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ABSTRACT

Genetic Algorithms (GAs) following a parallel master-slave
architecture can be effectively used to reduce searching time
when fitness functions have fixed execution time. This paper
presents a parallel GA architecture along with two acceler-
ated GA operators to enhance the performance of master-
slave GAs, specially when considering fitness functions with
variable execution times. We explore the performance of the
proposed approach, and analyse its effectiveness against the
state-of-the-art. The results show a significant improvement
in search times and fitness function utilisation, thus poten-
tially enabling the use of this approach as a faster searching
tool for timing-sensitive optimisation processes such as those
found in dynamic real-time systems.

CCS Concepts

eComputer systems organization — Parallel archi-
tectures; eHardware — Statistical timing analysis;

Keywords

Genetic algorithms; Hardware realization; Parallelization;
Speedup technique; Time-tabling and scheduling.

1. INTRODUCTION

The search efficiency of a Genetic Algorithm (GA) can
determine the range of problems which it can address. The
Master-Slave model [3] has been widely used to parallelise
GAs, and is able to achieve significant performance improve-
ments particularly when its fitness function has fixed execu-
tion time.

However, not all problems can be abstracted as a fitness
function with fixed running time. Tree search, address com-
parison and schedulability analysis [12] are good examples of
algorithms with input-dependent execution times that have
been used as fitness functions in GAs. The use of such fit-
ness functions within a Master-Slave GA can still yield per-
formance benefits, but at a much lower efficiency level since
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slave fitness functions run in lock-step and have to wait for
the slowest one to finish before starting another evaluation.
The level of inefficiency increases with the magnitude of vari-
ability of the fitness functions’ execution times, and with the
actual number of slave fitness functions operating in parallel.

This paper explores extensions to the Master-Slave GA
architecture, aiming to increase search efficiency when using
fitness functions with variable execution time. We propose
a novel hardware-accelerated parallel GA which overcomes
the lock-step nature of the Master-Slave model, and evalu-
ate its advantages in the cases of fitness functions with large,
moderate and no variability in their execution times. In ad-
dition, we take advantage of the proposed hardware-based
platform and introduce an approach to hardware-accelerate
and pipeline crossover and mutation operators. We then
implement in hardware a comparable GA based on the orig-
inal Master-Slave architecture and use it as a baseline to
highlight the advantages of the proposed approach.

The paper is organised as follows: Section 2 reviews re-
lated work and is followed by a problem statement in Section
3. The proposed hardware architecture and implementation
are presented in Section 4; the experimentation platform
and results analysis are described in Section 5, followed by
our conclusions.

2. RELATED WORK
2.1 Architecture of GA

Since a GA fitness function can be a computationally-
complex algorithm, and since it is launched many times
during the GA searching process, it is usually the most
time-consuming process in a sequential GA. To alleviate this
problem, researchers proposed a global parallel GA (named
as Master-Slave model) [3] to launch a number of fitness
functions simultaneously. It can accelerate the candidates
evaluation and thus reduce the searching time, compared
with sequential GA. Later the authors of [3] also suggested
two others GA models (a semi-synchronous and a distributed
asynchronous concurrent) for further improving the Master-
Slave model GA. This can also be seen in [4] and [5].

2.2 Implementation of GA

Decades of research have also improved GA performance
from an implementation point of view as well. The authors
of [6] presented a hardware implementation of a sequential
GA, which they further refined in [7]. Although they applied
a parallel parent selection, the performance improvement is
not very significant and its memory interference component



is rather difficult to implement.

In addition, the researchers also proposed various GA op-
erators to reduce the searching time of GA. The authors in
[8] introduced an implementation of GA operators for com-
pact GA which is suitable for binary coding style. In [10],
[9] and [11], the authors presented implementation for ei-
ther both crossover and mutation or only crossover to make
improvement in hardware.

2.3 Fitness Categories

GAs have been used with a wide variety of fitness func-
tions. According to their execution time, these function
functions can be divided into two classes. The fitness func-
tions in the first class have fixed execution time no matter
what the inputs are. The second class consists of the fitness
functions that have variable execution time. However, the
variability of running time may be considerable. Some fit-
ness functions have moderate variable execution time such
as End-to-End Response Time Analysis (E2ERTA) which is
used to analyse the timing performance of real-time Networks-
on-Chip (NoC) [12]. One candidate’s execution time can be
only a few times higher than the others’. However, there are
fitness functions with significant variability such as network
address checking and tree searching problem, where the run-
ning times can differ by more than one order of magnitude.

3. PROBLEM STATEMENT

In the following sections, the state-of-the-art Master-Slave
GA is referred as Lock-Step Master-Slave GA (LS-MS GA)
and is used as a baseline in the comparative analysis of the
proposed approach. In each generation, its searching time
can be divided into GA operation time (by the GA oper-
ators themselves) and candidates evaluation time (by the
fitness function). We will address two of its shortcomings,
namely the lock-step problem and implementation limita-
tions, which are made more severe when applied with fitness
functions with variable execution time.

3.1 Lock-step problem

Assuming a LS-MS GA’s population size is 4 and the num-
ber of fitness functions is 2, its architecture has been shown
in Fig. 1la. Whenever the master is ready (all candidate so-
lutions have already been evaluated) and all fitness functions
are in idle state, the master will assign two chromosomes to
fitness function 0 and 1 respectively and launch them si-
multaneously. The second round release will only be started
when all results have already been collected by the master in
order and all fitness functions have been in idle state again.

This architecture will not affect the execution time of can-
didates evaluation when the computation time of all fitness
functions are same and fixed as it has been shown in Fig.
1b. However, it will suffer a lock-step problem and produce
a significant adverse impact to the evaluation time if the
fitness functions’ computation time are variable and depend
on different candidate solutions. Fig. 1c shows this phe-
nomenon. It can be seen that the fitness 1 can only store
its results after fitness 0 has been finished and the results
have been recorded, no matter how fast fitness 1 can be exe-
cuted. This problem can become much worse when the size
of GA population, the number of fitness functions and the
variability of fitness function execution time is increased.

Lock-step problem
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Figure 1: (a) Lock-step Master-slave GA Architecture, (b)
Fitness Function with Fixed Execution Time, (c) Fitness
Function with Variable Execution Time

Note: Population size is 4.
Number of fitness functions is 2.
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Figure 2: (a) Software Limitation of Crossover Operation,
(b) Software Limitation of Mutation Operation

3.2 Implementation limitation

The LS-MS GA can also suffer implementation limita-
tions. Most state-of-the-art implementations of GA are based
on software running on regular CPUs. Although researchers
can apply distributed computation to execute multiple fit-
ness functions simultaneously, the GA operators cannot be



well supported by a software implementation based on typi-
cal CPUs, because of the low efficiency in processing vectors
and lack of pipeline structure. This can be seen on the pro-
cessing of crossover and mutation operators, detailed below.

3.2.1 Low Efficiency in Processing Vector

Crossover operations require the swap of selected parts
of two parent chromosomes (if the crossover condition has
been satisfied), as shown in Fig. 2a. Since chromosomes are
normally stored as arrays in software, software inevitably
will swap these two arrays element by element, which has
been presented by black dash arrows. Such operations will
invariably take several clock cycles of a typical CPU, even
in the case of partial swaps. The number of clock cycles will
be further increased with the size of chromosome.

Mutations can suffer similar limitations in software imple-
mentation. Its working process requires to check each gene
whether it should be mutated or not and generate a mu-
tated value if needed. An example has been shown in Fig.
2b. This process also requires multiple clock cycles of a typ-
ical CPU, also scaling up that time with the increase of the
number of genes.

3.2.2  Lack of Pipeline Structure

Besides, software cannot provide a pipelined structure.
This can be seen from the working procedure of reproduc-
tion (produce offspring chromosomes by using crossover and
mutation). Its working procedure can be either applying
crossover over the whole parent population first and then
using mutation to generate the final offspring population,
or each time applying crossover and mutation sequentially
only over two selected parent chromosomes and repeat this
process until the whole offspring population has been gen-
erated. These two kinds of procedures have been illustrated
in Algorithm. 1.

Algorithm 1 Reproduction Working Process

1: procedure TYPE 1

2: for Number of offsprings < Population Size do
3 Select parent chromosomes

4: Crossover

5: for Number of offsprings < Population Size do
6.

7

: Mutation
: End Procedure

: procedure TYPE 2

for Number of offsprings < Population Size do
Select parent chromosomes
Crossover
Mutation

: End Procedure

Do

No matter which type we will use, when one operator is
executing, the other one has to be paused, this phenomenon
has been shown in Fig. 3a and b. This will increase the com-
putation time compared with a pipelined structure whose
timing difference has been presented in Fig. 3c.

It can be seen that reproducing the first offspring chro-
mosome costs the same time used by the two procedures in
Algorithm 1. However, after the first offspring chromosome,
in each stage there will be one new candidate chromosome
generated. If we assume the number of clock cycles used
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Figure 3: (a) Type 1 runing time, (b) Type 2 runing time,
(c) Pipelined structure running time

Note: Following example of Fig. 1.

by selection, crossover and mutation are same and equal to
N and the population size follows the example in Fig. 1,
the total numbers of clock cycles to finish reproduction can
be represented by 6 * 2 x N for both Type 1 and 2 of Al-
gorithm 1. The total number used by pipelined structure
should be (34 3) * N. Thus, pipelined structure can be used
to improve the timing performance of reproduction and this
improvement will be significant when the population size
increased.

4. ARCHITECTURE DESCRIPTION

As analysed in previous section, the state-of-the-art LS-
MS GA cannot efficiently reduce the searching time when
applying a fitness function whose execution time is variable
and depends on candidate solutions. In order to alleviate
this problem, we discuss the possibility of using an improved
architecture (Free-Step Master-Slave model). In addition,
we also introduce two hardware GA operators to enhance
GA’s timing performance and followed by a description of
our implementation in this section.

4.1 Free-Step Master-Slave model

Based on the characteristic of lock-step problem, we can
find that this problem is caused by the system synchroniza-
tion. In each release round, the master has to synchronise
the data for both fitness execution and results collection.
This blocks the further step of idle fitness functions to get
unevaluated candidate solutions when other fitness functions
are still executing. Therefore, we proposed a possible asyn-
chronous model to solve this problem. One example has
been shown in Fig. 4.

This example follows the one in Fig. lc. The two light
gray solid arrows indicate the timing points of finishing ex-
ecuting all fitness functions and collecting all results of Fig.
1c respectively. From Fig. 4, we can see that if we can
load, release fitness and collect result individually, the over-
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Figure 4: Example of Free-Step Master-Slave GA

Note: Follows the example in Fig. lc.

all execution time of candidate evaluation can be reduced
significantly.

4.2 Accelerated GA Operators

As aforementioned, the limitations of software implemen-
tation are the bottle-neck we need to solve. Chromosomes
treated as arrays in software can be represented as vectors
and easily operated by hardware. Therefore, we propose an
implementation in hardware to accelerate the crossover and
mutation operators. We also assembled them with a pipeline
structure to further reduce the timing cost.

4.2.1 Crossover

For crossover operator, we introduced a Crossover Mask
and several logic gates (‘NOT’, ‘AND’ and ‘OR’) to swap
two parent chromosomes according to crossover point and
possibility. The Crossover Mask is a series pre-designed vec-
tors determined by both the number of gene and the width
of gene (the number of bits to represent one gene). An ex-
ample of how the proposed crossover works has been shown
in Fig. ba where each gene is represented by 1-bit and the
total number of gene is 10.

The crossover point (randomly generated by a Random
Number Generator) will be used as the index of a look-up
table which stores the ‘Crossover Masks’. The two parent
chromosomes will be transferred through two logic ‘AND’
gates with Crossover Mask and NOT Crossover Mask re-
spectively. The results of logic ‘AND’ gates will be applied
as the inputs of a logic ‘OR’ gate to generate the potential
crossover result. Whether the final crossover result should
be the swapped result (potential crossover result) or the orig-
inal parent chromosome is determined by a comparison be-
tween the pre-configured crossover rate and a given crossover
probability which is also randomly generated by a Random
Number Generator. If the crossover condition has been sat-
isfied, the final crossover result will be the swapped result,
otherwise the parent chromosome will be selected.

Since the propagation delay among ROM and combina-
tional logic are slightly. Therefore, when the frequency of the
whole system is not extremely high, the proposed crossover
operation can be finished within one clock cycle no matter
where the crossover point is and how many genes there are.
For an extremely high frequency system, we can introduce
pipeline structure to break down this working process, in or-
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Figure 5: a. Crossover Strategy Example. b. Mutation
Template Generator. c. Mutating component Example.

Note: Number of gene is 10. Width of gene is 1.
The input vectors of Fig. 5c are from both
Fig. 5a and 5b.
The “V” represents the mutated value.

der to make this operation can be finished within one clock
cycle.

4.2.2 Mutation

Similar to crossover, the idea of accelerating the mutation
operator is also based on mask vectors. An example of mu-
tation working process has been illustrated by Fig. 5b and
c. It can be seen that, the proposed mutation operator can
be divided into Mutation Template Generator and Mutating
component.

Mutation Template Generator.

In Fig. 5b, the Mutation Template Generator consists of
a Mutation Possibility Mask and a Mutated Value Mask.
They are used to determine whether each gene of a chro-
mosome should be mutated and provide the mutated values
when needed. Their generating procedure can be described



as follows. In each clock cycle, a given mutation probabil-
ity (randomly generated) will be compared with the pre-
configured mutation rate (similar with crossover rate). The
result of this comparison will be used to indicate whether
the current gene should be mutated. If the current gene
needed to be changed, one bit logic ‘0’ will be shifted into
the Mutation Possibility Mask and a random generated mu-
tated value will be shifted into the Mutated Value Mask.
Otherwise, if the current gene should be maintained, one
bit logic ‘1’ and a logic ‘0’ vector (all bits are logic ‘0’ if a
gene represented by multiple bits) will be shifted into the
Mutation Possibility Mask and the Mutated Value Mask re-
spectively. This process will be repeated until all genes of a
chromosome has been checked.

Mutating component.

The mutating component will read the mutation template.
In its working process, shown in Fig. 5c, the crossover result
will be transferred to a logic ‘AND’ gate with the Mutation
Possibility Mask. Their result will be applied as one input
of a logic ‘OR’ gate to calculated the final offspring with
the Mutated Value Mask. Similar with crossover operator,
all the operation in this mutating component are combina-
tional logic, the delay among them is only propagation delay.
Therefore, the mutation operator can be finished within one
clock cycle no matter how many genes a chromosome has.

Further Optimisation.

We can simply notice that by using this generator, only
one gene’s template can be generated within one clock cy-
cle. However, it does not mean this idea cannot be used to
accelerate the mutation operator. In order to solve this prob-
lem, we introduced a template FIFO (First-In-First-Out) to
store mutation templates before the mutation operator is ex-
ecuted. Since one of the natural characteristics of hardware
is parallel computing, we can easily launch the Mutation
Template Generator to produce and store templates when
GA is in other stage such as candidate evaluation. In addi-
tion, some chromosomes’ templates can be generated when
the mutation operator is executing. To proof this, we can
make an assumption that:

e the Population Size is m;
e the Number of Gene is n;
e the Minimum Depth of FIFO is x.

We can know that m clock cycles are required to finish the
mutation operation over the whole population, n clock cy-
cles are needed to generate one template. Currently only x
chromosomes’ templates are ready in FIFO. The worst case
situation can be that the mutation operation and the Mu-
tation Template Generator (to generate the rest templates)
are released at the same point. In other words, we have
to prepared the remaining templates within m clock cycles.
Thus, we can get Equation la and b. Therefore, we can
minimise depth of FIFO to w to reduce the hardware
resource cost.

m>(m—z)*n (1a)
(n—1)m

x >

4.2.3 Reproduction Pipeline

As mentioned above, the software implementation lacks
in pipelined structure. To solve this limitation, we assem-
bled the proposed crossover and mutation operator with a
possible pipeline style with additional registers which has
been presented in Fig. 6. By applying this architecture,
the first two clock cycles will generate two invalid offspring.
However, after that there will be two valid offspring repro-
duced every clock cycle. Therefore, the execution time of
reproduction can be reduced significantly.

Parent Parent

Start Chromosome 1 Chromosome 2

| Register | | Register |

v

Crossover Operator |

FSM *

| Register | | Register |
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Mutation Operator |

-

lH

I

Done Offspring 1 Offspring 2

Figure 6: Reproduction Pipeline Architecture.

4.3 Hardware Free-Step Master-Slave GA

We combined the proposed model (Free-Step Master-Slave
model) and the accelerated GA operators in a top-level hard-
ware architecture (FS-MS GA) which has been shown in Fig.
7 as our proposed implementation.

The working process of hardware FS-MS GA is similar to
the one of LS-MS GA. In order to launch fitness functions
and collect feedback asynchronously, we introduced several
components such as Intermediary Register Bank (IRB), Ar-
bitration, Fitness Function ID Coder (FFID-Coder) and Com-
bined Population Register Bank (CPRB). The IRB is used
to temporarily store the new candidate solutions which can
be generated randomly through initialization or breeded by
crossover and mutation in reproduction component, if these
solutions cannot be evaluated immediately. Whenever new
chromosomes arrive in IRB, the Arbitration will distribute
them to fitness functions according to the indication from
FFID-Coder. The FFID-Coder collects the busy and done
signals from each fitness function. It generates two address
signals for both Arbitration and CPRB to support candidate
distributing and results storing respectively. Serial written
feedback signals will also be generated by FFID-Coder to
fitness functions. The CPRB will store both parent and
offspring populations. Its size is twice of the parent popula-
tion’s size. The replacement will sort the CPRB according to
a given strategy such as ranking (the better a solution is, the
lower address it will be put). The selector will generate two
addresses to pop out two parent chromosomes from parent
population for reproduction according to selection strategy.

4.3.1 Arbitration and Fitness Function ID Coder

Distributing candidate chromosomes to each fitness func-
tion asynchronously is achieved by the Arbitration and FFID-
Coder. The Arbitration is triggered by coded fitness ready
address and IRB ready signals. Its architecture has been
shown in Fig. 8a. In its working process, the ‘coded fit-
ness ready address’ can indicate whether there are fitness
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functions ready to receive new candidate chromosomes. If
there are and the IRB ready signal is valid (there is at least
one candidate chromosome in IRB has not been evaluated),
the Arbitration will enable the ‘read enable’ signal to read
one chromosome from IRB and distribute it to the right
slot of chromosome vector according to ‘coded fitness ready
address’. Otherwise, both the ‘read enable’ signal and chro-
mosome will be disabled by logic ‘0’ and ‘Zero Vector’ re-
spectively.

The FFID-coder shown in Fig. 8b collects the ready and
done signals from each fitness function. The ready signals
are used to geneate a fitness function ready address which
can guide the chromosome distribution in Arbitration. The
done signals will be encoded to indicate CPRB to read result
from which fitness function. Whenever the result has been
recorded, the related bit in written vector will be set as the
acknowledgement back to the fitness function. If there are
more than one fitness functions idle or finished, the FFID-
coder will code based on priority of fitness functions. If there
is no fitness function idle or finished, the FFID-coder will set

Coded Fitnessready
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Figure 8: a. Arbitration Architecture. b.Fitness Function
ID Coder Architecture.

Note: ‘Zero Vector’ consists of logic ‘0’.
IRB refers to Intermediary Register Bank.
CPRB refers to Combined Population Register Bank.

all output signals invalid.

S. EXPERIMENTATION PLATFORM AND
RESULTS ANALYSIS

In this section, testing fitness functions, experimentation
platform, experimentation configuration and results analysis
will be discussed to show the performance of our proposed
implementation.

5.1 Fitness Functions

In order to evaluate how well HW FS-MS GA can improve
over HW LS-MS GA with various kinds of fitness functions,
we propose three implementations of fitness functions with
different levels of variability of their execution time.

5.1.1 Fixed Excution Time

The first fitness function is a Logic One Counter (LOC)
which returns the number of logic ‘1’s of an input vector.
Its execution time is fixed and depended on the size of input
vector only since its finish condition is when all bits of the
input vector have been checked.

5.1.2 Moderate Variable Excution Time

The moderate variation requires the magnitude of the fit-
ness function’s variable execution time to be not significant
(means one’s running time is times or many times of the
other one’s). E2ERTA which can be used to analysis NoC’s
hard real-time timing performance is a choice to represent
this kind of fitness functions. Although, the execution time
of E2ERTA can be different, depending on variable input
(task allocation or mapping of NoC), the magnitudes of vari-
ations are slight. In addition, its input can be abstracted as
a chromosome and optimised by GA. An example can be
seen from [2]. Moreover, a hardware version of E2ERTA
presented in [1] can be directly used in our HW-FSMS GA
experimentation. Therefore, E2ERTA is a realistic example
of a fitness function with moderate variable execution time.

5.1.3 Large Variable Excution Time

The large variable execution time can be imitated by Slice
Logic One Counter (S-LOC). The input of S-LOC consists
of a slice range and a test vector. It can return the number
of Logic ‘1’s in a slice of an test vector. A slice can cover
from 1-bit to the whole test vector. Its range is represented
by the exponent of a given base. Therefore, the width of a
slice can be represented by Equation 2.



Slice = Test Vector [Base®'" ™9t _ 1 down to 0] (2)

Since the finish condition of S-LLOC is when all bits in the
slice have been checked, the variation of its execution time
can be significant.

5.2 Experimentation Platform

To evaluate the performance of FS-MS GA in hardware,
we propose an experimentation platform which is an embed-
ded system based on Xilinx VC709 develop board shown in
Fig. 9a. We packet our hardware implementations as cus-
tomer peripherals and mount them on an AXI bus which is
an on-chip interconnect link used in Xilinx system-on-chip
design. The FS-MS GA and LS-MS GA simultaneously with
either LOC or S-LOC as their fitness function, since the re-
sources cost of LOC and S-LOC are low. However, because
the E2ERTA is resource costed, only one GA model (LS-MS
or FS-MS) can be executed at one time.
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Figure 9: (a) Experimentation Platform, (b) Test for LOC
and S-LOC, (c) Test for E2ERTA

The working process of these two testing are similar. The
MicroBlaze firstly load GA configuration (number of fitness,
crossover rate, mutation rate, size of population and so on)
to testing components. Since E2ERTA requires task infor-
mation and application information to compute results, an
extra step (load synthetic benchmark [2]) has to be executed
in E2ERTA testing. After, the hardware GA will initialize
the population and continue the searching or evaluation, un-
til the finish condition (either a number of generation has
been analysed or at least one suitable candidate has been
found) has been achieved. Then, the MicroBlaze will collect
data from hardware components, and organise these results.
The results are output through a UART port.

5.3 Experimentation Configuration

To measure the performance of our proposed implemen-
tation in various situations, we configured our experimenta-
tions as follows:

e Crossover rate is 0.5%;
e Mutation rate is 0.01%;

e Population size is 6, 8, 16;

e Number of fitness is 2, 3, 4, 5 when Population is 6;
e Number of fitness is 2, 4 when Population is 8 and 16.

Because GA is a stochastic searching, one time testing
cannot illustrate the difference among these two models (LS-
MS and FS-MS models). Therefore, we increase the number
of testing times to 1000000, in order to have a better cover-
age.

5.4 Results Analysis

Since the proposed hardware includes two improvement
directions (GA architecture and accelerated GA operators),
we need to understand where the improvement is from. There-
fore, we measure the number of clock cycles of GA operators
and Fitness Functions execution respectively. The detailed
results are shown in Table. 1 (No.FF refers to Number of
Fitness Functions, the results in this table are average num-
ber of clock cycle used by each generation).

Number of Clock Cycle of Reproduction VS Number of Fitness Function
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Figure 10: The Improvement of Reproduction

Note: Population size is 6.
No.FF refers as number of fitness functions.

5.4.1 Improvement from GA Operators

Figure. 10 shows the acceleration of reproduction under
different type and number of fitness functions when the pop-
ulation size is fixed as 6. The Y-Axis shows the average
numbers of clock cycles that has been used to finish a repro-
duction operation in one generation. Because the numbers
are too large, we arrange them in logl0 style.

It can be seen that for all situations the proposed acceler-
ated reproduction will use much less number of clock cycles
than LS-MS GA. However, for each evaluation method, in-
creasing the No.FF cannot make a significant improvement
when the population size is fixed. LOC’s performance will
suffer a slightly decrease by changing No.FF from 2 to 3 but
it remains after. This is because LOC is a fixed and rela-
tively slow evaluation method compared with S-LOC. When
No.FF is 2, the speed of consuming mutation templates is
not very fast. The pre-stored templates can support LOC
for a while. However, when the No.FF has been increased
to 3, the consuming speed has been raised. The mutation
template FIFO will be soon out of stock and make the fol-
lowing operations paused for waiting new templates. Fortu-
nately, there is a upper bound for this pause. This is why
LOC can be maintained. For S-LOC, because it can be very
fast in most situations, even 2 (No.FF) can already make
it achieve its pause upper bound. For the slowest fitness



Table 1: Results Table

LOC S-LOC E2ERTA
LS-MS FS-MS Improvement(%) | LS-MS FS-MS Improvement(%) | LS-MS FS-MS Improvement (%)
PopSize | No.FF | RD FF RD FF RD HE RD FF RD FF | RD HE RD FF RD FF RD FF
2 1539 786 693 777 | 4892 1.15 1576 107 1394 77 11.55 | 27.65 792 | 243840 | 4 228307 (19949 6.37
6 3 1543 530 937 520 | 65.64 1.89 1564 97 1358 61 | 13.15  37.10 792 | 229760 | 4 214849 [99.49  6.49
4 1540 530 941 520 65.58 1.89 1561 101 1359 @ 61 12.94 |+ 39.82 792 | 229540 | 4 214735 [199.49  6.45
5 1537 530 934 520 65.51 1.89 15568 102 1361 60 12.67 | 40.82 792 | 229180 ' 4 213985 | 99.49  6.63
3 2 2179 1048 1104 1036 | 51.89 1.15 2097 (173 1998 112 | 4.71 34.88 1060 500711 |5 471670 [199.563  5.80
4 2196 536 1561 522 75.59 2.61 2194 | 142 1924 81 12.32 | 43.05 1059 251672 |5 228971 [199.53 9.02
16 2 4138 2096 1824 2072 | 49.34 1.15 4160 | 487 3653 296 | 12.21 = 39.09 2115 | 896560 | 9 870918 [199.57 2.86
4 4178 1072 1839 1056 | 74.34 1.49 4335 381 3779 | 118 | 12.83 = 69.00 2112 812150 |9 760172 |199.57  6.40

Note: PopSize is Population Size; No.FF is Number of Fitness Functions; RD is Reproduction; FF is Fitness Functions.

function (E2ERTA), its evaluation time is long enough for
mutation template FIFO to refill. Therefore it will reach the
lower bound of number of clock cycles.

If we fixed No.FF and increase the population size, the
required number of clock cycles will be increased, however, it
is still much better than LS-MS GA, which has been labelled
by dark grey in Table. 1.

5.4.2 Improvement from GA Architecture

For LOC, although the proposed architecture can reduce
the number of clock cycles used for fitness functions, the
improvement is slightly. However, the S-LOC can be well
enhanced which has been shown in Fig. 11. It can be
seen the improvement of S-LLOC is increased with the No.FF
raised. Take the population size is 6 as an example. The
improvement grows rapidly at the beginning and converge
after. Therefore, this improvement has a upper bound which
is determined by the variability and number of fitness func-
tions.

FS-MS GA Improvement of S-LOC Over Difference Population Size and Number of Fitness Functions
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Number of Fitness Function

Figure 11: FS-MS GA with S-LOC

Note: No.FF refers as number of fitness functions.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a hardware-accelerated paral-
lel GA for fitness functions with variable execution time.
We also introduce accelerated GA operators to further re-
duce the GA searching time. We compared our architec-
ture with the state-of-the-art Master-Slave GA. The results
shows that our architecture can achieve best performance
(70% improvement) when the variability of fitness function
execution time is significant, and that the accelerated GA
operators can achieve higher improvement (99.57%) when
the fitness function’s computation time is long. The two im-
provement methods proposed in this paper can be assembled

together in a single architecture, as presented here, or ap-
plied individually in the case of platforms with limited hard-
ware resources, since they are not mutually dependent.
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