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Introduction
The climate of southern Patagonia is strongly influenced by the 
Southern Annular Mode (SAM), defined as the zonal mean pres-
sure difference between the Southern Hemisphere mid-latitudes 
and Antarctica (Marshall, 2003). Although late-Holocene varia-
tions in climate have been identified in southern Patagonia 
(Chambers et al., 2014; Villalba et al., 2012), most reconstruc-
tions are qualitative and this region remains less documented than 
many regions in the Northern Hemisphere. For instance, the latest 
IPCC report states that there is ‘medium confidence that the posi-
tive trend in SAM since 1950 may be anomalous compared with 
the last 400 years’ (Masson-Delmotte et al., 2013). A positive 
SAM represents a large pressure difference between the mid-lati-
tudes and Antarctica, which results in an intensification and pole-
ward shift of the Southern Hemisphere westerly jet stream (Archer 
and Caldeira, 2008), which is strongly associated with the posi-
tion and intensity of the southern westerly wind belt (SWWB). As 
the position of the SWWB varies at seasonal to millennial times-
cales (Lamy et al., 2010), SWWB dynamics exert a strong influ-
ence on the climate of southern Patagonia. At decadal timescales, 
the position of the SWWB may also have been affected by strato-
spheric ozone depletion since the 1970s (Thompson et al., 2011), 
because ozone depletion is associated with climate conditions 
similar to those of the positive phase of the SAM.

A range of proxies from various archives have been employed 
to reconstruct past changes in the southern Patagonian climate 
linked to SAM and SWWB dynamics, including tree ring, glacier, 
lake level and sediment composition, peatland and speleothem 
records (Boucher et al., 2011; Chambers et al., 2014; Mauquoy 
et al., 2004; Schimpf et al., 2011; Villalba et al., 2012; Waldmann 
et al., 2010). Many, if not most of these SAM/SWWB reconstruc-
tions, are based upon improved understanding of the link between 
westerly wind intensity and precipitation. The location of southern 
Patagonia near the core of the SWWB, combined with the 
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orographic effect of the Andean Cordillera, results in an extreme 
regional rainfall gradient. Recent analyses suggest the SWWB 
brings high precipitation and mild temperatures to the western side 
of the Andean Cordillera, yet mild and very dry conditions are 
prevalent at the eastern side (Garreaud et al., 2013), with current 
mean annual rainfall decreasing about 20-fold from the main 
divide to the eastern slopes of the Andes near Punta Arenas 
(Schneider et al., 2003). The positive phase of the SAM and 
increased SWWB intensity are also associated with warmer condi-
tions, concentrated in the summer season, and higher wind veloc-
ity (Abram et al., 2014; Moreno et al., 2014; Villalba et al., 2012).

In this paper, we have used testate amoeba analyses, novel for 
this region, to reconstruct regional climate dynamics from peat-
land records. Cores from ombrotrophic peatlands may be used as 
records of past climate change because these ecosystems are 
mainly fed by precipitation (Belyea and Baird, 2006; Swindles 
et al., 2012). As a result, reconstructions of water-table variability 
are generally interpreted as records of precipitation-driven sum-
mer water deficit (Booth, 2010; Charman et al., 2009). Because of 
the influence of local and autogenic factors, a series of peatland 
records is often crucial to identify changes which may be driven 
by climate variability. Peat records are often continuous and they 
generally allow for high-resolution chronologies because of the 
important presence of well-preserved organic material, notably 
Sphagnum mosses. A gradient of peatland types occurs in south-
ern Patagonia related to the strong precipitation gradient and 
topographic setting of the peatlands. On the western, hyperhumid 
flanks of the Andes, blanket bogs are common, while the eastern 
parts of Tierra del Fuego are characterised by dry fens located 
within a flat steppe landscape (Grootjans et al., 2010). The west-
ern parts of Tierra del Fuego, as well as the peatlands around 
Punta Arenas, are generally ombrotrophic with a high dominance 
of Sphagnum magellanicum (Kleinebecker et al., 2007) and are 
therefore optimal for climate reconstructions. The studied bogs 
are located in the rain shadow of the Andean Cordillera and there-
fore mean annual precipitation is limited to 400–500 mm yr−1 
(IAEA/WMO, 2013). These relatively dry conditions, together 
with a mild climate and low seasonality, suggest the peatlands 
develop at the warm-dry margin of the peatland climate envelope 
when projected onto the Northern Hemisphere peatland ‘climate 
space’ (Loisel and Yu, 2013).

The identification and quantification of testate amoeba assem-
blages may permit the quantification of decadal-scale variations in 
water-table depth (WTD) from various peatland types (e.g. Booth 
and Jackson, 2003; Mitchell et al., 2001; Payne et al., 2008; Swin-
dles et al., 2015b; Warner and Charman, 1994). These unicellular 
organisms, which are most abundant at the surface of humid eco-
systems, create proteinaceous, biosiliceous or xenogenic shells 
(‘tests’) that are generally well preserved in peat. In ombrotrophic 
bogs, testate amoeba assemblages often show a good relationship 
with local humidity conditions (Booth, 2002). These characteris-
tics have allowed the development of transfer functions and appli-
cation of these to peat records to reconstruct variability in local 
WTDs (Amesbury et al., 2013; Booth, 2008; Charman et al., 2007; 
Lamarre et al., 2013; Qin et al., 2013). A transfer function for 
ombrotrophic peatlands in southern Patagonia has recently been 
developed (van Bellen et al., 2014). Here, we apply this transfer 
function to late-Holocene testate amoeba assemblages from three 
peat cores to create high-resolution records of quantified WTDs in 
the region. Given the late-Holocene dominance of S. magellani-

cum in southern Patagonian bogs (Mauquoy et al., 2004), testate 
amoebae may be particularly useful as a proxy for past WTD in 
these ecosystems.

The main objective of this research is to reconstruct regional 
climate changes during the last 2000 years and to identify possible 
linkages with previously established SAM/SWWB records using 
the S. magellanicum raised peat bog archives in Tierra del Fuego. 

The region east of the main Andean divide currently shows a 
weak, negative relationship between local precipitation and 
SWWB intensity because only Atlantic, easterly air masses are 
able to bring humid air to the region (Garreaud et al., 2013). How-
ever, it is difficult to reconstruct late-Holocene SWWB and SAM 
dynamics because the sign and amplitude of the relationship 
between SAM and climate are likely to vary on decadal to millen-
nial timescales (Moreno et al., 2014; Silvestri and Vera, 2009). In 
addition, our study region is located just east of the main Andean 
divide within a complex orography. Just east of the Andean crest, 
including the region around Punta Arenas, the correlation between 
westerly wind strength and precipitation may be only weakly 
negative and high westerly wind speeds may be associated with 
important rates of evaporation (Kilian and Lamy, 2012). As a 
result, an increase in large-scale westerly wind intensity over this 
region may not have a clear effect on peatland water balance. 
Moreover, rather than a north–south orientation, the Andean 
divide in Tierra del Fuego has a northwest–southeast orientation 
which may attenuate the rain shadow effect to the northeast. Con-
sidering the orographic complexity of southern Patagonia, Daley 
et al. (2012) suggested relatively important intra-regional differ-
ences in moisture source for precipitation between Punta Arenas 
and Ushuaia at decadal timescales.

Study region
The three studied peatlands (Tierra Australis, Andorra and 
Karukinka) are located between 55 and 53°S in Tierra del Fuego 
(Figure 1). All sites are S. magellanicum–dominated ombrotro-
phic peat bogs with mean pH around 4 (van Bellen et al., 2014). 
Previous research showed Andorra bog has low nitrogen deposi-
tion levels of 0.1–0.2 g N m2 yr−1 (Fritz et al., 2012) and given 
their remote location, nitrogen levels are likely to be as low  
in Tierra Australis and Karukinka peatlands as well. Although  
S. magellanicum tends to dominate along the entire microtopo-
graphical gradient, Sphagnum falcatulum, bordering pools and 
wet hollows, and Sphagnum fimbriatum are present in some 
locations as well. In the drier sections, Empetrum rubrum Vahl 
ex Willd. and Nothofagus antarctica (Forster) Oerst. are found, 
while some of the wetter lawns and hollows are characterised by 
Tetroncium magellanicum Willd. herbs. Marsippospermum 

grandiflorum (L.f.) Hook. is found in both drier and wetter loca-
tions. Coring locations were selected in pristine, ombrotrophic 
sections of each bog and cores were visually inspected to ensure 
continuous records of ombrotrophic peat were sampled. Andorra 
bog (200 m a.s.l.) is situated in a relatively narrow, NW-SE  
oriented valley near the Beagle Channel 7 km north of the city  
of Ushuaia. It is an S. magellanicum–dominated ombrotrophic 
bog, intersected and bordered by a few small streams. Core 
AND12 was sampled in the main part, about 200 m from any of 
the streams. Tierra Australis bog (130 m a.s.l.) is located about 
45 km ENE of Ushuaia and 3 km south of Lago Fagnano, north-
east of the Andean cordillera. Similar to Andorra bog, it is largely 
dominated by S. magellanicum although its microtopography is 
more pronounced (van Bellen et al., 2014). Core TiA12 was  
sampled 150 m north of a sector of the bog that has recently been 
drained for block cutting. Karukinka bog (220 m a.s.l.) is located 
125 km NW of Andorra bog on the Chilean side of Tierra del 
Fuego and is part of Karukinka Natural Park. It is a pristine,  
S. magellanicum–dominated bog, located in a wide river valley 
characterised by some minerotrophic sectors. Core KAR13 was 
extracted from an area perched on a wide terrace adjacent to  
the valley.

The mean annual temperature and precipitation in Ushuaia are 
6.2°C and 492 mm. Averages in Punta Arenas, 250 km NW of 
Ushuaia, are 6.1°C and 433 mm (IAEA/WMO, 2013). Although 
these values are similar and both regions are likely to be subjected 
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to the same large-scale trend in SWWB dynamics, Punta Arenas 
and Ushuaia have different trends in precipitation isotopic com-
position (Daley et al., 2012). This may be related to differences in 
precipitation water sources and/or their topographic setting.

Methods

Fieldwork

Three complete cores were sampled in the austral summers of 
2012 at Andorra and Tierra Australis bogs and 2013 at Karukinka 
bog. All cores were extracted from lawn microforms using a 
50-cm-long, 10-cm diameter Russian peat sampler. Sections were 
wrapped in plastic film and aluminium foil and stored in a 50-cm 
PVC tube. Cores were stored horizontally in a cooler where pos-
sible before transport and storage in a cold chamber at 4°C.

Laboratory work

In the laboratory, each core was cut into 1-cm-thick slices. Sub-
samples of 1 cm3 were taken from the centre of each slice for tes-
tate amoeba analysis. These samples were prepared following the 
protocol of Hendon and Charman (1997), retaining the size frac-
tion <355 and >15 µm. For identification of taxa, the key by Char-
man et al. (2000) was used and in some cases the adaptations by 
Booth (2008) were followed. Taxa not included in these keys 
were identified using publications by Vucetich (1978), Smith 
et al. (2008) and Jung (1942). For each sample, a minimum of 150 
specimens was identified using a transmitted light microscope at 

400× magnification and taxon abundance was expressed as a per-
centage of the total count.

WTD reconstructions and data exploration

WTDs were inferred using the weighted averaging–partial least-
squares transfer function trained on samples from Tierra Austra-
lis, Andorra and Karukinka bogs as well as Parrillar bog near 
Punta Arenas (for details, see van Bellen et al., 2014). Prior to 
WTD reconstruction, fossil assemblages were adjusted in order to 
comply with the taxa included in the transfer function, because 
some taxa were not represented in the transfer function. To 
achieve harmonisation of fossil and training set assemblages, fos-
sil taxa not present in the training set were eliminated and relative 
presences were re-calculated to attain a sum of 100%. WTDs 
were expressed with high, positive values corresponding to low 
water tables.

Multivariate analyses of square-root transformed fossil assem-
blages were performed using Canoco 5 (Ter Braak and Šmilauer, 
2012) for each core separately to explore relationships between 
taxa. These analyses were further used to summarise datasets and 
evaluate the potential influence of environmental variables. Pre-
liminary detrended correspondence analyses (DCA) of the fossil 
data showed gradient lengths of 3.6 standard-deviation units (SD) 
for TiA12, 2.5 SD for AND12 and 2.7 SD for KAR13. Generally, 
only gradient lengths exceeding 3 standard deviations justify the 
use of a unimodal response model implemented in DCA (Ter 
Braak and Prentice, 1988). Therefore, we applied the linear model 

Figure 1. Location of the three studied peatlands in Tierra del Fuego.
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of principal component analysis (PCA) in all analyses. Species 
richness was quantified by rarefaction to 100 specimens using 
Vegan 2.2-1 package (Oksanen et al., 2015) in R (R Core Team, 
2013) to correct for any differences in count totals. Finally, zona-
tion by stratigraphically constrained incremental sum of squares 
cluster analysis was performed on square-root transformed data 
with Psimpoll 4.27 (Bennett, 2007).

WTD reconstructions were tested for statistical significance 
using two methods included in the palaeoSig package in R (Tel-
ford, 2015). The ‘randomTF’ method compares the proportion of 
variance in the species data explained by the reconstruction with 
that explained by reconstructions based on random environmental 
variables (999). The rationale for this is that, in order for a WTD 
reconstruction to be considered significant, it should explain more 
of the variance in assemblages than 95% of the reconstructions 
from transfer functions trained on random data. A second test of 
the accordance of training set and fossil assemblages was per-
formed using palaeoSig and the ‘obs.cor’ command. Taxon WTD 
optima were quantified by weighted averaging of the training set 
and these values correlated with Axis 1 species scores from redun-
dancy analyses (RDA) constrained by the reconstruction. The 
strength and significance of this correlation indicates the degree of 
consistency in the relative position of taxa in modern and fossil 
assemblages. It should be noted that neither of these tests assesses 
whether the reconstruction is ‘correct’; that could only be assessed 
by correlation against a ‘reliable’ independent proxy.

Dating and chronologies

The age/depth models are based upon a total of 56 14C AMS dates 
(Table 1), which were obtained from 1-cm slices of peat. Fresh 
subsamples for dating were preferentially composed of Sphag-

num stems and branches and ages were expressed as calendar 
years before present (BP, referring to 1950 CE) after calibration 
with the SHCal13 calibration curve (Table 1; Hogg et al., 2013). 
Chronologies were modelled using a Bayesian approach imple-
mented in the Bacon version 2.2 package in R (Blaauw and 
Christen, 2011). After calibration, the modelling procedure of 
Bacon takes account of the entire probability distribution of each 
dated level while creating smooth chronologies including estima-
tions of age uncertainties.

Results

Testate amoeba assemblages

Testate amoeba assemblages from the three studied bogs are 
largely dominated by Difflugia pulex and Difflugia pristis type 
for most of the late-Holocene (Figure 2). This includes zones 
TiA-1 and TiA-5, AND-2, AND-3 and AND-5, and KAR-4 and 
KAR-5 in Figure 2. A shift in assemblages towards the top of the 
sequence is observed in TiA-6, AND-6 and KAR-6, with domi-
nance of Assulina muscorum, Corythion-Trinema type and to a 
lesser extent, Euglypha tuberculata type. Core TiA12 shows a 
presence of some hydrophilous taxa, including Amphitrema 

wrightianum and Difflugia globulosa type, between 140- and 
118-cm depth in zone TiA-2. The three records show that assem-
blages are relatively species-poor, with mean species richness 
values of 8.1, 8.8 and 9.9 taxa for TiA12, AND12 and KAR13, 
respectively.

Most of the frequently encountered fossil taxa correspond to 
the taxa well represented in the training set of van Bellen et al. 
(2014). PCA species plots show similar taxon distributions for 
each of the three cores (Figure 3). The dominant D. pulex and D. 

pristis-type are separated at the lower extreme of Axis 1. A second 
group is formed by the xerophilous Euglyphidae A. muscorum, 

Corythion-Trinema type, Trinema lineare, E. tuberculata type 
and Euglypha strigosa type, which are located at the higher end of 

Axis 2. Remaining taxa, including most of the hydrophilous taxa, 
are roughly separated in a third group. The absence of clear 
hydrological gradients along any of the axes suggests taxon 
assemblages in these cores may reflect a range of environmental 
variables.

Analyses of the fossil and modern datasets with palaeoSig 
demonstrates that the weighted averaging–partial least-squares 
reconstruction did not explain any significant variance at 23.0% 
(p = 0.56), 36.4% (p = 0.22) and 23.9% (p = 0.65) for TiA12, 
AND12 and KAR13, respectively. Abundance-weighted correla-
tions between RDA Axis 1 scores and weighted-average optima 
from the transfer function show a significant correlation for 
TiA12 (p = 0.02, r2 = 0.89), but AND12 and KAR13 had p-values 
of 0.43 (r2 = 0.64) and 0.21 (r2 = 0.64), respectively (Figure 4).

Chronologies

Of the 56 samples prepared for 14C dating, one resulted in a clear 
outlier (core TiA12; 160.5-cm depth), which caused an age inver-
sion (Table 1; Figure 5). This date was therefore omitted in the 
modelling. The high median accumulation rate of AND12 of 
2.33 mm yr−1 may result from melting snowpacks delivering water 
to the river in whose valley AND12 sits. This higher river dis-
charge could impede efflux from the bog, resulting in a higher 
stability of local water tables and stimulation of peat accumula-
tion (Chambers et al., 2014).

WTD reconstructions

Application of the transfer function to the testate amoeba assem-
blages shows that during the last 2000 years, inferred WTD varia-
tions have been relatively minor, with the exception of the 
uppermost section of each of the cores, where a sharp drop in 
water tables is reconstructed (Figure 6). Whereas water tables 
were generally between 0 and 20 cm from the surface during the 
last 2000 years, 20th-century values decreased from 20- to 60-cm 
depth in all cores. Given the associated errors in the order of 
±15 cm for the major part of each sequence, and the fact that the 
WTD reconstructions did not explain any significant variance in 
amoeba assemblages, most minor fluctuations reconstructed, that 
is, those in the order of 5–10 cm may be unreliable reflections of 
real change. However, some shifts may have been captured by our 
reconstructions. TiA12 shows a shift to lower water tables ~1450 
cal. BP, a wet shift ~1380 cal. BP, a dry shift ~930 cal. BP and a 
sharp dry shift near the top of the sequence. None of the fluctua-
tions in WTD reconstructed in AND12 appear reliable, as they do 
not exceed the associated error range, with the exception of the 
near-surface drop in water tables. KAR13 shows somewhat drier 
conditions between 1540 and 1370 cal. BP, followed by a slight 
increase in water tables culminating at 1010 cal. BP. Much more 
pronounced is a sharp recent dry shift that was dated around the 
first half of the 19th century in KAR13, although the age–depth 
model of this core shows a wide age uncertainty for this depth 
(Figure 5).

Discussion

Linking testate amoeba assemblages and climate 

change

Reconstructing past climate variables using testate amoeba 
records from peat bogs implies assumptions about relationships 
between (1) surface wetness and testate amoeba assemblages and 
(2) climate and peat bog hydrology. The former assumption is 
justified here by the study of near-surface assemblages and the 
associations with field-measured environmental conditions which 
showed a significant relationship expressed in the transfer func-
tion (van Bellen et al., 2014). Although multiple environmental 
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variables affect testate amoeba assemblages, variables quantify-
ing some measure of surface humidity, for example, WTD, gener-
ally explain the most variability. In many studies of modern 
testate amoeba ecology, WTD alone explains a minor part of the 
variation in assemblages (Amesbury et al., 2013; Charman et al., 
2007; Lamarre et al., 2013; Payne, 2013; van Bellen et al., 2014), 

although WTD still represents the most important ‘measurable’ 
environmental variable. This phenomenon is not uncommon in 
ecology and should normally still allow a quantification of past 
water tables from fossil assemblages.

Assumption 2, regarding the nature and stability of the rela-
tionship between climate and hydrological conditions, was not 

Table 1. Details and results of dated subsamples. Depth refers to the position of the centre of each subsample.

Core Lab ID Depth (cm) 14C age (14C yr BP) Error (14C yr BP) δ13CVPDB (‰) Modelled age (cal. BP)

TiA12 SUERC-55757 30.5 246 35 −26.2 212

SUERC-50460 40.5 308 37 −26.8 308

SUERC-50461 55.5 290 35 −27.6 416

SUERC-50464 60.5 413 37 −27.5 455

SUERC-50465 70.5 545 37 −26.9 537

SUERC-50466 80.5 830 37 −25.4 660

SUERC-50467 90.5 833 37 −26.1 728

SUERC-50468 104.5 937 37 −25.1 824

SUERC-50469 110.5 970 37 −25.0 866

SUERC-50471 120.5 1029 37 −23.9 965

SUERC-50474 130.5 1407 37 −23.3 1201

SUERC-55760 135.5 1600 37 −24.3 1363

SUERC-50475 140.5 1555 37 −27.3 1450

SUERC-55761 147.5 1696 37 −27.5 1539

SUERC-50477 160.5 783 35 −29.5 1781

SUERC-55762 168.5 2117 37 −26.8 1969

SUERC-50478 180.5 2249 37 −29.3 2191

SUERC-50479 190.5 2369 35 −29.3 2313

AND12 SUERC-47589 40.5 224 36 −29.1 149

SUERC-47592 60.5 164 39 −28.5 232

SUERC-47593 80.5 273 39 −27.6 316

SUERC-42714 95.5 188 63 −27.8 393

SUERC-47594 110.5 422 37 −27.7 470

SUERC-47595 130.5 623 37 −26.4 584

SUERC-42717 145.5 921 64 −28.4 668

SUERC-47596 160.5 842 37 −29.4 721

SUERC-47597 180.5 961 39 −28.7 791

SUERC-42718 195.5 1016 64 −29.0 841

SUERC-47598 220.5 1000 36 −29.7 921

SUERC-47599 240.5 1186 37 −28.6 1008

SUERC-47996 280.5 1247 35 −27.1 1181

SUERC-47997 320.5 1574 37 −28.9 1391

SUERC-48000 360.5 1692 37 −28.2 1581

SUERC-48001 395.5 1900 37 −28.5 1767

SUERC-55755 420.5 1999 36 −28.1 1928

SUERC-55756 445.5 2143 37 −26.3 2084

SUERC-55654 545.5 2794 35 −31.4 2787

KAR13 SUERC-55763 25.5 805 35 −28.8 653

SUERC-55764 32.5 834 37 −28.9 709

SUERC-49371 40.5 859 37 −29.2 761

SUERC-49374 50.5 993 37 −30.4 854

SUERC-49375 60.5 1088 37 −29.6 946

SUERC-50481 74.5 1182 37 −29.1 1059

SUERC-49376 80.5 1280 37 −28.8 1118

SUERC-49377 90.5 1369 37 −29.4 1200

SUERC-49378 100.5 1379 37 −27.7 1258

SUERC-49379 110.5 1430 37 −30.6 1308

SUERC-49380 120.5 1488 37 −31.3 1355

SUERC-49384 130.5 1554 37 −27.7 1411

SUERC-49385 140.5 1540 37 −30.2 1479

SUERC-49386 154.5 1771 37 −29.7 1616

SUERC-49387 160.5 1812 37 −29.2 1667

SUERC-49388 170.5 1860 37 −26.9 1745

SUERC-49389 180.5 1807 37 −27.4 1816

SUERC-49390 190.5 2028 37 −26.0 1928

SUERC-49391 200.5 2085 35 −26.4 2069
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studied specifically here. A direct water input from the water-
sheds surrounding the bogs may be excluded, because this would 
have been reflected along the cores by shifts in trophic status 
and, as a result, vegetation. Previous studies generally identify 

summer water deficit, expressed as precipitation minus evapo-
transpiration as the main driver for peatland water-table dynam-
ics in temperate, northwestern Europe (Charman, 2007; Charman 
et al., 2009) and continental northern United States (Booth, 

Figure 2. Testate amoeba assemblages as a function of depth and age for each of the three peatlands. Amoeba abundance is expressed as 
percentage of the total count. Taxa included in the transfer function of van Bellen et al. (2014) are sorted by weighted-averaging optima from 
xerophilous (left) to hydrophilous (right).
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2010). In this balance, precipitation plays a more dominant role 
than temperature. Since the Fuegian bogs seem to develop cur-
rently under relatively warm-dry conditions (Loisel and Yu, 
2013), they may have been more sensitive to any warm-dry shifts 
than to cold-wet shifts during the late-Holocene. For these rea-
sons, the WTD records presented here should not be interpreted 
as simple linear representations of past water deficit. Further 
studies are required to assess the drivers of hydrological change 
in South American bogs as these may not be exactly equivalent 
to Northern Hemisphere examples.

Testate amoeba assemblages and WTD 

reconstructions

The WTD reconstructions presented here have relatively high 
uncertainty with poor abundance-weighted correlation between 
RDA Axis 1 scores and weighted-averaging optima for AND12 
and KAR13 (Figure 4) and a weak transfer function performance. 
The transfer function was created from samples originating from 
the same sites and testate amoeba analyses were performed by SvB 
in both studies; therefore, taxonomic inconsistency is unlikely to be 
significant (Payne et al., 2011). Payne (2011) recommended limit-
ing the application of transfer functions to fossil samples accumu-
lated under the same trophic conditions as those covered by the 
training set. Preliminary plant macrofossil analyses for each of the 
cores showed that the sampled sections accumulated under ombro-
trophic conditions, with a strong dominance of S. magellanicum 
during the entire 2000-year length of the records. One section in 
KAR13 suggested an episode of S. fimbriatum dominance between 

154- and 122-cm depth (~1620–1370 cal. BP). S. fimbriatum has a 
tendency to build hummocks under dry and slightly minerotrophic 
conditions with relatively high levels of disturbance (Laine et al., 
2011). This section coincides with occasional presence of A. mus-

corum and Alocodera cockayni (Figure 2). Ordinations and correla-
tion with palaeoSig showed that fossil assemblages might not have 
been mainly driven by a hydrology-related variable, or at least not 
during the entire late-Holocene period considered here (Figure 4). 
An alternative explanation for the non-significant randomTF result 
may be the very low long-term species turnover, resulting from low 
species diversity and low long-term variability in assemblages, 
observed in each of the records and in AND12 in particular. How-
ever, this does not exclude the possibility that some important 
changes in testate amoeba assemblages were indeed driven by 
shifts in WTD.

The major decrease in reconstructed water tables at the top of 
the records is mainly because of the dominance of A. muscorum, 
and to a lesser extent Corythion-Trinema type and E. tuberculata 
type at these levels. Based on direct comparisons between mea-
sured WTD and contemporary testate amoeba assemblages, 
Swindles et al. (2015a) concluded that reconstructed magnitudes 
in WTD should be interpreted with caution, especially for recon-
structions at the dry end of the gradient. This corroborates the 
independent validation results of the transfer function which 
showed a higher root mean square error of prediction at the dry 
end (van Bellen et al., 2014).

A. muscorum is considered resistant to decay (Mitchell et al., 
2008; Swindles and Roe, 2007) and therefore it is unlikely that its 
rarity or absence in fossil samples is the result of a preservation 

Figure 3. PCA species plots for each core. Taxa are abbreviated by the first three letters of genus and species as listed.
PCA: principal component analysis.
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bias. Each of the records shows evidence of a minor A. muscorum 
presence in Tierra del Fuego before the 20th century, excluding 
the possibility of a recent introduction of this species into the 
region (cf. Wilkinson, 2010). One possibility is that the relative 
abundance of A. muscorum in the near-surface samples may have 
been enhanced by increased intensity of UV-B radiation because 
of stratospheric ozone depletion. Field experiments have shown 
that assemblages of living testate amoeba in Fuegian peatlands 
are sensitive to UV-B radiation, although 99% of light may be 
attenuated at 6-mm depth in the Sphagnum carpet (Searles et al., 
1999, 2001). In one experiment, Robson et al. (2005) stretched 
two types of plastic film over a total of 20 sample plots which 

Figure 4. Abundance-weighted correlation between weighted-
average optima for taxa observed in each core and RDA species 
scores of an ordination constrained by the WA reconstruction. TiA12: 
p = 0.022 (r2 = 0.89);  AND12: p = 0.426 (r2 = 0.64); KAR13: p = 0.207.
RDA: redundancy analyses.

Figure 5. Age–depth models for each core. Top left panel shows 
the stability of Markov Chain Monte Carlo iterations; middle panel 
shows the prior and posterior (grey) histogram distributions 
for the accumulation rate. Right hand panel: distributions for 
autocorrelation between neighbouring depths.
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created either ‘near-ambient’ or ‘reduced’ UV-B conditions. This 
setup was maintained for 6 years and testate amoeba assemblages 
were subsampled several times per growing season. Near-ambient 
surface UV-B was estimated to be relatively beneficial to A. mus-

corum at the 0- to 0.5-cm depth interval, with an ~50% decrease 
in absolute numbers of A. muscorum under reduced UV-B condi-
tions (Robson et al., 2005). Thus, the high dominance of A. mus-

corum in the near-surface samples may be partly explained by a 
relatively enhanced UV-B and therefore the reconstructed water 
tables for these levels may be too low. Preliminary results from 
independent carbon isotope analysis of Sphagnum cellulose, 
which allows for a reconstruction of changes in bog hydrology 
(WTD) and relative humidity, support this hypothesis.

In order to test this effect on the reconstructions, we reduced 
by 50% the presence of A. muscorum in the transfer function. 
Both adjusted (50%-reduced A. muscorum) and original fossil 
records were used as input to infer WTD. None of the recon-
structed WTD based on the artificially reduced A. muscorum 
presence showed marked differences compared with the original 
reconstructions, which suggests the potential influence of UV-B 
on A. muscorum presence since the 1970s may not have been 
important enough to affect the inferred WTD from subfossil sam-
ples (Figure 7). In studies from around the globe, A. muscorum 
has been widely recognised as a xerophilous taxon (Amesbury 
et al., 2013; Booth, 2008; Charman et al., 2007; Lamarre et al., 
2013; Qin et al., 2013).

Most idiosomic tests, including those of Corythion-Trinema 
type and E. tuberculata type, are composed of biosilica and may 
be poorly preserved in peat (Mitchell et al., 2008). To address 
possible issues with differential preservation, we reconstructed 
WTD after excluding from the transfer function the decay-sensi-
tive idiosomes (most Euglyphida, including Corythion-Trinema 
type and Sphenoderia, but not Assulina). As expected, excluding 
idiosomes resulted in a slightly drier reconstruction for most of 
the last 2000 years, except for the top section (Figure 7). This may 
be explained by the fact that most idiosomes are rather xerophi-
lous. Excluding these in the training set, dry microsites become 
represented by non-idiosomic taxa which were otherwise associ-
ated with wetter microsites. As a result, the modelled optimum 
WTD of these non-idiosomic taxa shifts towards the dry end of 
the gradient. Abundance of non-idiosomes in fossil samples then 
results in a drier reconstruction, but especially so for the levels 
where idiosomes are absent and non-idiosomes abundant. Most 
important, however, is that the reconstructed recent dry shift was 
reproduced excluding idiosomes.

Additional uncertainty relating to the inferred WTD changes 
may result from the important presence of D. pulex. This species 
has a poorly established ecology, because it is relatively rare in 
surface samples but often dominant in fossil assemblages. Its 
optimal WTD and tolerance were quantified by van Bellen et al. 
(2014) occupying an intermediate position along the water-table 
gradient, which agrees with its apparent relative position in Ama-
zonian peatlands (Swindles et al., 2014). However, the rareness of 
D. pulex in southern Patagonian surface samples relative to its 
dominance in fossil samples (Figure 8) leads to a relatively large 
error in quantitative reconstructions.

Quantification of testate amoeba influx (expressed as number 
of tests cm−2 yr−1) in future studies may provide an understanding 
of the importance of changes in UV-B radiation, because enhanced 
UV-B radiation is reported to positively affect testate amoebae, 
possibly because of leaching of nutrients from leaf cells and 
changes in Sphagnum leaflet morphology (Searles et al., 2001).

Matching modern and fossil assemblages

The microtopographical gradients currently observed in Fuegian 
peatlands are among the highest globally for temperate bogs as 

reflected by measured WTD ranges which exceeded 100 cm along 
a single transect during the austral summer of 2012 (van Bellen 
et al., 2014). These long gradients may be inconsistent with the-
ory, because hummocks, lawns and drier hollows are all domi-
nated by S. magellanicum, with S. falcatulum fringing the pools. 
The potential of S. magellanicum to sustain the entire microtopo-
graphical gradient challenges theories which support the influ-
ence of Sphagnum species-specific production and decay rates on 
peat bog microtopography (Nungesser, 2003). It should be noted 
that the dominance of S. magellanicum appears independent of 
any human disturbance, as it was equally observed in both palaeo-
records and field observations over a wider region (Grootjans 
et al., 2010; Mauquoy et al., 2004). The wide range in WTD mea-
sured in the field explains both the low water-table optimum of A. 

muscorum exceeding 50-cm depth and the inferred deep water 
tables for the recent decades.

Fuegian testate amoeba assemblages are relatively species-
poor in both the fossil dataset and surface samples (van Bellen 
et al., 2014) compared with datasets from Northern Hemisphere 
peat bogs (Booth, 2002; Lamentowicz and Mitchell, 2005), 
although comparisons between datasets are complicated by varia-
tions in the timespan represented by individual samples and 
records and variations in trophic status. Testate amoeba species 
richness has been shown to decrease with increasing latitude in 
the Southern Hemisphere (Smith, 1982, 1996), with very few taxa 
identified in Antarctica (Mieczan and Adamczuk, 2014; Royles 
et al., 2013; Smith, 1992). This may be the result of limited dis-
persal mechanisms, because the dominance of the SWWB, 
together with the sparseness of terrestrial habitats west of the 
South American continent may reduce the potential for (latitudi-
nal) dispersal of testate amoebae towards southern Patagonia 
(Wilkinson et al., 2012). The relatively uniform species richness 
and similarity of fossil assemblages between sites in this study 
suggests the dominance of large-scale controls on testate amoeba 
dispersal.

Late-Holocene WTD reconstructions and climate

In line with relatively stable testate amoeba assemblages, recon-
structed WTDs show relatively little variation for centuries, nota-
bly between 800 and 100 cal. BP (Figure 6). The absence of 
consistent changes in the peatland WTD records presented here 
highlights the potential importance of other, locally acting vari-
ables on WTD dynamics, or the influence of autogenic change 
and ecohydrological feedback mechanisms which may have 
affected the peatland sensitivity to external forcing (Swindles 
et al., 2012). The suggested higher sensitivity to warm-dry shifts, 
compared with cold-wet shifts, may be one example of non-linear 
response.

Nevertheless, we reconstructed a drier period between 1500 
and 1400 cal. BP which coincides with the warm-dry conditions 
observed in a record from Lago Cipreses, ~400 km NW of our 
study region (Moreno et al., 2014). This period was followed by 
a wet shift centred ~1400 cal. BP which has been characterised 
globally by cooler climatic conditions, possibly linked with a 
meteorite flux or volcanic eruptions that affected climate (Bail-
lie, 2007; Ferris et al., 2011; Larsen et al., 2008). These cooler 
conditions may have been the trigger for the wet shift observed 
in TiA12 and to a lesser extent in KAR13. Interestingly, the 
period often associated with the Medieval Climate Anomaly 
(MCA) was characterised in TiA12 and KAR13 by a maximum 
in observed water levels, culminating at ~1010 cal. BP. Increased 
precipitation was also reconstructed from different proxies on 
both sides of the Andes during this period. Speleothem records 
from the western flank of the Cordillera near 53°S show maxi-
mum precipitation between 1000 and 900 cal. BP (Schimpf et al., 
2011), while increasing Fe content in lake records from Lago 
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Fagnano suggests regional wetting east of the Andes (Waldmann 
et al., 2010; Figure 6).

Finally, we reconstructed a slight decrease in water-table lev-
els towards the onset of the ‘Little Ice Age’ (LIA), which was 
most pronounced in TiA12. Using plant macrofossil and peat 
humification analyses, a decrease in local water table was also 
reconstructed around 490 cal. BP in Andorra bog (Chambers 
et al., 2014). Speleothem records suggest that the transition from 
MCA to LIA may have been characterised by an ~30% decrease 
in precipitation (Schimpf et al., 2011).

Recent change

Notwithstanding the aforementioned effect of enhanced UV-B 
radiation on testate amoebae, our data suggest that the nature of 
the response of testate amoeba communities to environmentally 
influenced changes in peat bog hydrology during recent decades 

is unlike any experienced during the last 2000 years. The recon-
structed recent drop in water table is the only late-Holocene shift 
observed in all three of the records. SAM reconstructions show a 
clear increase starting in the first half of the 20th century (Figure 
6) and a positive SAM is generally associated with an increased 
influence of SWWB over the study region (Archer and Caldeira, 
2008). The near-surface drying trend coinciding with an increased 
SWWB activity suggests an ‘eastern response’, that is, a negative 
correlation between SWWB intensity and precipitation, of Tierra 
del Fuego peatlands to the increased westerlies. This interpreta-
tion corroborates previous findings from various types of proxy 
records from southern Patagonia. Villalba et al. (2012) recon-
structed suppressed Nothofagus betuloides growth, forced by 
warm-dry conditions since the 1950s in Tierra del Fuego. This 
trend was associated with stratospheric ozone depletion and a 
persistent positive phase of the SAM. Lacustrine records of pol-
len and charcoal from southern Patagonia show changes in 
regional vegetation towards dominance of herbs and ferns to the 
detriment of Nothofagus, together with an increase in charcoal 
presence suggesting that fires became more important since 1890 
CE (Moreno et al., 2014). Other proxy records suggest a more 
recent warming effect starting during the 1970s. Strelin and Itur-
raspe (2007) reconstructed glacier retreat of the Cordón Martial 
glacier, located 6 km southwest of Andorra bog, accelerating 
from the 1970s. A glacier record from Gran Campo Nevado, at 
the western side of the Andes, was interpreted as reflecting 
warmer and wetter conditions between 1984 and 2000 CE 
(Möller et al., 2007). It must be noted, however, that 20th-cen-
tury glacier dynamics have been reported to be very sensitive to 
orographic effects on microclimate in southern Patagonia, with 
differing trends in dynamics between north- and south(west)-
facing slopes due to strong gradients in precipitation (Holmlund 
and Fuenzalida, 1995).

Figure 6. (a) Standardised WTD reconstructions for the 
last 2000 years for each core. Horizontal bars represent the 
chronological error for each sample; (b) Yttrium content from 
stalagmites on the western side of the Andes (Schimpf et al., 2011); 
(c) Fe content from lake records from Lago Fagnano (Waldmann 
et al., 2010); (d) SAM reconstruction (70-year LOESS; Abram et al., 
2014). Graphs (b) and (c) represent wetter conditions along the 
vertical axis.
WTD: water-table depth; SAM: Southern Annular Mode.

Figure 7. Comparisons of the original reconstruction and 
reconstructions based on various versions of the transfer function 
and palaeorecords.
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Although the age–depth models presented here are generally 
well resolved, the near-surface shift shows a relatively wide age 
uncertainty, especially in KAR13. Age–depth models based only 
on 14C dates generally struggle to represent accurately the near-
surface accumulation because of the presence of a plateau in the 
calibration curve during this period and a general increase in the 
‘apparent’ peat accumulation rate near the surface associated 
with the presence of relatively undecomposed acrotelm peat. 
Current TiA12 and AND12 records and chronologies suggest the 
dry shift occurred sometime between 1850 and 1900 CE, yet the 
shift in KAR13 was very poorly chronologically resolved and 
therefore dated to one or several centuries earlier with an error 

range of up to 500 years (Figure 6). For now, we cannot exclude 
the possibility that the sharp shift in amoeba assemblages and 
associated drop in water table occurred anytime during the 20th 
century. More precise dating techniques may be applied in an 
upcoming paper to improve the chronological constraints on the 
reconstructed trend.

SAM and SWWB influence on Tierra del Fuego 

climate

The poor relationship between past SAM/SWWB and WTD 
records from peat bogs may be the result of the varying direction 
in the relationship between SAM and southern Patagonian cli-
mate. Within a timeframe covering the last 50 years, changes 
occurred in the typical hemispheric circulation pattern associated 
with austral spring SAM (Silvestri and Vera, 2009). In addition, 
SAM dynamics during the austral summer have been affected 
over the last several decades by the depletion of stratospheric 
ozone (Fogt et al., 2009; Thompson et al., 2011). We suggest 
examining sites at the northern boundary of the SWWB to 
increase the understanding of late-Holocene SWWB dynamics in 
terms of latitudinal shifts.

Conclusion
The three peatlands studied here record relatively minor fluctua-
tions in WTD during the last 2000 years. It is uncertain whether 
this is due to minor precipitation, temperature or evapotranspira-
tion changes in the core region of the SWWB during the last 
2000 years or species-poor testate amoebae assemblages in Tierra 
del Fuego peat deposits. A wet shift around 1400 cal. BP was 
found in both TiA12 and KAR13 and coincided with a previ-
ously reported climatic event. These cores also record high water 
tables at ~1010 cal. BP. AND12, in contrast, showed few changes 
in WTD during the last 2000 years except for the near-surface 
~40-cm drop in water table which remains poorly chronologi-
cally constrained. The generalised near-surface shift may partly 
result from an increase in UV-B radiation coinciding with the 
drought effect on testate amoeba assemblages, to the benefit of 
xerophilous A. muscorum. However, this recent increased dry-
ness may well have been forced primarily by drier and warmer 
conditions, possibly driven by a more dominant positive SAM 
phase and an increase in the importance of the SWWB in this 
region, as it corresponds to trends reconstructed from other prox-
ies in Tierra del Fuego.
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