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Abstract111

The potential impact of global temperature change on global crop yield has recently been112

assessed with different methods. Here we show that grid-based and point-based simulations113

and statistical regressions (from historic records), without deliberate adaptation or CO2114

fertilization effects, produce similar estimates of temperature impact on wheat yields at global115

and national scales. With a 1ć global temperature increase, global wheat yield is projected116

to decline between 4.1% and 6.4%. Projected relative temperature impacts from different117

methods were similar for major wheat producing countries China, India, USA and France, but118

less so for Russia. Point-based and grid-based simulations, and to some extent the statistical119

regressions, were consistent in projecting that warmer regions are likely to suffer more yield120

loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it121

was possible to quantify 'method uncertainty' in addition to model uncertainty. This122

significantly improves confidence in estimates of climate impacts on global food security.123
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Global demand for food is expected to increase 60% by the middle of the 21st century 1.124

Climate change, and in particular rising temperatures, will impact food production 2. For125

global food security, it is important to understand how climate change will impact crop126

production at the global scale to develop fact-based mitigation and adaptation strategies.127

Many studies have shown a wide range of temperature impacts on yields of different crops in128

different seasons at different locations 3, including Europe 4, China 5, India 6 and Sub-Saharan129

Africa 7. A few studies have considered impacts on the entire globe8, 9, 10, 11. However, the130

methods used to make these assessments are based on very different premises and use131

different methodological steps.132

The uncertainty of estimates of global temperature impact on crop yields was analyzed133

for the crop model component (i.e. model uncertainty) by using two different multi-model134

ensemble approaches 8, 9. While both studies used process-based crop simulation models, the135

scaling approach and input data differed greatly. The first study divided the globe into a136

geographical grid cells defined by latitude and longitude and used climate and crop137

management data integrated over each grid as input for seven crop models 9. This grid-based138

system was used to estimate relative yield changes for rice, maize, wheat and soybean. The139

second study used data from 30 individual field sites deemed to represent 2/3 of140

wheat-producing areas worldwide 8. In this point-based approach estimates from sentinel sites141

were scaled up and extrapolated to cover geographical areas with similar conditions.142

In further contrast, statistical regressions based on global and country level data have143

been used to quantify the impact of increasing temperatures on yields of wheat, maize, barley,144

soybean, sorghum and rice 10, 11. An important difference from the simulation models is that145
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statistical models do not directly consider processes inherent to crop growth. However,146

statistical models may include indirect effects of climatic variability, such as those related to147

pests and diseases, which are not well captured by simulation models 12. When assessing148

climate effects on crop yields, crop models can take into account autonomous adaptation and149

an increase in atmospheric CO2 concentration. Also some statistical regressions include the150

yield effects associated with autonomous adaptation 10. For the effects of gradual increase in151

CO2 concentration in the past, statistical models may inherently include these within yield152

effects 13, but for some regression models with a linear time term, effects of steady increase in153

CO2 can be removed from yield impacts, just as the effects of technology improvement. In154

addition, upscaling methods influence the outcomes from regional assessments 14. The155

statistical approach obtained global or regional impacts by aggregating county districts or156

countries 10, 11. The grid-based system obtained global or regional impacts by aggregating 0.5o157

× 0.5o grid cells 9, while the point-based approach employed 30 sites to represent global wheat158

regions 8. Therefore, differences in upscaling could add uncertainties in the impact estimated159

in these studies.160

In this letter, we compared three largely independent assessment methods used to161

estimate temperature impacts on wheat yields: grid-based simulations, point-based162

simulations, and statistical regressions. The details of each method are shown in Table S1.163

The methods used independent different dynamic, statistical, up-scaling and source data164

approaches. The grid-based simulations used here were from the Agricultural Model165

Intercomparison and Improvement Project (AgMIP) 15 as part of the Inter-Sectoral Impact166

Model Intercomparison Project (ISI-MIP). Wheat yields were simulated with seven global167
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gridded crop models during 1980-2099 under RCP 8.5, a greenhouse gas emissions scenario168

(here without CO2 fertilization effects), over 0.5o × 0.5o grid cells 9. The point-based169

simulations from the AgMIP-Wheat project 8 consisted of simulations from 30 wheat models170

(including one statistical model) for 30 representative locations around the world from a171

baseline of the 1981-2010 period and a linear temperature increase. Temperature impacts172

determined by statistical regression methods were obtained directly from previously173

published data or our own statistical analysis (Table S1 and Supplementary methods).174

Similar global impact from different methods175

The average reductions in global wheat yield with 1oC global temperature increase176

estimated from grid-based simulations, point-based simulations, and statistical regressions at177

global level were all between 4.1% and 6.4% (Fig. 1). The average estimated temperature178

impact from all three methods (and four studies) was a 5.7% reduction in global yield per179

degree of global temperature increase. The estimated temperature effects on global wheat180

yield from the three different methods were similar.181

Ameta-analyses of mostly process-based crop model simulations, reported a 3.3 ± 0.8%182

decline in wheat yields with a 1oC increase in local temperature 16. When adjusted to global183

temperature change (which is usually less than local wheat region temperature changes 17),184

this impact amounts to respectively 3.9% yield reduction per degree of global temperature185

increase. Also, a summary of past regression and simulation studies reported an average of 5.9%186

wheat yield decrease with 1oC warming 18. These values are very similar to the results187

obtained here for wheat using three different assessment methods.188

The results here are presented for 1°C of global warming for consistency. However, the189
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estimated impacts do not increase linearly with increasing temperature and the disagreement190

among method estimates become larger with more temperature change (Fig. S9).191

Impacts for major wheat-producing countries192

To understand how the different methods project such similar temperature impacts on193

global wheat yields, we disaggregated the temperature impacts to the national scale.194

Point-based and grid-based simulations were compared for 97 countries (Fig. 2a). Generally,195

projected temperature impacts on wheat yields for most of the large wheat producers were196

similar between the two simulation methods (with a R2 of 0.64 for the top 20 producers,197

Fig.S12), while differences were larger for small wheat-producing countries. Some large198

differences occurred between point-based and grid-based simulation in irrigated semiarid199

regions of Africa, which are mostly small wheat producers. The larger differences observed200

for smaller producers have little weight in the global analysis. However, they are important201

for regional economies. Method results were compared in more detail for the top five wheat202

producing countries (Fig. 2b, Fig. 3). For China, India, USA, and France, the different203

assessment methods resulted in similar values for temperature impacts on country wheat204

yields. Additional country-level studies relying on other methods and data sources gave205

similar estimates. For example, for China point-based simulations, grid-based simulations,206

and two different regressions all concluded that yield reductions of about 3.0% are expected207

with 1oC warming (Fig.3a). For India, country-level statistical regressions, grid-based and208

point-based simulations all estimated about 8.0% yield declines per °C of global temperature209

increase (Fig.3b). For Russia, the two simulation methods agreed well, but yield reductions210

estimated from statistical regression were markedly higher (Fig. 3c). Another study using211
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statistical regression methods also showed higher negative temperature impacts on wheat212

yield than the two modeling methods used here for Rostov, a main wheat producing region in213

Russia 19. Since wheat producing regions in Russia can experience relatively low214

temperatures (below optimal growth temperature) during early growing stages, a temperature215

increase during this stage (tillering), may have a positive yield impact, while at a later stage216

(booting or grain filling) an increase in temperature often reduces wheat yields 19. As an217

average temperature over a growing season is usually used in statistical regressions, such218

in-season variability in temperature impacts would remain undetected. A dynamic crop219

simulation model takes in-season variability and impacts into account. This may explain the220

estimated larger impacts in Regression_A in comparison to the simulation results. For USA, a221

recent study using data from wheat variety trials from 1985–2013 in Kansas, USA reported a222

7.3% decrease (corrected for global temperature change) in wheat yield with 1oC global223

temperature increase20. This result is similar to the other estimated temperature impacts on224

wheat yields for the USA (Fig. 3d). For France, yield reduction estimates from grid-based225

simulations, point-based simulations, and statistical regressions were 4.6%, 5.2%, and 4.2%,226

respectively (Fig. 3e). In an independent study, a 0.42t.ha-1 reduction in wheat yields, which is227

a reduction of about 5.5% after correction for global temperature change, was reported in228

Northern France from 1998-2008 that included the planting of reference varieties in field229

experiments 21. This is also in line with simulated impact response surfaces from a230

26-wheat-model-ensemble across a European transect22.231

With the different temperature impact methods used, despite some variation, there is a232

general similarity in the magnitude of negative effects of increasing temperature on wheat233
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yields for major wheat producing countries. As the five largest wheat producing countries234

have a combined total >50% of total global wheat production 23, the similarity in method235

estimates of temperature impacts for these countries also dominates the similar negative236

temperature impacts computed at the global scale.237

Differences in model inputs238

At the location scale, the yields from the point-based simulations were highly correlated239

to the yields from the grid-based simulations for the baseline and baseline+1oC periods (P <240

0.001, R2 > 0.5; Table S2), but simulated yields were generally higher in point-based than in241

grid-based simulations (Fig. 4 and Fig. S1). The average yields of the 30 locations in the242

point-based simulations were 3.2 (82%) and 3.0 (82%) t.ha-1 higher than in the corresponding243

grid-based simulations under baseline and baseline + 1oC conditions, respectively. In both244

studies, mean temperatures were similar across sites for the 90 days period prior to maturity,245

except for three locations (Fig. S2). Seasonal temperature variability in the model input data246

differed slightly between methods and caused a larger seasonal yield variability in the247

grid-based simulations compared to the point-based simulations (Fig S7). Solar radiation248

inputs were 5% to 7% lower in the grid-based than in the point-based simulations (Fig. S3),249

which might have contributed slightly to the simulated yield difference 24. Water stress was250

not considered in either study for the comparison of these 30 locations and any possible251

differences in precipitation inputs had no impact on the simulated results (Table S3). No252

nitrogen stress was assumed in the point-based simulations , but four of the seven crop253

models in the grid-based simulations did consider country-level average N fertilizer254

application which could explain why the grid-based model ensemble simulated generally255
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lower yields compared to the point-based simulations (Table S3).256

Another important factor possibly contributing to yield differences between the257

grid-based and point-based simulation at the local scale were the models used in the studies.258

There were 29 crop models and one statistical regression in the point-based simulation259

ensemble, whereas there were seven crop models in the grid-based simulations. Three models260

(CERES, EPIC, and LPJmL) were common to both studies. These three models tended to261

simulate lower yields than the 30-model ensemble average from the point-based study for the262

30 locations, e.g., about 0.9 t∙ha-1 less in the baseline period (Fig. S4). This may have lowered263

the average simulated yields in grid-based simulations. Differences in the calibration of the264

crop models would also affect simulations25. Some models in the grid-based simulations were265

calibrated and some were not, and especially growing periods were not harmonized across266

grid-based models 9, while in point-based simulations all models were calibrated for anthesis267

and maturity dates with local phenology information 8. Hence, differences in models, solar268

radiation and inputs like N fertilizer may explain some of the lower yields found in the269

grid-based studies. Differences in cultivar calibration, particularly for phenology and growing270

season, adds another source of differences between these two studies.271

More yield reduction at warmer regions272

Interestingly, when comparing the grid-based and point-based simulations, no obvious273

bias was observed in the simulated relative yield impacts between point-based and grid-based274

simulations (Fig. 4c and Fig.S1c), even though simulated absolute yields with point-based275

simulations were much higher than grid-based simulations. This was still true when the outlier276

location in Fig. 4c was removed from calculations. Temperature impacts at the local scale in277
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grid-based and point-based simulations were highly correlated. With 1oC global temperature278

increase, higher yield reductions were observed at locations with higher baseline temperatures279

than locations with lower baseline temperatures in both point-based and grid-based280

simulations (Fig. 4c). For example, at Aswan in Egypt, point-based and grid-based281

simulations showed about 11% and 20% decline in yield with 1oC temperature increase, while282

for Krasnodar in Russia, point-based and grid-based simulations estimated about 4% and 7%283

yield decline with 1oC global increase. The spatial pattern of temperature impacts at the284

location scale was also consistent with that at the country scale (Fig. 2a, Fig. 2b, and Fig.S11),285

which indicated that warmer regions (e.g. India) are likely to suffer more wheat yield286

reductions than cooler regions (e.g. China). The exception is for statistical regression287

estimates for Russia, a generally cooler region (Fig. 2b). The effects of temperature on wheat288

yields are consistent with reports of impacts on other crops, such as maize, soybean, and289

cotton26, 27, 28. An increase in extreme temperature events with increasing mean temperatures 29290

are likely to further contribute to yield decline in wheat 30, 31. Several crop models used in291

point-based simulations (tested against warming experiments) and Regression_A (using a292

nonlinear regression method), also considered the impacts of extreme temperature8, 10.293

Effects of up-scaling methods294

To assess climate impacts on global or country-level crop production, both process-based295

crop modeling approaches and statistical regressions need to be upscaled from locations to296

regions and then to the entire globe 32. In the point-based simulations, a range of local297

information (e.g. local sowing dates, cultivar, anthesis and maturity date) was used for the 30298

locations selected to represent about 70% of current global wheat production, which was then299
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upscaled via FAO statistics 8. Much less local information was available for each of the 0.5o ×300

0.5o grid cells which were aggregated to country and global scales in the grid-based301

simulations 9. However, very similar estimated temperature impacts on relative global yield302

changes were simulated with both approaches. This was surprising as Ewert, van Bussel 14303

showed that scaling methods can add significant uncertainties to simulated outcomes.304

Although uncertainties are known to be reduced with multi-model ensembles, these results305

might also indicate that the selected 30 locations in the point-based study 8 were indeed306

representative of agro-climatic variability of wheat growing conditions throughout the world.307

The results also suggest that global grid-based models, despite having limited local308

information, are on a par with point-based approaches, while providing greater coverage of309

regional heterogeneity.310

In the statistical regression methods, yield and weather data from different scales were311

used to obtain global and country-level temperature impacts. For example, both global 11 and312

country 10 level regressions, observed yield records were used to conduct global assessments,313

and both country-level yields and county (or similar) level yields were used for country314

assessments (e.g. for China, India, and USA). Generally, regressions with different spatial315

scales resulted in similar temperature impacts on yields.316

Advantage of different assessment methods317

Compared with process-based crop models, statistical regressions are simpler and require318

less input information. However, other important growth factors which change with climate319

change, such as radiation or the combined effects of heat, water and nutrient stresses, vary320

over the period of a crop growing cycle, but are often not directly considered in statistical321



14

regressions. Some of these factors might also be confounded in a statistical regression322

analysis. While there have been attempts to include more factors in statistical impact methods323

33, detailed process-based, dynamic crop simulation models may be more suitable to simulate324

the more complex climate change scenarios, beyond the single impact of temperature change.325

However, process-based models, like statistical methods, often do not account for many other326

important factors required for holistic climate change impact assessment. Such factors include327

impacts from frost, pests, weeds, diseases, and floods, and also dissimilar impacts between328

day and night temperatures 34, or extreme temperature events at different growth stages, which329

are all likely to change with future climates. However, process-based models are capable of330

accounting for the effects of elevated CO2
35, even though this effect is not considered here,331

but large uncertainties exist not only with respect to the general effects on crop yields 36, 37 but332

also with respect to model implementation 9, 38.333

Field or environment-controlled experiments are independent ways to estimate334

temperature impacts on wheat yields8, 16. For example, 2% to 8% reductions in wheat yield for335

every 1oC increase of post-anthesis temperature above an optimum season-average336

temperature of 15oC (i.e. local temperature) have been measured for a range of cultivars under337

controlled 39 and field experiments 40. Considerable variations of wheat yield impacts with338

increasing temperature have been found in a 4-growing season warming experiments 41.339

However, while measured temperature impacts on yields can guide other impact estimation340

methods, they are often specific to a particular location, cultivar, crop management or341

experimental treatment and are not representative of a larger region, which makes it difficult342

to extrapolate such measurements to regional or global impacts.343
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Applying multi-method ensembles344

Understanding and quantifying uncertainty of impact assessments has been a key aspect345

in assessing climate impacts on crop production in recent studies25, 42, 43. Most previous studies346

have focused on uncertainties arising from crop models or climate models25. Here the347

uncertainties in both point-based and grid-based simulations were quantified by multi-model348

ensembles. Uncertainties due to crop models, expressed as error bars in the grid-based349

simulations, were relatively large at both global and country scales (Fig. 1 & Fig. 3), which350

was due to the limited number of models and relatively wide spread of model results in this351

study. The differences in model inputs (e.g. nitrogen application, sowing dates, cultivars),352

calibration methods and model 9 explain some of the variability between the point and353

grid-based simulations. Many crop models do not simulate temperature interactions with354

canopy temperature variation under different soil water conditions, which could result in355

simulated differences of temperature impacts 8. However, multi-model ensemble medians356

have been shown to be more consistently accurate than individual models when comparing357

measurements across locations and growing environments, adding confidence to the estimates358

here44. Bootstrap resampling methods were employed to estimate the uncertainty of359

temperature impacts calculated in the two global scale statistical regressions. Thus different360

assessment approaches have independent methods of quantifying uncertainty. Multi-method361

ensembles can enable the quantification of method uncertainty, similar to how multi-model362

ensembles enable estimation of model uncertainty. The uncertainty range of wheat yield363

reduction with 1oC global temperature increase from the multi-method ensemble calculated364

from the median of the four methods analyzed here was between 4.0% and 6.9% at the global365
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scale (95% confidence interval). While this absolute difference is still substantial, this is366

narrower than the uncertainty due to the models in the multi-model ensembles from the367

simulations or the boot-strapping method in the statistical regressions. Therefore, applying368

multi-method ensembles can improve reliability of the assessment of climate impacts on369

global food security.370

However, the consistency of negative global yield impacts of increasing temperature371

quantified here at global level should not be applied to local or regional scale. As previous372

studies have found, there were considerable large variations of increasing temperature impacts373

on wheat yields at local and regional scale8, 45, and the spatial variation of temperature impacts374

has also been observed in the two modeling approaches here among different locations.375

Adaptation to global warming, e.g. farmer’s autonomous adaptation through changing376

sowing dates or cultivars, has been suggested in several studies to compensate negative377

impacts of increasing temperature 46. At global scale, point-based simulations did not consider378

adaptation. Also a panel regression approach attempted to exclude adaptations 10. In the379

grid-based simulations, four of the seven models did allow cultivar and sowing date380

adaptation with a changing climate (Table S3), and the simulated impacts tended to be lower381

with simulated adaptation (Fig.S10). However, temperature impacts from models with382

adaptation varied largely. Temperature impacts with and without adaptation were estimated383

from different models in grid-based simulations, which added considerable uncertainty in the384

results. The adaptation effects on temperature impacts should be further studied with more385

consistent protocols for multi-model assessments. Other future adaptation, e.g. wheat386

cultivation shifting to marginal regions in higher latitudes, could offset some of the negative387
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impacts.388

Assessing climate change impacts on crop production is a key aspect in determining389

appropriate global food security strategies 42. Reliable estimates of climate change impacts on390

food security require an integrated use of climate, crop, and economic models15. Applying391

multi-method ensembles further improves the estimated impact precision and confidence in392

assessments of climate impacts on global food security. The consistent negative impact from393

increasing temperatures confirmed by three independent methods warrants critical needed394

investment in climate change adaptation strategies to counteract the adverse eơects of rising395

temperatures on global wheat production, including genetic improvement and management396

adjustments 47, 48. However, some or all of the negative global warming impacts on wheat397

yield might be compensated by increasing atmospheric CO2 concentrations under full398

irrigation and fertilization25.399

400

Corresponding author401

Correspondence and requests for materials should be addressed to Y.Z.402

Yan Zhu403

Tel: +86-25-84396598404

Fax: +86-25-84396672405

E-mail: yanzhu@njau.edu.cn406

Address: No.1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China407

408

Acknowledgements409

This work was supported by the National High-Tech Research and Development410



18

Program of China (2013AA100404), the National Natural Science Foundation of China411

(31271616, 41571088 and 31561143003), the National Research Foundation for the Doctoral412

Program of Higher Education of China (20120097110042), the Priority Academic Program413

Development of Jiangsu Higher Education Institutions (PAPD), and the China Scholarship414

Council. We would like to acknowledge support provided by IFPRI through the Global415

Futures and Strategic Foresight project, the CGIAR Research Program on Climate Change,416

Agriculture and Food Security (CCAFS), the CGIAR Research Program on Wheat and the417

Agricultural Model Intercomparison and Improvement Project (AgMIP).418

419

Author contributions420

B.L., S.A., C.M., F.E., J.E., D.B.L., P.M., A.C.R., D.W., J.W.J., C.R. and Y.Z. motivated421

the study, S.A. coordinated the study, B.L. S.A., C.M., F.E., J.E., D.B.L., P.M., A.C.R., and422

D.W. analyzed data, P.K.A., P.D.A., J.A., B.B., C.B., D.C., A.J.C., D.D., G.D.S., J.D., E.F.,423

C.F., M.G-V., S.G., G.H., L.A.H., R.C.I., M.J., C.D.J., K.C.K., A-K.K., C.M., S.N.K., C.N.,424

G.O’L., J.E.O., T.P., E.P., T.A.M.P.,, E.E.R., R.R.P., E.S., M.A.S., I.S., E.S., C.O.S., P.S., T.S.,425

I.S., F.T., P.J.T., K.W., E.W., J.W., Z.Z. and Y.Z. carried out crop model simulations and426

discussed the results, C.M., J.E., B.A.K., M.J.O., G.W.W., J.W.W., M.P.R., P.D.A., P.V.V.P.427

and A.C.R. provided experimental data, B.L., S.A., C.M., F.E., J.E., D.B.L., P.M., A.C.R.,428

D.W., J.W.J., C.R. and Y.Z. wrote the paper. All other authors gave comments on the earlier429

version of this manuscript.430

431

Competing financial interests 432



19

The authors declare no competing financial interests.433

434

References435

1. Alexandratos N, Bruinsma J. World agriculture towards 2030/2050: the 2012 revision. Rome:436

FAO; 2012. Report No.: 12-03.437

438

2. Rosenzweig C, Parry ML. Potential impact of climate change on world food supply. Nature439

1994, 367(6459): 133-138.440

441

3. Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N. A meta-analysis of442

crop yield under climate change and adaptation. Nature Climate Change 2014, 4(4): 287-291.443

444

4. Ewert F, Rötter RP, Bindi M, Webber H, Trnka M, Kersebaum KC, et al. Crop modelling for445

integrated assessment of risk to food production from climate change. Environ Model446

Software 2015, 72: 287-303.447

448

5. Lv ZF, Liu XJ, Cao WX, Zhu Y. Climate change impacts on regional winter wheat production449

in main wheat production regions of China. Agr Forest Meteorol 2013, 171: 234-248.450

451

6. Kumar SN, Aggarwal P, Rani D, Saxena R, Chauhan N, Jain S. Vulnerability of wheat452

production to climate change in India. Climate Research 2014, 59(3): 173-187.453

454

7. Thornton PK, Jones PG, Ericksen PJ, Challinor AJ. Agriculture and food systems in455

sub-Saharan Africa in a 4 C+ world. Philosophical Transactions of the Royal Society of456

London A: Mathematical, Physical and Engineering Sciences 2011, 369(1934): 117-136.457

458

8. Asseng S, Ewert F, Martre P, Rötter R, Lobell D, Cammarano D, et al. Rising temperatures459

reduce global wheat production. Nature Climate Change 2015, 5: 143–147.460

461

9. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, et al. Assessing462

agricultural risks of climate change in the 21st century in a global gridded crop model463

intercomparison. Proceedings of the National Academy of Sciences 2014, 111(9): 3268-3273.464

465

10. Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since466

1980. Science 2011, 333(6042): 616-620.467

468

11. Lobell DB, Field CB. Global scale climate-crop yield relationships and the impacts of recent469

warming. Environmental Research Letters 2007, 2: 1-7.470

471

12. Kristensen K, Schelde K, Olesen JE. Winter wheat yield response to climate variability in472

Denmark. The Journal of Agricultural Science 2011, 149(01): 33-47.473



20

474

13. Wing IS, Monier E, Stern A, Mundra A. US major crops’ uncertain climate change risks and475

greenhouse gas mitigation benefits. Environmental Research Letters 2015, 10(11): 115002.476

477

14. Ewert F, van Bussel L, Zhao G, Hoffmann H, Gaiser T. Uncertainties in Scaling Up Crop478

Models for Large Area Climate Change Impact Assessments. Handbook of Climate Change479

and Agroecosystems. Imperial College Press: London, UK, 2015, pp 261-277.480

481

15. Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburne P, et al. The482

Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot483

studies. Agr Forest Meteorol 2013, 170: 166-182.484

485

16. Wilcox J, Makowski D. A meta-analysis of the predicted effects of climate change on wheat486

yields using simulation studies. Field Crop Res 2014, 156: 180-190.487

488

17. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term489

climate change: projections, commitments and irreversibility. Cambridge University Press:490

Cambridge, United Kingdom and NewYork, NY, USA, 2013.491

492

18. Fischer RA, Byerlee D, Edmeades GO. Crop yields and global food security: will yield493

increase continue to feed the world? Canberra: Australian Centre for International Agricultural494

Research; 2014.495

496

19. Licker R, Kucharik CJ, Doré T, Lindeman MJ, Makowski D. Climatic impacts on winter497

wheat yields in Picardy, France and Rostov, Russia: 1973–2010. Agr Forest Meteorol 2013,498

176: 25-37.499

500

20. Tack J, Barkley A, Nalley LL. Effect of warming temperatures on US wheat yields. Proc Natl501

Acad Sci U S A 2015, 112(22): 6931-6936.502

503

21. Gallais A, Gate P, Oury F-X. Évolution des rendements de plusieurs plantes de grande culture504

une réaction différente au réchauffement climatique selon les espèces. Comptes rendus de505

l'Académie d'agriculture de France 2010, 96(3): 4-16.506

507

22. Pirttioja N, Carter TR, Fronzek S, Bindi M, Hoffmann H, Palosuo T, et al. Temperature and508

precipitation effects on wheat yield across a European transect: a crop model ensemble509

analysis using impact response surfaces. Climate Research 2015, 65: 87-105.510

511

23. FAO. Food and Agriculture Organization of the United Nations. http://faostat.fao.org (last512

visited: 03.26.2013), 2011.513

514

24. Li H, Jiang D, Wollenweber B, Dai T, Cao W. Effects of shading on morphology, physiology515

and grain yield of winter wheat. Eur J Agron 2010, 33(4): 267-275.516

517



21

25. Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, et al. Uncertainty in518

simulating wheat yields under climate change. Nature Climate Change 2013, 3(9): 827-832.519

520

26. Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to U.S. crop521

yields under climate change. Proceedings of the National Academy of Sciences 2009, 106(37):522

15594-15598.523

524

27. Lobell DB, Bänziger M, Magorokosho C, Vivek B. Nonlinear heat effects on African maize as525

evidenced by historical yield trials. Nature Climate Change 2011, 1(1): 42-45.526

527

28. Bassu S, Brisson N, Durand J-L, Boote K, Lizaso J, Jones JW, et al. How do various maize528

crop models vary in their responses to climate change factors? Global Change Biology 2014,529

20(7): 2301-2320.530

531

29. Battisti DS, Naylor RL. Historical warnings of future food insecurity with unprecedented532

seasonal heat. Science 2009, 323(5911): 240-244.533

534

30. Lobell DB, Sibley A, Ortiz-Monasterio JI. Extreme heat effects on wheat senescence in India.535

Nature Climate Change 2012, 2(3): 186-189.536

537

31. Asseng S, Foster I, Turner NC. The impact of temperature variability on wheat yields. Global538

Change Biology 2011, 17(2): 997-1012.539

540

32. Ewert F, van Ittersum M, Heckelei T, Therond O, Bezlepkina I, Andersen E. Scale changes541

and model linking methods for integrated assessment of agri-environmental systems.542

Agriculture, Ecosystems & Environment 2011, 142(1): 6-17.543

544

33. Urban DW, Sheffield J, Lobell DB. The impacts of future climate and carbon dioxide changes545

on the average and variability of US maize yields under two emission scenarios.546

Environmental Research Letters 2015, 10(4): 045003.547

548

34. Lobell DB, Ortiz-Monasterio JI, Asner GP, Matson PA, Naylor RL, Falcon WP. Analysis of549

wheat yield and climatic trends in Mexico. Field Crop Res 2005, 94(2): 250-256.550

551

35. O'Leary GJ, Christy B, Nuttall J, Huth N, Cammarano D, Stockle C, et al. Response of wheat552

growth, grain yield and water use to elevated CO under a Free-Air CO Enrichment (FACE)553

experiment and modelling in a semi-arid environment. Global Change Biology 2015, 21(7):554

2670-2686.555

556

36. Schimel D, Stephens BB, Fisher JB. Effect of increasing CO2 on the terrestrial carbon cycle.557

Proc Natl Acad Sci U S A 2015, 112(2): 436-441.558

559

37. Ainsworth EA, Leakey AD, Ort DR, Long SP. FACEϋing the facts: inconsistencies and560

interdependence among field, chamber and modeling studies of elevated [CO2] impacts on561



22

crop yield and food supply. New Phytologist 2008, 179(1): 5-9.562

563

38. Deryng D, Elliott J, Folberth C, Muller C, Pugh TAM, Boote KJ, et al. Regional disparities in564

the beneficial effects of rising CO2 concentrations on crop water productivity. Nature Clim565

Change 2016, advance online publication.566

567

39. Wardlaw I, Dawson I, Munibi P, Fewster R. The tolerance of wheat to high temperatures568

during reproductive growth. I. Survey procedures and general response patterns. Crop and569

Pasture Science 1989, 40(1): 1-13.570

571

40. Wardlaw I, Wrigley C. Heat tolerance in temperate cereals: an overview. Functional Plant572

Biology 1994, 21(6): 695-703.573

574

41. Batts G, Morison J, Ellis R, Hadley P, Wheeler T. Effects of CO2 and temperature on growth575

and yield of crops of winter wheat over four seasons. Eur J Agron 1997, 7(1-3): 43-52.576

577

42. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security:578

the challenge of feeding 9 billion people. science 2010, 327(5967): 812-818.579

580

43. Wallach D, Mearns LO, Rivington M, Antle JM, Ruane AC. Uncertainty in Agricultural581

Impact Assessment. Handbook of Climate Change and Agroecosystems. Imperial College582

Press, 2015, pp 223-259.583

584

44. Martre P, Wallach D, Asseng S, Ewert F, Jones JW, Rotter RP, et al. Multimodel ensembles of585

wheat growth: many models are better than one. Global Change Biology 2015, 21(2):586

911-925.587

588

45. Xiong W, Holman IP, You L, Yang J, Wu W. Impacts of observed growing-season warming589

trends since 1980 on crop yields in China. Regional environmental change 2014, 14(1): 7-16.590

591

46. Butler EE, Huybers P. Adaptation of US maize to temperature variations. Nature Climate592

Change 2013, 3: 68-72.593

594

47. Cossani CM, Reynolds MP. Physiological traits for improving heat tolerance in wheat. Plant595

physiology 2012, 160(4): 1710-1718.596

597

48. Zheng B, Chenu K, Fernanda Dreccer M, Chapman SC. Breeding for the future: what are the598

potential impacts of future frost and heat events on sowing and flowering time requirements599

for Australian bread wheat (Triticum aestivium) varieties? Global Change Biology 2012, 18(9):600

2899-2914.601

602

49. Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F. A trend-preserving bias correction–603

the ISI-MIP approach. Earth System Dynamics 2013, 4(2): 219-236.604

605



23

50. Portmann FT, Siebert S, Döll P. MIRCA2000—Global monthly irrigated and rainfed crop606

areas around the year 2000: A new highϋresolution data set for agricultural and hydrological607

modeling. Global Biogeochemical Cycles 2010, 24(1).608

609

51. Zhang T, Huang Y. Estimating the impacts of warming trends on wheat and maize in China610

from 1980 to 2008 based on county level data. International Journal of Climatology 2013,611

33(3): 699-708.612

613

614

615



24

Figure legends616

Figure 1 | Impacts of 1
o
C global temperature increase on global wheat yield617

estimated by different assessment methods. The grid-based (0.5o x 0.5o grid cells)618

method is an ensemble median from seven global gridded crop models, averaged over619

30 years and aggregated over all simulated grid cells (after Ref. 9). The point-based620

method is an ensemble median from 30 models, averaged over 30 years and621

aggregated over 30 global locations (after Ref. 8). Regression_A is based on a622

country-level statistical regression from Ref. 10. Regression_B is based on a global623

level statistical regression from Ref.11. The error bars for four different methods624

indicate the 95% confidence intervals based on multi-model ensembles in the625

simulations and bootstrap resampling in the statistical regressions. The mean of the626

method_ensemble is shown with error bar indicating the 95% confidence intervals627

based on medians of individual methods.628

629

Figure 2 | Comparison of wheat yield changes with 1
o
C global temperature630

increase for 97 wheat producing countries estimated using three different631

methods. (a) Median simulations of a grid-based (0.5o × 0.5o) ensemble of seven632

models (after Ref. 9) versus a point-based (30 locations over 30 years) ensemble of 30633

models (after Ref. 8). (b) Country level statistical regression for China, India, USA,634

France and Russia, the top five wheat producing countries, from Ref. 10 versus635

point-based simulations for these countries (after Ref. 8). Note, only data on these five636

countries were supplied in Ref. 10. Circle color indicates the wheat growing season637
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temperature (from Ref. 10). Circle size indicates the amount of wheat production for638

each country according to FAO statistics 23. The solid line is the 1:1 line and dashed639

lines represent 0% yield change.640

641

Figure 3 | Estimated impacts of 1
o
C global temperature increase on wheat yield642

(a) China, (b) India, (c) Russia, (d) USA, and (e) France using different assessment643

methods. The grid-based (0.5o × 0.5o) method produced an ensemble median from644

seven global gridded crop models (after Ref. 9). The point-based method produced an645

ensemble median from 30 models from 1 to 3 country locations (after Ref. 8).646

Regression_A is a statistical regression based on country statistics after Ref. 10.647

Regression_C is a statistical regression based on 0.5o × 0.5o grid statistics after Ref.648

45. Regression_D is county level statistical regressions produced by two different649

regression methods from Ref. 50. Regression_E is a county level regression produced650

for this study. The error bars indicate the 95% confidence interval based on651

multi-models for the simulations and bootstrap resampling (Regression_A,652

Regression_B, and Regression_D) or t-tests (Regression_E) for the statistical653

regressions. No error bar was provided for Regression_C in Ref. 45.654

655

Figure 4 | Comparison of simulated multi-model median wheat yield and yield656

changes. Absolute wheat yields for (a) baseline and (b) baseline + 1oC periods, and (c)657

relative yield change with 1oC global temperature increase from grid-based658

simulations (0.5o x 0.5o) (from Ref. 9) of cells centered around the 30 locations from659
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the point-based study versus that from the point-based simulations (from Ref. 8). Note660

in (c), regression line is drawn without outlier (location in Sudan).661

662

663
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Figure 1.664

665

666

667
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Figure 2.668

669

670

671
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Figure 3.672

673

674
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Figure 4.675

676
677
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Methods678

Grid-based simulations. Seven global gridded models simulated 0.5o × 0.5o grid cells across679

all wheat growing regions of the world from 1980 to 2099 under a RCP8.5 scenario with a680

statistically-downscaled version of HadGEM2-ES 49, with only a small trend in solar radiation681

at some locations (Fig. S6). Here, a set of simulation experiments without effects of elevated682

CO2 and under full irrigation treatments were used. Among the seven global gridded models,683

adaptation through cultivars, sowing dates or growing season had been employed in four of684

the models (Table S3). The global yield impacts from models with and without adaptation are685

compared in Fig. S10. Only one climate model and RCP were used as there was limited data686

available for grid-based simulations. The period 2029-2058 was selected as being on average687

2oC warmer globally than the baseline period of 1981-2010 and the impact was halved to688

adjust the temperature change to +1oC for the analysis here. The temperature change689

considered here is 1oC warming of the global mean temperature, including land and ocean690

surface. The change in simulated grain yields between these two temperature periods was691

used to estimate temperature impacts on wheat at global and national scales. Grid-based692

simulations for the direct comparison to point-based simulations were extracted from693

simulations assuming full irrigation. For national and global scale results, grid-based694

simulations were aggregated by area-weighted means, using rain-fed and irrigated wheat695

areas per pixel of MIRCA2000 50 combining simulations under irrigated and rain-fed696

conditions. To make projections between the different grid-based models comparable, yield697

simulations were bias-corrected to national FAO levels by using FAO mean yields and698

superimposing projected relative changes. More details about the grid-based simulations can699
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be found in Ref. 9.700

Point-based simulations. Thirty models, 29 crop simulation models and one statistical701

regression model, were used to simulate wheat grain yields for 30 representative locations in702

high rainfall and irrigated wheat growing regions around the world (together representing703

about 70% of global wheat production) with the estimated baseline period of 1981-2010 and704

baseline + 2oC. Three models (CERES, EPIC, and LPJmL) in point-based simulations were705

used in grid-based simulations. No CO2 fertilization effects or any adaptation was considered706

in the point-based simulations. The impact was halved to adjust the temperature change to707

+1oC for the analysis here. Local temperature impacts on yields were adjusted to global708

temperature change and upscaled via FAO statistics. Temperature impacts on national scales709

were assessed for 125 countries. Each country was assigned as being similar to one or more710

representative locations, so the temperature impacts of each country were the average impacts711

of the corresponding representative locations. More details can be found in Ref. 8.712

Statistical regressions. All estimated temperature impacts from statistical regressions were713

from literature reports10, 11, 45, 51, except for one new statistical regression analysis for the USA714

that we present here (Supplementary Methods). All temperature impacts were adjusted to715

global temperature change following the approach by Ref. 8.Details of these regression716

studies and impacts adjustments are summarized in Table S1.717

Meta-analysis and experimental data. Meta-analysis and experimental data from the literature718

are cited here for further comparison after adjusting them to global temperature change where719

possible. Meta-analysis and experimental data from the literature were cited here for further720

comparison after adjusting them to global temperature change. An adjustment factor to global721
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temperature used for the statistical regressions was also used here. The temperature factors are722

listed in Table S1.723

Comparison at a national scale. Temperature impacts for 97 countries from both grid-based724

and point-based simulations were compared. Due to the limited number of country-scale725

estimates of temperature impacts on wheat yields with statistical regression analysis, we726

compared the regression results with the two simulation approaches for the top five wheat727

producing countries (Table S1).728

Comparison at local scales. Yield simulations from 30 single grid cells from the grid-based729

method were chosen that were centered around the 30 global representative locations from the730

point-based method. Full irrigation treatments were applied in point-based and grid-based731

simulations. The baseline and increased temperature periods for the 30 grid cells were732

determined individually by matching the 30-year average annual temperature of each grid to733

the 30-year average annual temperature of the corresponding location from point-based734

simulations. The baseline and increased temperature periods for each of the 30 grid cells and735

temperature differences between the two methods are shown in Table S4. Most locations had736

very similar temperature input data in the two comparison periods for grid-based and737

point-based simulations. Outliers (Table S4) were found where the input data differed738

substantially but these did not cause outliers in yield impacts. The yield impact outlier at the739

Sudan location was caused by very low simulated yields (Fig. 4). The simulated yields for740

baseline and increased temperature periods were used to calculate temperature impacts at the741

local scale. These were also adjusted to global temperature change with the same method at742

global and national scales. The temperature and radiation data from the critical growing743
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period of wheat from 90 days before maturity to maturity were compared. Maturity dates744

were the dates supplied from observations for each location in the point-based method 8.745

746

747


