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ABSTRACT

Context. It is known from Doppler velocity measurements that the amplitudes of solar p-modes are modulated by strong photospheric
magnetic field.
Aims. The aim of this paper is to investigate amplitude modulation by model surface magnetic fields.
Methods. Linearised magnetohydrodynamics equations, in the absence of gravity, are used to derive the inhomogeneous wave equa-
tion which is then solved using the Born Approximation.
Results. The amount of modulation depends on the plasma beta, the distance from the magnetic region and the wavenumber. It is also
found that the direction of observation could also have an effect on the amount of modulation. Finally, the applicability of the findings
to the observational data suggests that the modulation depends on the properties of the magnetic field region and measuring it is an
un-contaminating probe for the magnetic field.
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1. Introduction

Global Helioseismology uses the observed p-modes (acoustic
modes) at the Sun’s surface to infer the Sun’s internal structure
(see e.g. Christensen-Dalsgaard 2002). The oscillation parame-
ters such as frequencies, amplitudes and widths are obtained by
using peak-fitting routines on Fourier transformed Doppler ve-
locity data and are used for determining internal structure and
the dynamics of the Sun’s interior (e.g. Gizon & Birch 2005). To
make correct inferences about the solar structure and dynamics,
it is essential to estimate the mode frequencies very accurately.
However, only part of the whole Sun can be seen at any one time.
Also, the line-of-sight measurements such as the Doppler veloc-
ity measurements are not efficient at the solar limb where there
is more contribution from large scale horizontal motions instead
of radial p-modes.

Frequency and amplitude modulation of p-modes in some
areas of the solar surface can also cause spatial leakage in the
mode spectra. Since the 1980’s, it has been realised that the am-
plitudes and frequencies of solar p-modes are significantly af-
fected by surface magnetic fields.

The modulation of amplitude of p-modes by magnetic re-
gions has been studied by many (e.g. Abdelatif et al. 1986; Braun
et al. 1987, 1988; Braun 1995; Hindman & Brown 1998; Thomas
& Stanchfield 2000; Jain & Haber 2002; Nicholson et al. 2004).
It is now well established that the amplitudes of p-modes are
reduced in the frequency band 2–5 mHz and the amount of re-
duction is a function of frequency and field strength. Various
theoretical reasons to explain amplitude reduction are suggested
in Jain et al. (1996; see also, Hindman et al. 1997) and Cally
et al. (2003).

The effect of magnetic fields on the frequencies of p modes
is also well known (e.g. Woodard & Noyes 1985; Libbrecht &
Woodard 1990; Howe et al. 1999; Antia et al. 2001). The fre-
quencies of p-modes (<5 mHz) increase with an increase in the

magnetic activity during solar cycle and the increase is larger
for frequencies of higher degree p-modes. Theoretical reasons
for frequency shifts have been investigated by Goldreich et al.
(1991) and Jain & Roberts (1993, 1994, and references therein).

Thus, the spatial and temporal effects of magnetic fields on
p-modes are established beyond doubt. To understand these ef-
fects in a way that can be described quantitatively would be very
useful for reducing any systematic errors that they may cause in
the inferred parameters of the Sun’s interior. The biggest obsta-
cle to an understanding of the effects of magnetism on p-modes
is that the magnetic field structures cannot be directly observed
and alternative methods are sought to probe these structures.
Various local helioseismology techniques have been developed
in recent years (Hill 1988; Duvall Jr et al. 1993; see also, Gizon
& Birch 2005) whose main objective is to infer the sub-surface
structure of the magnetically active regions by examining the lo-
cal dispersion relation of the p-modes (Ring-diagram analysis)
and the travel times of p-modes (time-distance technique). Such
studies are crucial as they enable us to estimate the effects that
contaminate the sound speeds near the surface of the Sun.

An important although debatable, issue in local helioseis-
mology of magnetically active regions, is the possible influence
of surface effects in the interpretation and modelling of helio-
seismic signatures within sunspots (for contrasting views, see
Braun & Birch 2006; and Zhao & Kosovichev 2006, and refer-
ences cited therein). The possibility of unresolved surface per-
turbations is a plausible reason why some theoretical results are
difficult to interpret (e.g. Fan et al. 1995 and Gordovskyy & Jain
2007b). Yet surface effects not included in the inversion routines
affect the overall accuracy of the parameters of the solar inte-
rior. Thus, the forward models such as the one proposed here,
are potentially critical in helping to establish the existence and
importance of surface magnetic effects i.e. forward models may
be used to probe the possible existence of perturbations not re-
solvable and used by current inversions in helioseismology.
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Another important issue regarding the surface effects on
acoustic waves is whether the amplitudes and frequencies of
these waves are modified due to the localised perturbation in the
atmospheric parameters of the magnetic region or due to mag-
netic field directly. Gordovskyy & Jain (2007a,b) investigated
this aspect by investigating the scattering of p-modes by a thin
flux tube in a stratified atmosphere. They found that when a pure
acoustic approach is considered where a local variation in pres-
sure, density and sound speed is assumed to be induced by a
magnetic field without considering magnetic field explicitly, the
phase shift as a function of horizontal wavenumber k is nega-
tive where as considering magnetic field explicitly yields posi-
tive phase shifts. In this paper we will consider the amplitude
modulation by a localised surface magnetic field the measure-
ment of which will indicate the non-intrusive probe of the mag-
netic field.

2. The model and the governing equations

2.1. Description of the fluxtube model near the surface

In the solar photosphere, the pressure and density change with
depth (or height) but we are interested in the localised effects of
surface magnetic fields so we will assume equilibrium density
and pressure to be adiabatic and we will also ignore gravity. The
basic state (u, p, ρ, B) of the fluid is considered to be that of
rest. Thus, the linearized equation of ideal MHD may be consid-
ered as:

∂ρ′

∂t
+ ρ∇ · u′ = 0 (1)

ρ
∂u′

∂t
+ ∇p′ − 1

µ

{

[(∇ × B) × B
′] + [(∇ × B

′) × B]
}

= 0 (2)

p′ = c2
sρ
′ (3)

∂B
′

∂t
− ∇ × (u′ × B) = 0; ∇ · B′ = 0, (4)

where p′, ρ′, u′ and B
′ are the perturbations in pressure, density,

velocity and magnetic induction due to the sound wave; c2
s =

γp

ρ

is the velocity of sound in the compressible fluid with γ as the
ratio of specific heats.

Taking iω for time derivatives of p′, ρ′, u′ and B
′ in

Eqs. (1)−(4) and eliminating ρ′ and B
′ from the resulting equa-

tions yields an inhomogeneous wave equation for u′ as follows:

1

c2
s

∂2
u
′

∂t2
− ∇ (∇ · u′) = L(B, u′) (5)

where

L(B, u′) =
1

ρµc2
s

{[∇ × (∇ × (u′ × B)
) × B

]}

+
[

(∇ × B) × (∇ × (u′ × B))
]

. (6)

The solution of the inhomogeneous wave Eq. (5) can be obtained
by first considering the homogeneous problem and then the con-
volution of the free propagation Green function G(r, t, r′, t′) with
the term L (see also King et al. 2003; Pétrélis & Lund 2003).
Thus, using the Born approximation, we have

u
′ = ui + us, (7)

with

us = G ∗ L(B, ui).

Here ui is the solution of the homogeneous part of Eq. (5).

The perturbations are assumed to occur at (r
′, t′) and prop-

agate at (r, t). Thus, in the far-field approach and in the limit
|| r − r

′ || ≫ || r
′ || (see review by Lund 2002; Pétrélis & Lund

2003)

G ∗ L(B, u)(r, t) =
1

8π2r

∫ ∫ ∫

eiν(||r||/cs−t)eiν(t′−s·r′/cs)

×(L(B, u) · s)(r
′, t′)dνdr

′dt′s, (8)

where s ≈ r/ || r ||.

2.2. Amplitude modulation of acoustic wave by the model
flux tube

This section considers a cartesian coordinate system and as-
sumes the incident wave to be along the x-axis with unit vector i

and scattered wave in the direction given by the unit vector s

(cos θ = s · i).
For a magnetic field (Bx, By, Bz) = (0, 0, B0), Eq. (8) yields,

| us |
vi
∝
⎛

⎜

⎜

⎜

⎜

⎝

v2
A

c2
s

⎞

⎟

⎟

⎟

⎟

⎠

1
√
λ3r

(1 + cos θ)Fz(r
′) (9)

where Fz(r
′) =

∫

e−ik(s−i)·r′dr
′; λ = ν

cs
, is the wavelength (λ =

2π/k for wavenumber k).

We define a quantity, α, the amplitude modulation coefficient, as

α =

(

| us |
vi

)2

· (10)

By measuring α at some angle θ for a given λ and knowing the
characteristic size, R, of the surface magnetic field region from
observations, it is possible to estimate the mean plasma beta,

β(=
v2

A

c2
s
) in the magnetic region at the surface. From (9), it can

be seen that there is no scattering for θ = π as there is no Bx

component.

We will consider two different profiles for Bz: uniform ver-

tical field Bz = B0 and Gaussian field Bz = B0e−
1
2

( r
R

)2

. Note
that in order to satisfy the solenoidal condition, we should have
z-dependence in both radial and vertical field components (see
for example, Gordovskyy & Jain 2007b) but here we are only
considering Bz at z = 0.

3. Results and discussion

Figure 1 illustrates the dependence of the amplitude coeffi-
cient, α, on distance r away from the magnetic region, for
various parameters. The values of k and R are chosen to be
0.09 Mm−1 and 10 Mm respectively for the top row and k =
0.045 Mm−1, R ≈ 20 Mm for the bottom row so that the value
of kR (=0.9) is the same in all the panels. The solid and dashed
curves are for β = 0.5 and 1.0 respectively for the uniform verti-
cal field case. The figure clearly shows that the amplitude of the
incident acoustic wave is suppressed (α < 1). In fact, the sup-
pression decreases with distance r away from the magnetic field
region with significant suppression being seen in the region of
closest proximity to the magnetic field. The suppression is also
maximum for θ = 0◦ and for larger β. This is expected as α is
proportional to cos θ and β. This figure suggests that if two mag-
netic regions of equal size have the same magnetic field strength,
the modulation could still be different if the plasma β of the scat-
tering regions are different.
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Fig. 1. Absorption coefficient, α, as a function
of distance r (in Mm) for two different sets
of values of k and R: the top row has k =
0.09 Mm−1 and R = 10 Mm and the bottom
row has k = 0.045 Mm−1 and R ≈ 20 Mm.
The various curves are for β = 0.5 (solid)
and 1 (dashed).

Fig. 2. Absorption coefficient α as a function of wavenumber k (Mm−1).
The radius R of the magnetic flux tube is assumed to be 5 Mm. Various
curves denote α at different angles, θ of scattering: θ = 0◦ (solid),
45◦ (dotted), 90◦ (dashed) for uniform and Gaussian (coloured or light)
fields.

The solar surface contains magnetic fields concentrated in
many small-scale regions. It would be interesting to see the vari-
ation of α with wavenumber, k for small-scale, weak surface
magnetic fields. Figure 2 shows α as a function of k (Mm−1)
for β = 0.2. The characteristic size, R, of the magnetic region is
assumed to be 5 Mm and is measured at different angles from the
vertical, i.e. θ = 0◦ (solid), 45◦ (dotted) and 90◦ (dashed). Dark
curves are for uniform field and the lighter (or colored) ones are
for the Gaussian field case. Significant amplitude modulation is
seen in all cases and the relative amplitude of the scattered wave
has a maximum with respect to k. Figures 1 and 2 clearly shows
that the amount of modulation also depends on the direction of
measurement and not just the magnitude of the field. This then
suggests that if the magnetic fields are inclined, as is the case in
magnetic flux tube on the solar surface, the modulation will be a
function of line-of-sight.

The relative amplitude of the scattered wave also depends on
the characteristic size, R, of the magnetic field. It is found that
for simple magnetic fields, the amplitude is modulated more by
a larger size (R) magnetic flux tube for a given wavelength.

4. Applicability to observational data

In order to apply Eq. (10) to a typical solar observation, we use
observational data for Active Region (AR) 9026 from Imaging
Vector Magnetograph (IVM) at the University of Hawaii Mees
Solar Observatory (Mickey et al. 1996). This data provides the
magnetic field strength, |B| and the angle of inclination (γ) from
vertical direction as a function of distance in the sunspot (see for
details, Shunkar et al. 2005) at the solar surface. Figure 3 shows
this data.

In Fig. 3a we plot Bz = |B| cosγ as a function of distance r
(in Mm) and in Fig. 3b Br = |B| sinγ. The solid lines in both
figures are a Gaussian fit to all the data points to estimate the
Bz and Br profiles. From Br(r), we calculate Bx = Br cos θ,
By = Br sin θ, where θ is the angle between the x-axis and the
scattering wave. Note that the maximum value of magnetic field
strength is about 2.2 kG so for a typical photospheric gas pres-
sure, the value of β can be estimated to be 2. However, one ex-
pects the value of β to change with distance.

We calculate the coefficient α as given in Eq. (10) with:

| us |
vi
∝
(

µρc2
s

)−1 1

λ2r
T (θ) (11)

where T (θ) is obtained by Eq. (8) noting that B = (Bx, By, Bz),
i.e.

T (θ) = −cos 2θ(1 − cos θ)

2

∫

e−i k
2π

(s−i)·r′B2
x dr

′

−cos 2θ(1 + cos θ)

2

∫

e−i k
2π

(s−i)·r′B2
y dr

′

− (1 + cos θ)

2

∫

e−i k
2π

(s−i)·r′B2
z dr

′

+ cos θ sin 2θ

∫

e−i k
2π

(s−i)·r′BxBy dr
′. (12)
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Fig. 3. Estimated Bz (top) and Br (bottom) from
observational data of AR9026 as a function of
distance (Mm). In each panel, the solid curve is
a Gaussian fit to the data.

Fig. 4. The calculated value of α from the ob-
servational data (see Fig. 3) for β = 2 as a
function of wavenumber k (Mm−1). The var-
ious curves are for θ = 0 (solid), 45◦ (dot-
ted), 90◦ (dashed) and 135◦ (dash-dot). The top,
middle and bottom panels are for the charac-
teristic size, R = 15 Mm, 10 Mm and 5 Mm
respectively.

Note that in general, Bx, By and Bz are expressed in terms of B0

and thus the amplitude modulation is directly proportional to the
ratio of Alfvén to sound speed in Eq. (11). In Fig. 4, we plot α
as a function of k (Mm−1) for various θ. The three panels show α
for the same value of β (=2) but for three different characteristic
size regions 15 Mm (top), 10 Mm (middle) and 5 Mm (bottom)
respectively.

Figures 3 and 4 clearly suggest that different characteris-
tic sizes, R, include magnetic fields of different inclinations.
Obviously, depending on the magnitudes of Bx, By and Bz com-
ponents, various curves in Fig. 4 show the variation of α accord-
ing to Eq. (12). Note that the calculated amplitude modulation is
only an approximation here because β (=2) is assumed constant
throughout the magnetic region. Although caution is required in
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Fig. 5. Estimated Bz (top) and Br (bottom) from
observational data as a function of distance
(Mm). In the top panel, the middle solid curve
is a Gaussian fit to the data as shown in Fig. 3a
while the other two curves in this panel show
the Gaussian fits after the data points are sepa-
rated according to whether Bz is greater than or
less than the middle (average) curve. The cor-
responding Br are shown in the bottom panel.

interpreting the curves (since the far-field approach and the Born
Approximation are used), it can be seen clearly that for a given
wavelength, the amplitude modulation is a function of the scat-
tering angle.

Careful investigation of Fig. 3 suggests that the data points
may belong to more than one population in this active region
(e.g. different magnetic structures) and thus, Bz and Br (and
the corresponding values of Bx and By) can be fitted with sep-
arate Gaussian profiles. Populations are separated according to
whether Bz is greater or less than the Gaussian curve of Fig. 3a.
Figure 5a shows this. The corresponding Br profiles are shown
in Fig. 5b. We expect the magnitude of α to change slightly as a
result of different Gaussian curves but the overall θ dependence
is not expected to vary significantly. In Fig. 6, we consider β = 2,
r = 15 Mm and k = 0.3 Mm−1 and plot α for various θ for the
three fitted Gaussian profiles.

It is interesting to note that although Fig. 2 (see colored or
light curves for the Gaussian profile) and the bottom panel of
Fig. 4 are for R = 5 Mm, the dependence of α on β and k is differ-
ent in the two cases because in Fig. 4, we also have contributions
from Bx and By terms in T (θ). In Fig. 7, we plot the coefficients
of Bx, By and Bz in the expression of T (θ) as a function of θ
which clearly shows the contribution of different components of
magnetic field at various theta.

5. Conclusion

As mentioned in the “Introduction” section, amplitude modula-
tion of solar p-modes by magnetic fields has been investigated by
many. Sunspots and Plages show that the p mode amplitudes are
modulated. Although this modulation is present in wider regions
around strong magnetic fields, the role of factors other than the
local magnetic field strength was not clear.

We have calculated the amplitude modulation of acoustic
waves scattered by a localised magnetic field. We considered
the direct effect of magnetic field on the amplitudes of acoustic

Fig. 6. Amplitude modulation, α, as a function of θ (in degrees) for the
three fitted profiles of Bz and Br shown in Fig. 5; α calculated from
top profile is indicated by the dashed line while the middle and bottom
profiles are shown by solid and dot-dashed lines respectively. The char-
acteristic region size of R = 15 Mm and k = 0.3 Mm−1 is assumed in
all cases.

wave, ignoring the changes in the thermodynamic properties
of the plasma due to the presence of a magnetic flux tube.
Therefore, ideally measuring such amplitudes in the vicinity of
a strong magnetic region is a non-intrusive probe of the mag-
netic field, although it should be noted that the contributions due
to the above two effects, whether magnetic fields or thermody-
namic parameter (e.g. temperature, density etc.) variation due to
the presence of magnetic field structure, are difficult to distangle
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Fig. 7. Coefficients in, T (θ), as a function of θ. The dashed, solid, dash-
dot and dash-dot-dot-dot lines indicate the coefficients of B2

x, B2
y, B2

z and
BxBy terms (see Eq. (12)).

in real solar surface observations without further progress in the-
ory (see e.g. Jain et al. 1996; Dzeimbowski et al. 2000; Antia
et al. 2001). However, as was noted by Hindman et al. (1997)
(see also, Braun & Birch 2006), in order for the equivalence
of magnetic field and thermodynamic changes, the sound speed
would need to be a function of wavenumber and frequency
which is clearly absurd. Keeping this in mind, it is shown that
when direct effect of magnetic field structures is considered, the
amplitude modulation depends on the plasma beta, the angle of
measurement of scattered wave, the wavenumber and the dis-
tance from the scattering region. Since the solar magnetic struc-
tures generally have an inclined but non-symmetric fields, the
amplitude modulation will be a complicated function of r and θ.
Nonetheless, this study shows that α is a function of the di-
rection of the line-of-sight measurement. One of the important
consequences of the present work is that it suggests that the
acoustic wave information present in the Doppler velocity sig-
nals is different in magnetic structure than in the non-magnetic
regions due to the interaction of plasma velocity with the sur-
face magnetic fields (see Eq. (5)) but since the temperature and
density are not altered between the magnetic and non-magnetic
regions, this does not affect the continuum intensity or line-of-
depth data. Thus, one has to be careful in interpreting the analy-
ses of Dopplergram observations (see also, Zhao & Kosovichev
2006). Further theoretical work is underway for a better under-
standing of this aspect.

In the present paper, we have used the Born Approximation
(BA) to solve the inhomogeneous wave equation. Strictly

speaking, BA is only valid for kR < 1. However, the comparison
of Ray approximation and BA by Birch et al. (2001) suggests
that the two approximation match well even for kR ∼ 1. In order
to use first order BA, we assumed that the scattering region has to
be much smaller i.e. the magnetic field vanishes faster than r−1.
It is possible that these assumptions are not reasonable for many
solar surface magnetic fields. A fully numerical approach may
be required to calculate α for acoustic waves of smaller wave-
length and their interaction with magnetic flux tubes of larger
radii embedded in a “realistic” stratified atmosphere. This is the
subject of a future paper (Gordovskyy and Jain, in preparation).

Acknowledgements. R.J. would like to thank F. Pétrélis for many useful discus-
sions and H. Shunker for providing the observational data. I am grateful to the
referee for a very careful review of this paper. This work is supported by the
Engineering and Physical Sciences Research Council, grant EP/C548795/1.

References

Abdelatif, T. E., Lites, B. W., & Thomas, J. H. 1986, ApJ, 311, 1015
Antia, H. M., Basu, S., Hill, F., et al. 2001, Mon. Not. R. Soc., 327, 1029
Birch, A. C., Kosovichev, A. G., Price, G. H., & Schlottmann, R. B. 2001, ApJ,

561, L229
Braun, D. C. 1995, ApJ, 451, 859
Braun, D. C., & Birch, A. C. 2006, ApJ, 647, L187
Braun, D. C., Duvall, T. L., & Labonte, B. J. 1987, ApJ, 319, L27
Braun, D. C., Duvall, T. L., & Labonte, B. J. 1988, ApJ, 335, 1015
Cally, P. S., Crouch, A. D., & Braun, D. C. 2003, MNRAS, 346, 381
Christensen-Dalsgaard, J. 2002, Rev. Mod. Phys., 74, 1073
Duvall Jr, T. L., Jefferies, S. M., Harvey, J. W., & Pomerantz, M. A. 1993, Nature,

362, 430
Dziembowski, W. A., Goode, P. R., Kosovichev, A. G., & Schou, J. 2000, ApJ,

537, 1026
Fan, Y., Braun, D. C., & Chou, D. Y. 1995, ApJ, 451, 877
Gizon, L., & Birch, A. C. 2005, Living Rev. Solar Phys., 2

[http://www.livingreviews.org/lrsp-2005-6]
Goldreich, P., Murray, N., Willette, G., & Kumar, P. 1991, ApJ, 370, 752
Gordovskyy, M., & Jain, R. 2007a, Astr. Nachr., accepted
Gordovskyy, M., & Jain, R. 2007b, ApJ, accepted
Hill, F. 1988, ApJ, 333, 996
Hindman, B. W., & Brown, T. M. 1998, ApJ, 504, 1029
Hindman, B. W., Jain, R., & Zweibel, E. G. 1997, ApJ, 476, 392
Howe, R., Komm, R. W., & Hill, F. 1999, ApJ, 524, 1084
Jain, R., & Haber, D. 2002, A&A, 387, 1092
Jain, R., & Roberts, B. 1993, ApJ, 414, 898
Jain, R., & Roberts, B. 1994, Sol. Phys., 152, 261
Jain, R., Hindman, B. W., & Zweibel, E. G. 1996, ApJ, 464, 476
King, A. C., Billigham, J., & Otto, S. R. 2003, Differential Equations book

(Cambridge University Press)
Libbrecht, K. G., & Woodard, M. F. 1990, Nature, 345, 779
Lund, F. 2002, in Sound-Flow interaction, Lect. Notes Phys., 586 (Springer-

Verlag)
Mickey, D. L., Canfield, R. C., Labonte, B. J., et al. 1996, Sol. Phys., 168, 229
Nicholas, C. J., Thompson, M. J., & Rajaguru, S. P. 2004, Sol. Phys., 225, 213
Pétrélis, F., & Lund, F. 2003, Eur. Phys. J. B, 35, 291
Schunker, H., Braun, D. C., Cally, P. S., & Lindsey, C. 2005, ApJ, 621, L149
Thomas, J. H., & Stanchfield, D. C. H. II 2000, ApJ, 537, 1086
Woodard, M. F., & Noyes, R. W. 1985, Nature, 318, 449
Zhao, J., & Kosovichev, A. G. 2006, ApJ, 643, 1317


