

This is a repository copy of *Explosion reactivity characterisation of pulverised torrefied spruce wood*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/104958/

Version: Accepted Version

Article:

Huescar Medina, C, Sattar, H, Phylaktou, HN et al. (2 more authors) (2015) Explosion reactivity characterisation of pulverised torrefied spruce wood. Journal of Loss Prevention in the Process Industries, 36. pp. 287-295. ISSN 0950-4230

https://doi.org/10.1016/j.jlp.2014.12.009

© 2014, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1 TITLE: Explosion reactivity characterisation of pulverised torrefied spruce wood

AUTHORS: Huéscar Medina* (2 surnames), Clara; Sattar, Hamed; Phylaktou, Herodotos
N.; Andrews*, Gordon E.; Gibbs, Bernard M.

4 *Corresponding author E-mail: pm09chm@leeds.ac.uk and profgeandrews@hotmail.com

5 AFFILIATION: Energy Research Institute, School of Chemical and Process Engineering,
6 University of Leeds, Leeds, LS2 9JT

7 Abstract

8 Pulverised biomass is increasingly being used for power generation in 100% biomass plants 9 or mixed with coal as a way of reducing greenhouse gas emissions. The fire and explosion 10 hazards of pulverised wood and other agricultural waste materials have been recognised for 11 some time. However, safety data for biomass are very scarce in the public literature, and non-12 existent for upgraded biomass products such as torrefied biomass. This is largely due to the challenges that biomass poses for explosion characterisation in the standard methods (1 m^3 13 ISO vessel or 20 L sphere). The authors have developed and calibrated a new system for the 1 14 m^3 ISO vessel that overcomes these challenges. In this work we present the first data in the 15 open literature for the explosion characteristics of torrefied biomass. Results for untreated 16 17 Norway spruce wood and Kellingley coal are also included for comparison. Flame speeds and 18 post-explosion residue analysis results are also presented. Torrefied spruce wood was found to 19 be more reactive than Kellingley coal and slightly more reactive than its parent material in 20 terms of K_{St}, P_{max} and flame speed. The differences between coal and biomass samples 21 highlight that it should not be assumed that safety systems for coal can be applied to torrefied 22 or raw wood materials without suitable modifications.

23 Keywords: dust explosion, biomass, torrefaction, reactivity, combustion

24 **1. Introduction**

25 Pulverised biomass (on its own or co-fired), accounted for nearly 14% of the total renewable 26 electricity generation in the UK in 2012. The total contribution of renewable energy to all 27 energy consumption in the UK was 3.8% in 2011. This comprised 8.7% of electricity, 2.2% of 28 heat and 2.9% of transport fuel coming from renewable sources (DECC 2013). The UK has 29 agreed to the EU wide renewable energy target of 20% of all energy to come from renewables 30 by 2020, in line with the EU 2009 Renewable Energy Directive (European Parliament 2009). 31 The UK's specific target is to achieve 15% of all energy from renewables. The UK's 32 Department of Energy and Climate Change (DECC) has announced that the UK will attempt 33 to meet this target with 30% renewable electricity, 12% renewable heat and 10% renewable 34 transport fuel (Davey et al. 2011). As a result of the government's plans, the use of biomass 35 for generation of power, heat and transport fuels is forecasted to double or quadruple 2011's 36 levels by 2020 (from 12 TWh to 30-50 TWh) (Davey et al. 2011). Economic incentives are in 37 place such as the renewable obligation certificates to achieve this. However, in power 38 generation, there are challenges mainly related to retrofitting plants in order to use biomass, a 39 material with different characteristics to fossil fuels that affect the general operation of plants: 40 efficiency, storage, handling, etc.

Biomass properties can be upgraded through torrefaction. This is a thermal pre-treatment in which biomass is subjected to temperatures of around 300°C in an inert atmosphere for a certain period of time. The end product is more energy dense, hydrophobic and easy to grind with properties similar to low rank coals. Torrefaction of biomass decreases the transportation and storage costs and also enables co-milling with coal or for coal mills to be used with 100% torrefied biomass, which is attractive in the current scenario where authorities are encouraging 47 coal plants to co-fire or to convert to 100% biomass plants rather than building new 100%48 biomass plants.

The implicit assumption in replacing coal with biomass is that biomass behaves in a similar way to coal and therefore the present combustion and safety (fire and explosion) systems are adequate. The scarcity of explosibility data on biomass and the absence of any data for torrefied biomass prevent the informed assessment of suitability of the existing safety systems. The frequency of fire and explosion incidents in such plants (Butcher 2011; Holland 2011; Renewables International Magazine 2011) would suggest specific combustibility and explosibility data are required for biomass and treated biomass powders.

56 **1.1 Biomass explosion characterisation challenges**

57 Pulverised biomass and torrefied biomass present a few characteristics which pose challenges to the standard methods for determining explosion characteristics using the 1 m^3 ISO vessel or 58 59 the 20 L sphere (British Standards Institution 2006). Wood biomass and some torrefied biomass materials can present very low bulk densities (ca. 200-300 kgm⁻³), therefore the 60 61 standard dust holders cannot hold enough dust for a complete characterisation of the samples. 62 The addition of another 5 L volume dust holder used in parallel with the standard dust holder 63 is required for low bulk density dusts in the standard, and this requires new calibration procedures if the same K_{St} values are to be achieved. In addition, the fibrous nature of most 64 65 biomass dusts prevents a correct dispersion of dust from the external dust holder into the explosion vessel, with the standard injection system blocking with biomass and no biomass 66 67 flows into the explosion chamber.

The flammability and reactivity of biomass and other low bulk density and fibrous dusts has
been the object of study of many researchers. Early studies exist on the explosibility of non-

70 traditional dusts using the Hartmann tube/bomb (Jacobson et al. 1961; Nagy et al. 1965; 71 Eckhoff 1977), however this method of explosion characterisation was abandoned due to bad 72 dust dispersion amongst other issues (Makris et al. 1989). Using the current explosion characterisation methods (1 m³ or 20 L sphere vessels), (Bartknecht 1989) extended the dust 73 holder volume and proposed a longer ignition delay for the new system, however, the most 74 75 reactive mixtures were not comparable to the standard. (Marmo 2010) studied the 76 explosibility of textile fibres with a 20 L sphere using the rebound nozzle, however, there was 77 no reference to dispersion problems. (Wilén et al. 1999) worked with fibrous biomass samples, different dispersion systems were tested and calibrated to give the same K_{St} values as 78 79 the standard system, however, the reproducibility of other parameters was not proven. 80 (Amyotte et al. 2012) investigated the explosion characteristics of fibrous wood and 81 polyethylene dusts of different particle size. At high concentrations and larger particle size 82 part of the dust was placed directly inside the 20 L sphere fitted with a rebound nozzle. This 83 practice (also used by (Iarossi et al. 2012), with polyamide and polyester fibres) was likely to 84 result in variability of dust dispersion patterns, and the results from Amyotte et al. showed 85 that the maximum explosion pressure for wood samples was indeed variable. The variability in K_{St} was unfortunately not shown but it was likely to be larger, as the rate of pressure rise is 86 87 typically more sensitive to dissimilar dispersion patterns. (Garcia-Torrent et al. 1998; Conde 88 Lazaro et al. 2000) used extended 25 L dust holders for high dust loadings for hyperbaric 89 explosion tests with biomass. They modified the ignition delay and dispersion pressure and in 90 turn concluded that the results obtained were not comparable to the standard system due to 91 varied turbulence levels. (Dyduch et al. 2013) obtained promising results using statistical 92 methods for the measurement of explosion parameters. These improved the accuracy of 93 measured explosion characteristics and could allow measurements of K_{St} and P_{max} of difficult 94 dusts.

95 A further challenge in the explosion characterisation standard methods (also not specific to 96 biomass powders only) is that after each test, residual masses of dust are found in the dust 97 holder and in the explosion chamber (Pilão et al. 2006; Sattar et al. 2012). The remaining dust 98 in the external holder does not take part in the explosion and therefore it should be taken into 99 account and the concentration that actually participated in the explosions should be used. 100 Most researchers and testing labs do not report or account for the non-injected powder. A further problem is the practice of reporting dust concentrations as gm⁻³ and not as equivalence 101 102 ratio which is a much more informative parameter. Expressing concentrations as equivalence 103 ratios shows that most reactive mixtures of dusts are extremely rich, as opposed to the most 104 reactive mixtures of gases, always found for mixtures slightly richer than the stoichiometric 105 mixture. In many cases the elemental analysis of the dust is not given so it is impossible to 106 know the stoichiometric concentration. Consequently explosions safety parameters are rarely 107 linked to fundamental combustion parameters, the most important of which is to know where 108 the flame reaction zone is relative to stoichiometric. In spite of the importance of the 109 explosion flame speed, from which the burning velocity can be calculated, no such 110 measurements of reactivity are made for pulverised dust, which makes any modelling of dust 111 explosion protection impossible. The current rate of pressure rise reactivity data is entirely 112 empirical. Flame speed data and flame front equivalence ratios are determined in the present 113 work as well as the conventional empirical parameters.

A great challenge is also posed by the dust found inside the vessel after the explosion, since it is often a mixture of partially burnt and unburnt particles. Therefore, it is unclear whether this dust participated in the main combustion reaction. Previous work was carried out by the authors to investigate this matter (Sattar et al. 2012), otherwise this issue has rarely been acknowledged in the literature and the focus was only to investigate the difference in particle morphology before and after an explosion (Hertzberg et al. 1982; Wilén et al. 1999; Pilão et al. 2006). Furthermore, an accurate measurement of minimum explosion concentrations
(MEC) is unlikely with the standard methods, since it is difficult to accurately know the
concentration that took part in the combustion. Previous work by the authors addressed this
issue and new techniques have been explored in order to provide an accurate measurement of
MEC (Huéscar Medina et al. 2013).

125 **1.2** Reactivity of biomass and torrefied biomass

126 The work published on biomass explosibility in the literature is inconsistent with respect to 127 the reactivity of biomass relative to coal (Wilén et al. 1999). For torrefied biomass the 128 reactivity of samples has been investigated through low heating rate techniques such as 129 thermogravimetric analysis and subsequent derivation of devolatilisation kinetics. These 130 results have shown that torrefied materials would present higher activation energies (E_a) 131 which increased with torrefaction severity (higher temperature and longer residence times) 132 (Darvell et al. 2010; Broström et al. 2012). Torrefaction decreases the moisture and volatile 133 content and increases the ash content, thus, the loss of volatiles and the presence of more ash 134 could reduce the reactivity of torrefied materials at the same time that less moisture content 135 could increase it. Particle size could also affect the relative reactivity of torrefied biomass 136 since torrefied biomass becomes more brittle with increased torrefaction severity and 137 therefore when a raw biomass and a torrefied biomass are pulverised through the same 138 procedure, torrefied material is bound to have a higher proportion of fines than the raw parent 139 material. Previous work by the authors (Huéscar Medina et al. 2013) showed that MEC of 140 torrefied samples occurred at lower equivalence ratios ($\emptyset \sim 0.2$) than for coal ($\emptyset \sim 0.5$) which 141 indicates higher reactivity of torrefied materials in comparison to coal.

142 **1.3 Objectives**

143 The objective of this work is to present the first results available in the open literature for 144 torrefied biomass using the standard 1 m³ ISO vessel for the explosion characterisation of 145 dusts. MEC, K_{St} and P_{max}/P_i have been measured and compared to its raw parent material and 146 to coal explosibility data. Residues after explosions were collected and further analysed to 147 understand its origin and to correct for the concentration that actually took part in the 148 explosion, so that the flame front equivalence ratio could be determined.

149 **2. Experiments**

150 **2.1 Materials**

151 The materials used in this study were a sample of raw Norway spruce wood and the same sample torrefied at 260°C for 13 minutes (supplied by Sea2Sky Energy Corporation). Results 152 153 from this lab for Kellingley coal are also presented for comparison. All biomass samples, 154 initially supplied in chips, were milled in stages using a Retsch Cutting mill SM100 and a 155 Retsch Rotor Beater Mill SR200 for the torrefied sample, the raw sample required further 156 milling in a Retsch Ultra Centrifugal Grinding mill ZM100, in order to achieve a size 157 distribution that would allow the samples to flow through the explosion vessel's dispersion 158 system ($<60 \mu m$). All samples were stored in sealed containers.

Difficulties were generally encountered in sourcing materials in sufficient quantities to fully
characterise their explosibility. In this particular case it was possible to source enough
torrefied material; however, it was only possible to establish a trend for the characterisation of
the raw sample for comparison.

163 After every test conducted in the 1 m^3 vessel, residues were found inside both the dust holder 164 and the explosion chamber. These residues were collected and weighed in order to determine 165 more accurately the concentration of dust which actually exploded. The concentrations were 166 generally expressed as equivalence ratios rather than as concentrations in grams of fuels per 167 m³ of air, to compare samples with different elemental compositions. The stoichiometric air to 168 fuel ratio (A/F)_{stoich} was calculated from the theoretical full combustion of the fuel in air based 169 on the elemental analysis (see Table 1). The partially burnt residue inside the explosion 170 chamber was collected and further analysed for elemental and proximate analysis, particle 171 size distribution, morphology, and true density.

172 2.2 Fuel characterisation

All samples, before and after explosion, were analysed for its chemical composition through
elemental and TGA-proximate analysis using, respectively, a Flash 2000 Thermo Scientific
C/H/N/S analyser (O content was determined by subtraction), and a TGA-50 Shimadzu
analyser using the temperature program used by (Biagini et al. 2006). The gross calorific
value (GCV) of the samples was calculated from the elemental composition using the relation
proposed for biomass in (Friedl et al. 2005).

- 179 The elemental composition in terms of C, H, O, N and S was used to calculate the
- 180 stoichiometric fuel to air ratio (F/A) by balancing the combustion equation in air assuming the
- 181 fuel formula is $CH_yO_zN_wS_k$ where y, z, w and k are the atomic ratios to carbon of hydrogen,
- 182 oxygen, nitrogen and sulphur respectively.

 $CH_vO_zN_wS_k + aO_2 \rightarrow bCO_2 + cH_2O + dNO_2 + eSO_2$

183 The stoichiometric fuel to air mass ratio is given by:

Stoichiometric
$$\binom{F}{A} = \frac{(12+y+16z+14w+32k)}{\left[\left(1+\frac{y}{4}\right)-\frac{z}{2}+w+k\right]\cdot\frac{32}{0.232}}$$

The stoichiometric (F/A) ratio can be expressed as grams of fuel per cubic meter of air by multiplying the stoichiometric fuel to air mass ratio by the density of air (1200 gm⁻³).
Therefore, the equivalence ratio corresponding to each concentration of dust tested can be calculated as:

$$\phi = \frac{Actual \left(\frac{F}{A}\right)concentration (gm^{-3})}{Stoichiometric \left(\frac{F}{A}\right) (gm^{-3})}$$

The bulk density of the samples was determined using a 25 mL graduated cylinder, and a weighing balance. The volume of the graduated cylinder was filled with an increasing mass of sample. Measurements of weight and volume were taken and the bulk density was calculated as the average of 10 mass to volume ratios. In addition the true density was measured using the AccuPyc 1330 Pycnometer. The morphology of particles was investigated using Scanning Electron Microscopy, and the particle size distribution was determined using a Malvern Mastersizer 2000 instrument.

195

2.3 Dust explosion characterisation

The explosion characteristics of all samples were determined using an ISO 1 m³ vessel (actual 196 1.138 m³) (International Organization of Standardization 1985), modified and calibrated to 197 198 handle fibrous biomass particles (Fig.1 (a)). The standard 5 L dust holder was extended to a 199 larger 10 L volume suitable for containing larger quantities of low bulk density materials 200 (such as biomass) and a calibration for this modified dust holder was developed (Sattar et al. 201 2013) to give the same results as for the standard system for cornflour. The initial mass of 202 dust was placed inside the 10 L pot pressurised to 10 bars. Sattar et al. found that using an 203 extended 10 L dust holder the turbulence levels at the time of ignition were different as those 204 of the standard system. It was found that the mass of air delivered from the dust holder to the

explosion chamber was larger using the standard 20 bar pressurisation. However, when the
pressurisation was reduced to 10 bar the mass of air delivered was comparable. This setting
was further verified to give comparable results to the standard 5 L-20 bar setting using gases
and dusts.

Furthermore, due to the fibrous nature of the samples, it was necessary to replace the standard dispersion C-ring system with a new dispersion system that allowed a better flow of dust inside the explosion chamber. A spherical wall mounted nozzle was designed and calibrated to give the same results as the standard C-ring system. The spherical nozzle, shown in Fig. 1 (c), is only perforated in the front half of the 110 mm diameter sphere, 9 holes of 8 mm diameter and 24 holes of 16 mm were drilled in triangular pitch.

215 In order to calibrate the new dispersion system, the turbulence factor β for the 1 m³ vessel at 216 0.6 s ignition delay was determined by performing gas explosions in laminar and turbulent 217 conditions to derive K_G at said conditions. Mixtures of 10% methane gas in air were prepared inside the 1 m³ vessel by partial pressures. Ignition was provided by a 16 J capacitance spark 218 219 with a 0.5 m long electrode extended to the centre of the vessel. For turbulent gas explosions, 220 air from the dust holder pressurised to the corresponding pressure (20 bars with 5 L dust 221 holder, 10 bars with 10 L dust holder) was injected prior to ignition. Such turbulence was 222 analogous to that induced due to dust dispersion. Therefore, using the following expression:

$$\beta = \frac{K_{G_{Turbulent}}}{K_{G_{Laminar}}}$$

The turbulent factor for this vessel was found to be 4.03. The requirement for any new
dispersion system was to provide the same turbulent factor as the C-ring at the standard
ignition delay (0.6 s). The spherical nozzle was found to give the same turbulence factor with

an ignition delay of 0.50 s with 10% Methane explosions as shown in Fig.2. This was then validated with cornflour dust/air mixtures showing comparable results for K_{St} , P_{max} and flame speeds. This method was preferred rather than calibrating solely the K_{St} value with a standard dust in order to ensure that all parameters, not only K_{St} , but maximum pressure, flame speeds, percentage of mass burnt were comparable to those obtained with the standard 1 m³ vessel.

231

- Figure 1: (a) Leeds 1m³ ISO vessel with 10 L dust pot, (b) Inner arrangement of the 1 m³
- 233 vessel, (c) spherical disperser nozzle.

234

235 Figure 2: Calibration of spherical nozzle

236 The dust pressurised in the 10 L dust holder was released into the explosion chamber on 237 activation of the electro-pneumatic valve on the interconnecting pipe. The dust cloud 238 dispersed through the new spherical nozzle was ignited with two 5 KJ igniters placed in the 239 centre of the explosion chamber after the recommended ignition delay for the spherical nozzle 240 disperser of 0.5 s. The vessel was fitted with piezoresistive pressure transducers, which 241 allowed the determination of maximum explosion pressures and rates of pressure rise, and 242 arrays of type-K thermocouples in horizontal (left and right) and vertical (downward) 243 directions (the arrangement is shown in Fig.(1.b)). These thermocouples were used to check 244 that spherical flame propagation was achieved and to determine the time of flame arrival at 245 each thermocouple position which allowed the derivation of flame speeds in all directions. 246 The overall radial flame speed for a given test is the average of the flame speeds in each 247 direction.

248 **3. Results and discussion**

249 **3.1 Fuel characterisation**

250 Table 1 shows the characterisation of all samples used. Some of the properties that 251 differentiate biomass, torrefied biomass and coal can be observed; whilst the overall carbon 252 content was similar at about 50% for all three fuels, there were significant differences in the 253 fixed carbon content with raw biomass at 11% and 50% for coal. Torrefaction significantly 254 increased the biomass fixed carbon content of the raw biomass by almost 50%. These 255 differences suggest that most of the carbon in biomass is released as part of the volatile 256 compounds as CO as there is insufficient hydrogen in biomass for the volatiles to be 257 predominantly CH₄, as is commonly assumed.

Biomass had more than double the volatile content of coal, which reduced slightly when biomass was torrefied. The bulk density of biomass is less than half that of coal and the calorific value is about 35% lower. The energy density data calculated in Table 1 shows the biomass powder had less than 1/3 of the energy density of coal and although torrefaction increases the energy density of biomass by approximately 40% it is still less than half that of coal. These data suggest a significant impact on transport efficiency for the three fuels.

The oxygen and volatile content in raw biomass are more than double that of coal and they are only slightly reduced after torrefaction (the level of change after torrefaction would be dependent on the torrefaction conditions).

The particle size analysis data highlighted the difficulty in grinding untreated biomass
samples. Despite being subjected to an additional grinding stage the raw biomass sample
contained larger particles than the torrefied sample. Although all samples were milled to <60
µm, due to the fibrous nature of the biomass samples, thin but long particles could pass

through the sieve and therefore the size distribution shows that bigger particles are present.

- The stoichiometric fuel concentrations were different for each sample, and this was taken into account when comparing mixtures of fuel in air.
- 278 The standard (BSI 2004) requires keeping ¹/₄ of the dust holder empty to achieve proper
- 279 pressurisation, therefore the maximum quantity of torrefied spruce wood that could be tested
- in the 10 L external pot was to 1763 grams, which corresponds to a concentration of
- approximately 1500 gm^{-3} . For the raw wood sample no more than 1160 gm^{-3} could be tested.
- It was also found that at high dust loadings $(1250-1500 \text{ g/m}^3)$ more than 10% of the initial
- 283 mass was left in the dust holder after injection. Corrections for the undelivered dust were
- applied; therefore concentrations considered were injected concentrations.

285 **Table 1: Fuel characterisation**

	Raw Norway Torrefied Norway		Kellingley			
	Spruce	Spruce	Coal			
Elemental analysis (% w/w)						
С	48.1	51.6	65.0			
Н	5.6	5.2	4.1			
0	36.3	35.4	5.5			
Ν	0.0	0.7	2.4			
S	0.0	0.0	2.2			
TGA-Proximate (% w/w)						
Moisture	5.8	2.8	1.7			
Ash	4.1	4.2	19.1			
Volatile Matter	79.0	77.0	29.2			
Fixed Carbon	11.1	15.9	50.0			
GCV (MJkg ⁻¹) _{daf}	21.4	23.5	33.8			
(A/F) _{stoich}	6.5	6.7	11.3			
Stoich. fuel concentration (gm ⁻³)	184	178	106			
Bulk Density (kgm ⁻³)	175.6	235.0	443.0			
Energy density (GJm ⁻³)	3.8	5.5	14.9			
Particle size distribution (µm)						
D ₁₀	28	15	5			
D ₅₀	149	67	26			
D ₉₀	603	281	65			

286

287 **3.2** Explosion characteristics and flame speeds

Figure 4 shows the variation of K_{St} and P_{max}/P_i for different mixtures of dust and air. K_{St} and the maximum pressure can be affected by a series of factors; K_{St} is generally more affected by particle size or surface area, since it relates to how fast the combustion reaction occurs. On the other hand, maximum pressures could be affected by factors that decrease the flame
temperature such as the presence of moisture or ash. Volatile matter is also known to affect
K_{St} since devolatilisation will be faster when the size is small.

294 Coal particles were smaller than biomass or torrefied biomass samples but the volatile matter 295 of the coal sample was also much lower. Overall, this particular coal sample had lower K_{St}. 296 Also, a difference between coal and biomass is that K_{St} for coal slowly decreases after the 297 maximum value was reached for the most reactive concentration. However, for the torrefied 298 sample, it was not possible to continue testing higher concentrations because the volume of 299 dust exceeded ³/₄ of the dust pot volume and too much powder was left in the dust holder after 300 the test. For this reason, to be able to assess K_{St} for higher concentrations of dust it would be 301 advisable to develop a delivery method in which the external dust injection was eliminated, by 302 placing the dust inside the vessel and dispersing it from within. This is currently being 303 developed by the authors using an injection method similar to that in the Hartmann explosion 304 tube, where all the dust is placed inside the explosion vessel and then dispersed with a blast of 305 air.

The parent material was tested at three concentrations around the most reactive mixture, showing similar values to the torrefied samples, only slightly lower. Also, the most reactive concentrations were found for concentrations much higher than stoichiometric for the biomass samples. The high K_{St} values were found not to decrease much for richer mixtures, preventing the determination of a rich flammability limits. The literature on dust explosions shows that there are hardly any reported rich flammability limits and all data shows that the peak pressure remains high for all rich mixtures tested.

All the K_{St} values are summarised in Table 2. Since all values are lower than 200 barms⁻¹, all
the dusts tested are St-1 dusts (moderately explosible). With regard to maximum pressure, the

315 coal sample had lower maximum pressure probably due to the high ash content of the sample.

Biomass samples, raw and torrefied, showed similar maximum pressures at around 9 bar.

318 Figure 4: K_{st}, P_{max}/P_i for a range of Norway spruce wood, torrefied Norway spruce wood 319 and Kellingley coal-air mixtures

320 Figure 5 shows examples of the derivation of flame speeds in a test with raw Norway spruce 321 wood and torrefied Norway spruce respectively. In each test three flame speeds were derived 322 in horizontal right, left, and vertical downward directions. The distance from the spark of each 323 thermocouple in the array is plotted against the actual time at which the flame reaches the 324 thermocouple. A linear trend line can be fitted; the slope of such trend line is the average flame speed in each direction. The average flame speed for a test is the average of three flame 325 326 speeds. It can be appreciated how the linear trends are parallel, which indicates spherical 327 propagation.

316

Figure 5: Example of flame speed determination for a single test of Norway spruce and torrefied Norway spruce

Figure 6 shows a linear relationship between K_{St} and average flame speeds with correlation coefficients of 0.89, 0.95 and 0.96 for torrefied spruce wood, raw spruce wood and Kellingley coal respectively. The correlation between the two parameters suggests that either or both K_{St} and flame speed could be used as measure of fuel reactivity.

336 Figure 6: Relationship of K_{st} and flame speed

337 Table 2: Summary of explosion characteristics for Kellingley coal, Norway spruce wood

338 and torrefied Norway spruce wood

Sample	MEC (gm ⁻³)	Ø _{MEC}	K _{St} (barms ⁻¹)	P _{max} /P _i	Flame Speed (ms ⁻¹)
Kellingley Coal	91	0.86	78	8.2	3.6
Norway spruce wood	-	-	96	9.0	3.8

Torrefied					
Norway spruce	63	0.35	122	9.1	5.1
wood					

339

Table 2 summarises the explosion characteristics for the samples tested, which shows that torrefied spruce wood was the most reactive sample, with a minimum explosive concentration (MEC) of 62 gm⁻³ which corresponds to an equivalence ratio of 0.35 and is lower than that of coal. However, it should be reminded that the calculation of the stoichiometry and hence the equivalence ratio is based on the elemental formula of the raw fuel and not of the volatiles that are actually burning.

346 **3.3 Residue analysis**

347 Dust residues were found inside the explosion chamber following explosion tests. These 348 residues formed patched thin layers of material throughout the vessel walls. Particles closer to 349 the walls appeared unchanged whilst particles in the upper part of the layer were clearly 350 scorched by the flame front. Residues were collected using a conventional vacuum cleaner. In 351 the process, residue samples were mixed thoroughly. The residues were then analysed in order 352 to understand their origin and their role during explosion tests.

353 **3.3.1 Elemental and proximate analysis**

Table 3, presents the elemental composition for the samples before and after the explosion, as well as the proximate analysis and true density. The post-explosion samples analysed were the residues corresponding to the most reactive concentration. For the raw sample only 16% of volatiles were consumed, as opposed to 31% for the torrefied sample and 14% for the coal sample. This corroborated that the residues were not just remaining ash after combustion or ash plus char, with only volatiles burning. Previous work by the authors (Sattar et al. 2012; Sattar et al. 2012) with Kellingley coal explosion residues also showed an increase in fixed

- 361 carbon and ash. The trend was the same for Norway spruce and torrefied Norway spruce. Loss
- 362 of volatiles and increase in ash and fixed carbon are characteristic of pyrolysis processes.
- 363 The residue's true density measurements showed an increase for Kellingley coal and torrefied
- 364 wood between 6 and 10%, whereas the change was negligible in the case of raw wood.
- 365 Therefore it is likely that the overall structure of coal and torrefied Norway spruce particles
- 366 was changed, whereas unburned biomass particles remained largely unchanged.

Table 3: Elemental, proximate and true densities before and after explosion

Pre-Explosion				Post-Explosion			
Fuel Sample	Raw Norway Spruce	Torrefied Norway Spruce	Kellingley Coal	Raw Norway Spruce	Torrefied Norway Spruce	Kellingley Coal	
Elemental analysis (% w/w)							
С	48.1	51.6	65.0	48.4	55.4	64.3	
Н	5.6	5.2	4.1	5.4	4.1	3.5	
0	36.3	35.5	5.5	26.6	27.1	7.1	
Ν	0.0	0.7	2.4	0.0	1.4	1.4	
S	0.0	0.0	2.2	0.0	0.0	2.2	
TGA-Proximate (% w/w)							
Moisture	5.8	2.7	1.7	3.1	3.6	1.6	
Ash	4.1	4.3	19.1	16.6	8.5	19.9	
Volatile Matter	79.3	77.0	29.2	66.5	53.4	25.0	
Fixed Carbon	10.7	16.0	50.0	13.8	34.5	53.5	
True Density (kg/m ³)	1546	1496	1484	1543	1591	1641	

368

369 **3.3.2** Particle size

The particle size distributions in Fig.7 show that for the raw biomass residue and originalbiomass sample had essentially the same size distribution. For torrefied biomass and coal,

larger particles were present in the residue

373

372

Figure 7: Particle size cumulative distribution of Norway spruce wood, torrefied
Norway spruce wood and Kellingley coal before and after explosion

376 **3.3.3 SEM**

Figure 8 shows SEM images of the raw and torrefied wood samples prior to explosion (left) and of the residues corresponding to the most reactive mixtures (right). The original raw wood sample contained bigger particles than the torrefied sample before explosion, which confirms the particle size analysis results in Table 1 and Fig.(3) and highlights how torrefied wood samples are much easier to grind. Original torrefied wood particles had a fine needle shape, whereas the particles of raw wood resembled (comparatively) thick logs with irregular shapes. 383 The SEM images of torrefied biomass and coal residues show original particles mixed with 384 some structurally different particles. These were char particles which are typically 385 characterised by a round shape with blow out holes and by forming clusters with larger size (Cashdollar 2000). Therefore the reason for finding larger particles in the residues is due to 386 387 the formation of these char structures rather than to selective burning of fine particles. These 388 formations are rarely present in the raw wood residue, as reflected by the unchanged size 389 distribution of the residue. For woody biomass it was found that the residue was virtually the 390 same material as prior to the explosion, indicating that the particles burned during the 391 explosion were fully consumed.

392

393 Figure 8: SEM images at x200 magnification of (a) raw Norway spruce wood before

395 (c) Torrefied Norway spruce wood before explosion. (d) Torrefied Norway spruce wood 396 after explosion of the most reactive concentration

397 The analysis of the residues suggest that these deposits could be a proportion of dust which 398 was pushed by the explosion wind towards the walls, which formed a layer attached to the 399 wall, compressed by the rising pressure. This layer would be pyrolysed by the impinging 400 flame on the outer surface of the layer, but particles closer to the wall would remain 401 unchanged. This would be consistent with visual observations when the vessel was opened 402 following an explosion test. In the case of coal and torrefied biomass, char particles were 403 formed by the action of the pyrolysing cooling flame in the wall whereas for biomass samples 404 the formation of char seemed somehow inhibited.

405 It has been previously found in the literature that heating rates have a greater effect in the 406 pyrolysis and formation of char of biomass than for coal. This behaviour has been attributed 407 to the high cellulose content of biomass. At temperatures <300°C, cellulose dehydrates to a 408 more stable anhydrocellulose which gives higher yields of char. However at high heating rates 409 the residence time of biomass at $<300^{\circ}$ C is insignificant and therefore there is no time for 410 dehydration of cellulose and formation of char (Zanzi et al. 1996). As torrefied biomass 411 typically contains less cellulose than coal, since cellulose decomposes during the torrefaction 412 treatment, more char particles were present in the pyrolysed residue in comparison to the 413 residue of a raw biomass.

414 **4.** Conclusions

The explosion characteristics of Norway spruce wood torrefied at 260°C for 13 minutes have
been measured in a 1 m³ ISO vessel and compared to its parent material and a sample of
Kellingley coal. The ISO 1 m³ explosion vessel was modified, as allowed by the standard, by

418 increasing the dust holder volume to 10 L and replacing the standard C-ring for a spherical 419 perforated nozzle mounted in the wall. The ignition delay was decreased to 0.5 s to achieve 420 the same turbulence level as with the standard system. It was found that the new system is 421 suitable for the characterisation of torrefied biomass pulverised under 60 µm. However, it 422 would be possible to test higher concentrations of biomass if an in-vessel dispersion system 423 was developed. Also samples with coarser particle size distributions could then be assessed 424 for a more realistic approach to the actual particle sizes used in the industry.

425 Results have shown that torrefied Norway spruce presents chemical characteristics similar to 426 low rank coals, grindability and calorific value are improved and volatile matter is decreased 427 as well as moisture. Whilst the biomass energy density is significantly increased by 428 torrefaction it remains less than half the energy density of coal.

429 MEC results for torrefied Norway spruce showed a similar behaviour to what has been 430 typically found for other biomass samples, at equivalence ratios lower than typically found for 431 coal. Kellingley coal was less reactive than torrefied Norway spruce wood, possibly due to its 432 low volatile matter and high ash content. Turbulent flame speeds were measured in the 433 explosions and showed a linear relationship with K_{St}, which indicates that flame speed can be 434 used as a measure of reactivity as well as K_{St}. Flame speed is a more fundamental parameter 435 that is more relevant in modelling of explosions. Both K_{St} and flame speed measurements 436 showed that torrefied Norway spruce was more reactive than the untreated biomass and 437 Kellingley coal.

The analysis of the residue from an explosion test of torrefied Norway spruce presented loss of volatiles, increase in fixed carbon and ash contents, and presence of char structures. This behaviour is similar to that of coal, although the char yield appeared lower than for coal. In the case of raw biomass some oxygen had been released with the volatiles and also ash and fixed carbon were increased. However, char particles were rarely present and the structure ofthe particles remained largely unchanged.

The analysis of all residues confirmed that a large proportion of the particles in the residue were unreacted and therefore it is believed that the loss of volatiles and increase in fixed carbon and ash was due to the action of the flame front acting on the residue as it cooled down in the vessel walls. The residue is formed by the explosion induced wind ahead of the flame entraining dust particles and pushing them towards the vessel walls. As the pressure raises these particles are compressed into a thin layer on the wall.

450 Char particles observed in coal and torrefied biomass explosion residues were almost non-451 existent in raw biomass residues. The amount of char produced could therefore be affected by 452 the amount of cellulose in the original fuel and the high heating rates experienced by the 453 particles in an explosion event. The formation of more char structures in torrefied biomass 454 could be explained by the reduced cellulose content which is decomposed in the torrefaction 455 pre-treatment itself. Further work is underway to corroborate and understand these findings 456 using other torrefied and raw biomass materials and coal.

457 Acknowledgements

458 The authors are grateful to the Energy Program (Grant EP/H048839/1) for financial support.

- 459 The Energy Program is a Research Councils UK cross council initiative led by EPSRC and
- 460 contributed to by ESRC, NERC, BBSRC and STFC.

461 **References**

462 Amyotte, P. R., Cloney, C. T., et al. (2012). Dust explosion risk moderation for flocculent

463 dusts. Journal of Loss Prevention in the Process Industries **25**(0): 862-869.

464 Bartknecht, W. (1989). Dust Explosions: Course, prevention, protection. London, Springer465 London.

466 Biagini, E., Barontini, F., et al. (2006). Devolatilization of Biomass Fuels and Biomass

467 Components Studied by TG/FTIR Technique. Industrial & Engineering Chemistry Research

468 45(13): 4486-4493.

- 469 British Standards Institution (2006). BS EN 14034-2: Determination of explosion
- 470 characteristics of dust clouds Part 2: Determination of the maximum rate of explosion
- 471 pressure rise of dust clouds. London, BSI. **BS EN 14034-2**.
- 472 Broström, M., Nordin, A., et al. (2012). Influence of torrefaction on the devolatilization and
- 473 oxidation kinetics of wood. Journal of Analytical and Applied Pyrolysis **96**(0): 100-109.
- 474 BSI (2004). BS EN 14034-1: Determination of explosion characteristics of dust clouds Part 1:
- 475 Determination of maximum pressure Pmax of dust clouds. London, BSI. **BS EN 14034-1**.
- 476 Butcher, J. (2011) Firefighters battle huge biomass fire at Port of Tyne. Last retreived from
- 477 http://www.journallive.co.uk/north-east-news/todays-news/2011/10/31/firefighters-battle-
- 478 <u>huge-biomass-fire-at-port-of-tyne-61634-29689277/</u> on 31 October 2011
- 479 Cashdollar, K. L. (2000). Overview of Dust Explosibility Characteristics. Journal of Loss
- 480 Prevention in the Process Industries **13**: 183-199.

- 481 Conde Lazaro, E. and Garcia Torrent, J. (2000). Experimental research on explosibility at
- 482 high initial pressure of combustible dusts. Journal of Loss Prevention in the Process

483 Industries **13**(0): 221-228.

- 484 Darvell, L. I., Jones, J. M., et al. (2010). Combustion properties of some power station
 485 biomass fuels. Fuel 89(10): 90.
- 486 Davey, E., Jones, C., et al. (2011). UK Renewable Energy Roadmap. Department of Energy487 and Climate Change. London.
- 488 DECC (2013). UK Energy in Brief 2013.
- 489 Dyduch, Z. and Pekalski, A. (2013). Methods for more accurate determination of explosion
- 490 severity parameters. Journal of Loss Prevention in the Process Industries **26**(6): 1002-1007.
- 491 Eckhoff, R. K. (1977). Pressure development during explosions in clouds of dusts from grain,
- 492 feedstuffs and other natural organic materials. Fire Safety Journal 1(2): 71-85.
- 493 European Parliament, C. o. t. E. U. (2009). Directive 2009/28/EC of the European Parliament
- and of the Council of 23 April 2009 on the promotion of the use of energy from renewable
- 495 sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC
- 496 (Text with EEA relevance)
- 497 Friedl, A., Padouvas, E., et al. (2005). Prediction of heating values of biomass fuel from
 498 elemental composition. Analytica Chimica Acta 544(1-2): 191-198.

- Garcia-Torrent, J., Conde-Lazaro, E., et al. (1998). Biomass dust explosibility at elevated
 initial pressures. Fuel **77**(9/10): 97.
- 501 Hertzberg, M., Cashdollar, K. L., et al. (1982). Domains of flammability and thermal
- 502 ignitability for pulverized coals and other dusts: Particle size dependences and microscopic
- residue analyses. Symposium (International) on Combustion **19**(1): 1169-1180.
- 504 Holland, T. (2011) Essex fire destroys 21000 tonnes of woodchip destined for Dalkia biomass
- 505 plant. Last retreived from http://www.mrw.co.uk/news/essex-fire-destroys-21000-tonnes-of-
- 506 woodchip-destined-for-dalkia-biomass-plant/8617227.article. on 11 July 2011
- 507 Huéscar Medina, C., Phylaktou, H. N., et al. (2013). The development of an experimental
- 508 method for the determination of the minimum explosible concentration of biomass powders.
- 509 Biomass and Bioenergy **53**(0): 95-104.
- 510 Iarossi, I., Amyotte, P. R., et al. (2012). Explosibility of polyamide and polyester fibers. IX
 511 International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions.
 512 Cracow, Poland.
- 513 International Organization of Standardization (1985). ISO-6184/1 Explosion Protection
 514 Systems- Part 1: Determination of Explosion Indices of Combustible Dusts in Air. Geneva.
 515 ISO 6184-1:1985.
- Jacobson, M., Nagy, J., et al. (1961). Explosibility of agricultural dusts. Washington, D.C.:
 23p.

- 518 Makris, A. and Lee, J. H. S. (1989). Lean flammability limits of dust-air mixtures. Archivum
 519 Combustionis 9: 43-64.
- 520 Marmo, L. (2010). Case study of a nylon fibre explosion: An example of explosion risk in a
- 521 textile plant. Journal of Loss Prevention in the Process Industries **23**(1): 106-111.
- Nagy, J., Dorsett, H. G., et al. (1965). Explosibility of carbonaceous dusts. R.I. 6597.
 Washington, D.C.: 30 p.
- 524 Pilão, R., Ramalho, E., et al. (2006). Overall characterization of cork dust explosion. Journal
 525 of Hazardous Materials 133(1-3): 183-195.
- 526 Renewables International Magazine (2011) Following explosion, world's largest pellet plant
- 527 resumes operation. Last retreived from http://www.renewablesinternational.net/following-
- 528 <u>explosion-worlds-largest-pellet-plant-resumes-operation/150/515/31440/</u>. on 15 July 2011
- 529 Sattar, H., Huescar Medina, C., et al. (2013). Calibration of a 10L volume dust holding pot for
- the 1m3 standard vessel, for use in low bulk density biomass explosibility testing. 7th
- 531 International Seminar on Fire and Explosion Hazards, Providence, USA, Research

532 publishing.

Sattar, H., Phylaktou, H. N., et al. (2012). Explosions and flame propagation in nut-shell
biomass powders. IX International Symposium on Hazards, Prevention and Mitigation of
Industrial Explosions. Cracow, Poland.

- 536 Sattar, H., Phylaktou, H. N., et al. (2012). Pulverised biomass explosions: Investigation of the
- 537 ultra rich mixtures that give peak reactivity. IX International Symposium on Hazard,
- 538 Prevention and Mitigation of Industrial Explosions. Cracow, Poland.
- 539 Wilén, C., Moilanen, A., et al. (1999). Safe handling of renewable fuels and fuel mixtures.
- 540 Espoo, VTT Technical Research Cenre of Finland: 117 p.+app. 118p.
- 541 Zanzi, R., Sjöström, K., et al. (1996). Rapid high-temperature pyrolysis of biomass in a free-
- 542 fall reactor. Fuel **75**(5): 545-550.

543