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ABSTRACT 

Following detonation of an explosive material, a series of rarefaction expansion waves collapse inwards from the 

interface between the explosive and the surrounding air. These rarefaction waves coalesce at the centre of the 

explosive and reflect as a shock wave. Whilst these successive shocks are small in magnitude compared to the 

primary shock and are often ignored, the inward reflected shock immediately following the primary shock wave, 

typically referred to as the �secondary shock�, is a noticeable feature on blast pressure histories and usually arrives 

after the beginning of the negative phase. 

This paper presents results from medium and large scale surface blast tests where accurate measurements of 

secondary shock delay (time after arrival of the primary shock) are obtained for various explosives at various scaled 

distances. A method is presented for adjusting the secondary shock delay time by the product of the velocity of 

detonation divided by the cube-root of the packing density of the explosive. The relationship between this new 

secondary shock delay parameter and scaled distance is then found to be consistent for all explosives considered. 

This gives a new empirical method for estimating the yield of an explosive, or determining the velocity of 

detonation, based only on measurements of the secondary shock delay. 

 

INTRODUCTION 

Upon detonation of an explosive material, a high pressure wave, supported by the exothermic 

detonation of the explosive material, travels through the explosive at a characteristic detonation 

velocity, Vod. Once this wave reaches the edge of the explosive, the reacting high explosive 

products begin to expand, rapidly accelerating the air to around 10�11 orders of magnitude 

greater than gravitational acceleration [1]. This causes a primary shock wave to form, which 

propagates away from the point of detonation. The subsequent expansion of the detonation 

products results in rarefaction of the interior and the formation of a backwards-moving shock 

wave that converges on the point of detonation and reflects. This outward-travelling shock wave 

propagates into the surrounding air following the primary shock and is known as the �secondary 

shock�. As this secondary shock reaches the interface between the reaction gasses and the air, a 

subsequent rarefaction wave is propagated back through the explosive, setting up a tertiary 

shock. This process is repeated until the energy in the detonation product gas cloud has 

dissipated [2]. 

Whilst the tertiary and subsequent shocks are of little importance and are often difficult to 

measure experimentally, the secondary shock is a common feature in experimental measures of 



 

blast pressure-time histories, typically arriving after the beginning of the negative phase. Despite 

its clear existence, the secondary shock is often overlooked and there are few studies dedicated to 

analysis of the secondary shock and its effect. There are a small number of studies reported in the 

literature where the secondary shock has been accurately measured from experimental trials [3�

7]. These will be discussed in more detail in the following section. There are even fewer studies 

where the secondary shock has been studied analytically. In his seminal work on numerical 

solutions of spherical blast waves, Brode [2] calculated secondary shock propagation up to 

distances of several thousand charge radii from the detonation point. Friedman [8] developed 

equations describing the formation and propagation of the primary and secondary shock, but the 

analyses were not run past the secondary shock returning to the charge centre. 

Recently, Gitterman [3] compiled secondary shock parameters for a number of explosives over a 

large range of scaled distances, where the scaled distance is given by the distance from the 

explosive centre to the gauge divided by the cube-root of the charge mass, Z=R/W
1/3

, as is 

common. The new secondary shock delay parameter tss (the time between the main and 

secondary shocks) was established and analyzed, and a clear correlation was found between the 

equally scaled - delay (įtss/W
1/3

) and distance. The results indicated that the formation time (i.e. 

the delay) of the secondary shock is strongly dependent on explosive type, yet reasonably 

consistent for any given explosive. This paper extends the previous study by including results 

from smaller scale testing and performing associated numerical analyses to assess the ability of 

commercial finite element software to predict the secondary shock. The expanded dataset is 

further analyzed and a new secondary shock parameter is introduced. 

 

EXPERIMENTAL RECORDINGS OF SECONDARY SHOCK DELAY 

The following experiments were compiled by Gitterman [3]: Ȉ Two large-scale � 10,240 and 102,080 kg � hemispherical ANFO explosions and one 

81,664 kg IMI charge (high explosives provided by Israel Military Industries Ltd., 

consisting of a mixture of different recuperated high explosives: TNT and gunpowder as 

major agents, and smaller amounts of Composition B and RDX), conducted by the 

Geophysical Institute of Israel at the Sayarim Military Range (SMR) in the Negev desert 

[3]. Secondary shock features were observed from pressure gauges located close to the 

charge (less than 600 m), as well as from seismic and acoustic sensors deployed up to 

20,000 m from the charge centre, giving a range of scaled distances between 2.23�926.46 

m/kg
1/3

. A new parameter was introduced, termed the secondary shock delay, įtss, given as 

the time between arrival of the primary and secondary shock fronts (see Figure 1). Ȉ Detonation of two 20 ton and one 100 ton (18,200 and 91,100 kg) hemispherical ANFO 

charges, conducted at Defence Research Establishment Suffield in 1969 and reported by 

Sadwin and Swisdak Jr. [4]. Incident blast pressure histories were recorded, and scaled 

distance dependent relations for the arrival time and peak pressure of the secondary shock, 

among others, were presented. Measurements were taken between 67.4�749.8 m from the 

centre of the explosive, corresponding to scaled distances of 2.62�16.66 m/kg
1/3

. 



 

Ȉ Distant Image and Minor Uncle high explosive tests at White Sands Missile Range in 1991 

and 1993 respectively, reported by Reinke et al [5]. These tests consisted of very large 

(2,210,000 and 2,472,000 kg) hemispherical ANFO charges. Pressure was recorded 

between 1,500�50,000 m from the charge centre, giving scaled distances of 11.5�383.9 

m/kg
1/3

. Ȉ 830 kg cast TNT charges and a 360 kg Composition B charge [9], with pressures recorded 

between 7�19 m from the charge centre, conducted at SMR in 2008. A small number of 

secondary shock delays were recorded at scaled distances between 0.74�2.02 m/kg
1/3

. 

 

Figure 1: Example reflected blast pressure history showing clear secondary shock features. 

Secondary shock delay, įtss, labelled 

In addition to these data points, a number of additional smaller-scale experiments are considered 

for this paper: Ȉ A total of 27 experiments conducted at the University of Sheffield Blast & Impact 

Laboratory in Buxton, Derbyshire, UK, since 2011 [10�12]. Press-moulded hemispherical 

charges of PE4 (British equivalent of C4) were detonated on small, sacrificial steel anvils 

which sat on a flat, rigid, reinforced concrete ground slab. Reflected pressure was recorded 

at the base of an effectively semi-infinite bunker wall using miniature high pressure Kulite 

pressure transducers. Pressure was measured between 2�10 m from charges ranging 

between 0.18�0.35 kg, giving scaled distances between 3.17�15.87 m/kg
1/3

. The example 

shown in Figure 1 comes from one of these tests. Ȉ Six experiments with the same set up as above in work that is yet to be published on 

determining far-field TNT equivalence of PETN [13]. Pressure was recorded 2�6 m from 

0.25 kg hemispherical charges, giving a range of scaled distances between 3.17�9.52 

m/kg
1/3

. 

The experiments described above are summarised in Table 1. The packing density, ȡ, and 

detonation velocity, Vod, are also given as informed by the suppliers. Explosive properties from 

Dobratz & Crawford [14] are given where supplier information was not available. 
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Table 1: Summary of experiments compiled in this article 

Explosive Packing

 density

, ȡ (kg/m
3
) 

Detonation 

velocity,

 Vod 

(m/s) 

Charge 

(kg) 

mass Number of 

data points 

Sources 

ANFO 810�840 4,250�4,400 10,240� 

2,472,000

 107 [3�5] 

CompB 1,717 7,980 360  1 [9] 

IMI 1,600 7,500 81,664  8 [3] 

PE4 1,601 8,193 0.18�0.35  27 [10�12] 

PETN 1,770 8,300 0.25  6 [13] 

TNT 1,630 6,930 830  5 [9] 

 

Figure 2 shows the compiled scaled secondary shock delays, įtss, from the experiments described 

above, plotted against scaled distance. Here, the charge mass for both scaled delay time and 

scaled distance is divided by the cube-root of the nominal mass of the explosive itself, rather 

than an equivalent mass of TNT. As previously noted by Gitterman [3] and seen clearly in Figure 

2, the data separates into a number distinct groups based on the explosive type, with the grouping 

for ANFO clear in the main figure and the IMI, PE4, and PETN groupings shown in the sub-

figure. It can be seen that the secondary shock delay increases with scaled distance as a result of 

the higher pressure primary shock propagating faster than the trailing lower pressure secondary 

shock. 

Whilst the values of secondary shock delay for ANFO appear to show a larger spread, 

particularly at larger scaled distances, it is worth noting that the explosive composition differs 

significantly between the different tests compiled here (Table 1) and hence the parameters such 

as density and detonation velocity occupy a broader range. At this stage, it is also worth noting 

that each point for the PE4 and PETN data sets corresponds to a separate experiment. These data 

sets, therefore, exhibit test-to-test variations of the experiment itself, whereas the larger scale 

tests will capture localised variations of the blast wave more so than any test-to-test variance. 



 

 

Figure 2: Scaled secondary shock delay versus scaled distance 

 

NUMERICAL ANALYSES 

Supporting numerical analyses were conducted using the Multi-Material Eulerian/Arbitrary 

Lagrangian-Eulerian (MM-ALE) solver in LS-DYNA [15]. Specifically, numerical analyses 

were performed to evaluate the normally reflected pressure acting at 4, 6, 8, and 10 m from the 

centre of 250 g hemispherical PE4 explosives. Two models were run for each of the four stand-

offs: one with the explosive modelled as PE4 with the same mass as those in the experiments, 

and one with the explosive modelled as 300 g TNT (representing a TNT equivalence of 1.2). 

Whilst a TNT equivalence of 1.2 has previously been shown to offer an accurate means for 

equating a mass of PE4 as a TNT equivalent in terms of positive phase pressure and impulse 

[10], the effect on the secondary shock when modelling an explosive using a TNT equivalence 

had not yet been reported. 

The explosives were modelled using the Jones-Wilkins-Lee equation of state with parameters 

given by Dobratz & Crawford [14], and the surrounding air was modelled as an ideal gas. The 

PE4 was assumed to be identical to C4. The analyses were initialised in 2D axi-symmetry with a 

radially symmetric mesh whilst the blast wave was propagating through free air. This 

information was then mapped onto a domain of rectangular 2D axi-symmetric elements 

immediately prior to impingement onto the rigid target. This was done to minimise advection 

errors associated with mass transport across element diagonals [16]. The target was modelled 

using nodal point constraints. 

Figure 3 shows the reflected overpressure and reflected specific impulse histories for the 4 m 

stand-off case. Both models appear to be very accurate for the positive phase of the blast, with 

the numerical waveforms tracking the experimental waveform almost perfectly up until the 

beginning of the negative phase. Whilst the peak pressure in the models is under-predicted due to 

numerical dispersion, as should be expected, the peak impulses of 65.8 and 66.4 kPa.ms for the 



 

PE4 and TNT compare well to the experimentally measured value of 68.8 kPa.ms � differences 

of 4% and 3% respectively. 

 

 

Figure 3: Experimental and numerical reflected overpressure and reflected specific impulse at 4 

m stand-off 

 

The negative phase behaviour is less well predicted by the models. In particular, the numerical 

secondary shock arrives a lot later than the experimental secondary shock and is markedly 

different depending on explosive type, despite the primary shocks being almost identical. Figure 

4 shows compiled experimental and numerical secondary shock delay times. The secondary 

shock is strongly dependent on the state of the detonation cloud immediately post-detonation; 

therefore the fact that this behaviour is not captured correctly in the numerical model suggests 

that the properties of the detonation cloud are not correct. This is at odds with the previous 

observation of highly accurate positive phase predictions which suggest the explosive parameters 

are indeed modelled correctly. The cause of this behaviour is unknown and the subject should be 

studied further. 

Whilst the numerical results are not satisfactory in terms of the secondary shock, they do suggest 

that the secondary shock could be used as an indicator of the state of the detonation products 

post-detonation. This is explored further in the following section. 

 

 

  



 

 

 

 

Figure 4: Compiled numerical and experimental secondary shock delays 

 

NEW SECONDARY SHOCK DELAY PARAMETER 

Here a new secondary shock parameter, Ĳss is introduced, which is given by multiplying the 

scaled secondary shock delay, įtss/W
1/3

, by the detonation velocity divided by the cube-root of 

the packing density, Vod/ȡ1/3
, i.e. 

 Ĳss = įtssVod/(ȡW)
1/3 

(1) 

This definition is close to an idea presented in Gitterman [3] that the secondary shock delay 

correlates with the characteristic time of complete detonation of a finite hemispherical charge. 

Figure 5(a) shows the compiled new secondary shock delay parameters plotted against scaled 

distance for the entire experimental dataset discussed previously in this article. It appears as 

though there is a consistent relationship between Z and Ĳss which is independent of explosive 

type. As such, a least-squares fit was utilised to develop an equation representing this 

relationship in the form 

  Ĳss = Alog10(Z) + B (2) 

where A and B are coefficients to be determined from the least squares analysis. It was found that 

coefficients of 2.45 and 1.36 for A and B offered the best fit, giving an R-squared value of 

0.9820. This fit is shown in Figure 5(b). 

DISCUSSION 

The relationship between Z and Ĳss presented in this paper has the following applications: firstly, 

if an explosion occurs (whether accidental or malicious), and the secondary shock delay is 

 Experiment       LS-DYNA, 250 g PE4       LS-DYNA, 300 g TNT 

4	 5 6 7 8 9 10
2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	

Stand-off (m)



 

recorded at some distance from the explosive, the mass of explosive can be determined provided 

the explosive type is known. If the explosive type is not known, then a number of different 

possible yields can be easily determined for several common explosives, for example the ones 

studied in this paper. This could potentially be a valuable diagnostic tool when surveying 

building damage caused by terror attacks.. 

Secondly, the relationship outlined above allows experimentalists to determine the velocity of 

detonation of an explosive material without the requirement for sensitive or specialist equipment 

to be located close to the explosive charge. Given the density and mass of an explosive, which 

will be known prior to testing, the detonation velocity can easily be read from Figure 5(b). That 

the secondary shock delays at scaled distances in excess of 400 m/kg
1/3 

in this article follow the 

same trends as those of a much nearer-field event extends the remit of this method. Furthermore, 

as evidenced by the different measurement techniques described by Gitterman [3], the secondary 

shock delay does not need to be recorded by traditional pressure gauges as it can be determined 

from seismic and acoustic sensors, as well as the potential for use of optical techniques such as 

image tracking using high speed video cameras. Finally, the generalised relationship presented in 

this paper could be used to develop secondary shock predictions for different explosives for use 

with the existing semi-empirical positive and negative phase predictions found in literature such 

as UFC-3-340-02 [17]. 

The main advantage of using secondary shock delay as a metric is that, unlike parameters such as 

peak pressure or peak impulse, the value of secondary shock delay is typically very well defined 

and easy to determine. There is less room for interpretation of a secondary shock delay time than 

there is a backward-fit peak pressure value or an impulse integrated from noisy data. The delay 

time measurement will not be affected by sensor noise, ringing, or voltage drift; all of which 

have the potential to render pressure readings unusable. As an example, Figure 6(a) shows the 

same test as Figure 1 (250 g PE4 at 2 m), but with a fictitious random noise ranging between ±25 

kPa added. Shown below this in Figure 6(b) is the temporal gradient of the pressure signal. The 

arrival times of the primary and secondary shocks are clearly seen as peaks in the data. This 

gives an irrefutable measure of secondary shock delay; these maxima can be automatically 

evaluated using programming software such as MatLab, eliminating a potential source of human 

error. 

 

 



 

 

WORKED EXAMPLES 

This section includes several worked examples demonstrating how the applications outlined 

above would work in practice. Note: secondary shock delay is expressed in seconds. 

Example 1: A secondary shock delay of 2.299 milliseconds was recorded 2 m from a 

hemispherical 250 g PE4 explosion. Estimate the detonation velocity of PE4, given a packing 

density of 1,601 kg/m
3
. Ȉ Scaled distance, Z = R/W

1/3 
= 2/0.25

1/3 
= 3.175 m/kg

1/3
 

 

 

Figure 5: New secondary shock delay parameter, Ĳss, for all explosives studied and least-

squares fit to data 



 

Ȉ New secondary shock delay parameter, Ĳss = 2.45log10(Z) + 1.36 = 2.589 Ȉ Ĳss = įtssVod/(ȡW)
1/3

, rearranging gives: Ȉ Vod = Ĳss × (ȡW)
1/3

/įtss, therefore Ȉ Vod = 2.589 × (1601 × 0.25)
1/3

/2.299 × 10
−3 

= 8,299 m/s Ȉ This is within 2% of the value of 8,190 given in [14]. 

 

Figure 6: Calculating secondary shock delay from noisy signals 

 

Example 2: A secondary shock delay of 0.235 seconds was recorded 570 m from a 

hemispherical ANFO explosion. Estimate the yield of the explosive, given a detonation velocity 

of 4,200 m/s and a packing density of 840 kg/m
3
. Ȉ Ĳss = 2.45log10(Z) + 1.36 = 2.589, and Ȉ Ĳss = įtssVod/(ȡW)

1/3
, therefore Ȉ įtssVod/(ȡW)

1/3 
= 2.45log10(R/W

1/3
) + 1.36. 

Rearranging the above in terms of W, gives: 



 

Ȉ W = (įtssVod/(ȡ1/3 
× (2.45log10(R/W

1/3
) + 1.36)))

3
 Ȉ W = (0.235 × 4,200/( 840

1/3 
× (2.45log10(570/W

1/3
) + 1.36)))

3
 Ȉ Solving iteratively gives W = 10,081 kg. The actual charge mass used in this test was 

10,240 kg. Again, the prediction is within 2% of the experimental value. 

 

Example 3: Calculate the yield from the above example if the explosive was TNT with a 

detonation velocity of 6,930 m/s and a packing density of 1,630 kg/m
3
. Ȉ W = (įtssVod/(ȡ1/3 

× (2.45log10(R/W
1/3

) + 1.36)))
3
 Ȉ W = (0.235 × 6,930/( 1,630

1/3 
× (2.45log10(570/W

1/3
) + 1.36)))

3
 Ȉ A 29,944 kg TNT explosion would give a secondary shock delay of 0.235 seconds at 570 m 

stand-off. 

 

CONCLUSIONS 

A large number of secondary shock delay times have been compiled for six different explosive 

types across a wide range of scales and scaled distances. The secondary shock delay exhibits a 

strong dependence on the explosive chemistry, and the results were seen to lie in distinct bands 

based on the explosive type used in the testing. 

Numerical analyses have shown that, whilst the positive phase of the blast may be well 

represented by standard modelling techniques, the secondary shock is not well predicted. This 

suggests that the explosive event delivers the correct energy to the surrounding air, yet the post-

detonation behaviour is not captured correctly. 

A new secondary shock delay parameter is presented, and a strong correlation is found with 

scaled distance which is independent of explosive type. This is a potentially very profound 

finding as it allows us to determine the state of the explosive immediately after detonation whilst 

still using standard experimental techniques which can be located far from the explosive centre. 

A number of worked examples are provided to show how the results in this paper can be used to 

estimate explosive properties based on easily measured experimental data. 

 

REFERENCES 

[1] C. E. Needham. Blast Waves. Springer, Berlin, Germany, 2010. 

[2] H. L. Brode. Numerical solutions of spherical blast waves. Journal of Applied physics, 26(6):766�775, 1955. 

[3] Y. Gitterman. Secondary shock features for large surface explosions: results from the Sayarim military range, 

Israel and other experiments. Shock Waves, 24(3):267�282, 2014. 

[4] L. D. Sadwin and M. M. Swisdak Jr. Blast characteristics of 20 and 100 ton hemispherical AN/FO charges. 

Technical Report NOL TR 70�32, United States Naval Ordnance Laboratory, White Oak, MD, USA, 1970. 



 

[5] R. E. Reinke J. A. Leverette, R. A. McCrory. Chapter 4: Far-field ground motion and airblast measurements. 

Report of Experimental Shock Physics Office, Field Command Defense Nuclear Agency, 1993. 

[6] Y. Gitterman. Sayarim Infrasound Calibration Explosion: near-source and local observations and yield 

estimation. In The 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring 

Technologies, pages 708-719, Orlando, FL, USA, 2010. 

[7] E. M. Fisher and J. F. Pittman. Air blast resulting from the detonation of small TNT charges. Technical Report 

2890, United States Naval Ordnance Laboratory, White Oak, MD, USA, 1953. 

[8] M. P. Friedman. A simplified analysis of spherical and cylindrical blast waves. Journal of Fluid Mechanics, 

11:1�15, 1961. 

[9] Y. Gitterman and R. Hofstetter. Infrasound calibration experiment in Israel: preparation and test shots. In The 

30th Monitoring Research Review on Ground-Based Nuclear Explosion Monitoring Technologies, pages 882�

893, Portsmouth, VA, USA, 2008. 

[10] A. Tyas, J. Warren, T. Bennett, and S. Fay. Prediction of clearing effects in far-field blast loading of finite 

targets. Shock Waves, 21(2):111�119, 2011. 

[11] S. E. Rigby, A. Tyas, and T. Bennett. Single-degree-of-freedom response of finite targets subjected to blast 

loading � the influence of clearing. Engineering Structures, 45:396�404, 2012. 

[12] S. E. Rigby, Fay S.D., Tyas A, Warren J.A., and Clarke S.D. Angle of incidence effects on far-field positive 

and negative phase blast parameters. International Journal of Protective Structures, 6(1):23�42, 2015. 

[13] A. Tyas. Unpublished experimental work on TNT equivalence of PETN hemispheres. University of Sheffield. 

[14] B. M. Dobratz and P. C. Crawford. LLNL explosives handbook - properties of chemical explosives and 

explosive simulants. Technical Report UCRL 52997, Lawrence Livermore National Laboratory, University of 

California, CA, USA, 1985. 

[15] J. O. Hallquist. LS-DYNA Theory Manual. Livermore Software Technology Corporation, CA, USA, 2006. 

[16] S. E. Rigby, A. Tyas, T. Bennett, S. D. Fay, S. D. Clarke, and J. A. Warren. A numerical investigation of blast 

loading and clearing on small targets. International Journal of Protective Structures, 5(3):523�574, 2014. 

[17] US Department of Defence. Structures to resist the effects of accidental explosions. US DoD, Washington DC, 

USA, UFC-3-340-02, 2008. 


