45 ft/lb
1/3

 range (compare to Figure 1).  

 
Figure 13: Curve fit to combined C-4 and PE4 data for pressure equivalence. 

We might ask what difference the additional data made in the curve fits. First, in Figure 14 we 

compare the two curve fits and observe that the new fit (in red) has a distinctly steeper slope. This 

results in a slightly higher equivalence at the very close-in range, but a lower value at the far 

range. It�s not surprising that the new data has had this effect since, as we noted, the pressure data 

from PE4 was lower than the old curve fit to C-4 data only (see Figure 12). We also note that the 

uncertainty has been reduced somewhat, as can be seen most clearly at 1.6 ft/lb
1/3

 where the two 

curves intersect and the width of the uncertainty bands is easily compared. 

Next, looking at impulse, Figure 15 plots all available data (C-4 in purple, PE4 in orange) and the 

best-fitting curve along with uncertainty bounds. Once again, the PE4 data nicely fills a 

significant gap in the C-4 data set, with minimal overlap with existing data. The median curve 

represents the data quite well. The Swisdak points are inherently of lower credibility than the 

others, but removing them would have minimal effect on the median curve fit; it might reduce the 

uncertainty bounds somewhat, however. 
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Figure 14: Comparison of original (C-4) and combined (C-4 + PE4) curve fits for pressure. 

 
Figure 15: Curve fit to combined C-4 and PE4 data for impulse equivalence. 

In Figure 16 we plot the original (C-4 only) and new (combined PE4 and C-4) curve fits to 

understand the impact of the new data on the resulting curve. Since the new PE4 impulse data lies 

mostly above the old curve fit (see Figure 12), it is no surprise that the new curve is higher than 

the old at large standoffs, but only by a slight amount. The uncertainties are roughly the same, 

though the new curve has very slightly smaller confidence bounds. 
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Figure 16: Comparison of original (C-4) and combined (C-4 + PE4) curve fits for impulse. 

 

RECOMMENDED EQUIVALENCE VALUES FOR C-4/PE4 

Ultimately, what values of equivalence should users plug into their models if calculating airblast 

from a C-4 or PE4 explosion? First, with regard to pressure, it is evident that there is a distinct 

standoff dependence to the equivalence: closer distances require a higher equivalence than more 

distant ones. The best fit curve ranges from 1.47 at 0.4 ft/lb
1/3

 to 1.16 at 80 ft/lb
1/3

, which is too 

large a variation to simply ignore. Impulse, however, is nearly flat, ranging from 1.18 to 1.12 

across the domain; thus, approximating this with a constant 1.15 would be a reasonable 

simplification. 

For those wishing to implement the curves into an automated model, the relevant equations for 

the best-fit curves are provided below: 
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 (3) 

For the new combined fits,
4
 the parameters of the equations are listed in Table 3. The two-sigma 

uncertainty factor is provided in the table, and can be used to determine a lower- and upper-

bound value as follows:  

                                                 
4 For clarity, note that the curve fit for C-4 provided in the current version of STREET (ver. 1.0.2) is still the older 

form of the equation which was fit to C-4 data only (the black curve in Figure 14 and Figure 16). 
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If one wishes to define the one-sigma confidence interval, this can also be computed by: 

  21 UFUF    (5) 

Table 3: Parameter values for equivalence curve fits. 

Parameter 

Value 

Pressure Impulse 

a1 0.8927 0.08607 

a2 -0.0511 -0.10546 

a3 -0.7440 -0.02105 

UF (2ı) 1.24 1.29 

 

It is worth noting that the uncertainty bounds are not trivial; choosing to use a conservative two-

sigma upper bound would add 24% and 29% to the pressure and impulse equivalences, 

respectively. For example, the upper bound pressure equivalence at the 0.4 ft/lb
1/3

 range is 1.83, a 

value quite a bit higher than the traditionally accepted 1.2, or even the 1.37 specified in DAHS. It 

is also interesting, and somewhat counter-intuitive, that the uncertainty bound on impulse is 

slightly larger than that on pressure. Traditionally, pressure measurements have had greater 

uncertainty than impulse, but perhaps the process of determining equivalence and then fitting a 

curve to that data negates that inherent uncertainty in measuring peak pressures. As well, the new 

PE4 data now included in these fits uses a Friedlander fit to determine the peak rather than the 

measurement (as illustrated in Figure 8) which eliminates the scatter due to the initial overshoot 

of the gauge. 

 

CONCLUSIONS 

In this paper, we have examined the curves provided by UFC 3-340-02 for pressure and impulse 

from C-4 orthorhombic charges, and concluded that the curves are suspect and should be used 

only with the greatest caution. Use of equivalence factors such as those provided in the DAHS 

manual or in this paper is more reliable and defensible. 

We have also examined whether, in terms of its performance in producing airblast, PE4 can be 

considered the same explosive as C-4, and the analysis shows emphatically that it can. In the 

future, then, C-4/PE4 can be considered the same explosive. 

Finally, we have provided updated curves that define standoff-dependent values of pressure and 

impulse equivalence, along with the two-sigma confidence bounds. For conservative 

applications, use of the two-sigma upper bound is a reasonable approach.  
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