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Abstract—Modern high performance computing (HPC) data
centers consume huge energy to operate them. Therefore, appro-
priate measures are required to reduce their energy consumption.
Existing efforts for such measures focus on consolidation and
dynamic voltage and frequency scaling (DVFS). However, most
of them do not perform adaptive resource allocation for the
executing dependent tasks (or jobs) in order to optimize both
value and energy. The value is achieved by completing the
execution of a job and it depends on the completion time.
A high value is achieved if the job is completed before its
deadline; otherwise a lower value. In this paper, we propose
an adaptive resource allocation approach that uses design-time
profiling results of jobs for efficient allocation and adaptation
in order to optimize both value and energy while executing
dependent tasks. The profiling results for each job are obtained
by exploiting efficient allocation combined with identification of
voltage/frequency levels of used system cores and used in adapting
to different number of cores based on the monitored execution
progress of the job and available cores. Experiments show that
the proposed approach enhances the overall value by about 10%
when compare to existing approaches while showing reduction
in energy consumption and percentage of rejected jobs leading
to zero value.

I. INTRODUCTION

Large scale HPC data centers integrate several many-core

architectures to enhance their processing capability, but a huge

energy is required to operate them [1], [2]. It has been reported

that energy consumption of data centers is between 1.1%

and 1.5% of the worldwide electricity consumption and the

consumption is expected to increase rapidly in future [3]. Fur-

ther, the power requirements of these systems are increasing

rapidly. This stringent increase in power requirement cannot

be fulfilled due to physical limitations on the available energy,

which has put some financial data centers out of energy,

e.g., Morgan Stanley datacenter in 2010 [4]. Thus, it is of

paramount importance to minimize energy consumption of

these systems during their operation.

In a many-core HPC data center that typically contains

several connected servers, jobs arrive at different moments

of time and they need to be serviced by allocating them on

the available cores on different servers at run-time. In doing

so, the value (utility) achieved by servicing the jobs should

be maximized while trying to minimize the overall energy

consumption during system operation as mentioned earlier. A

job may contain a number of dependent/independent tasks or

processes. The notion of values (economic or otherwise) of

jobs has been introduced to define their importance level [5].

In overload situations where demand for available resources is

higher than the supply, such a notion facilitates in deciding to

allocate limited resources to the high value jobs and holding

the low value jobs for late allocation.

The value of a job can change over time to reflect the impact

of the computation over the business processes. Usually, the

change in value of a job over time is determined by considering

its soft real-time deadline [6], [7]. If the job is completed

before the deadline, a high value is achieved; otherwise, a

low value is achieved. This also implies that the violation of

deadline does not make the computation irrelevant, but reduces

its value for the user [5], [8], [9]. Deadlines missed by large

margins may result in zero value and thus the computation

becomes useless for the user. Further, the energy spent on such

computation can be considered as wasted. Therefore, the job

request should be rejected if no (zero) value can be obtained

by executing it. Consideration of such varying value depending

upon the completion time and deadline increases complexity

to the allocation process.

For each job, the allocation outcome determines the value

to be achieved after completing the job and its energy con-

sumption as well. Additionally, if the platform cores support

dynamic voltage and frequency scaling (DVFS) [10], the volt-

age/frequency (v/f) levels of used cores by the job also govern

the value and energy consumption. A lower v/f level represents

lower dynamic power consumption level and thus v/f levels of

one or more used cores can be adjusted depending upon their

workload in order to reduce energy consumption while not

violating timing constraints [6]. Thus, to jointly optimize both

the metrics (value and energy), efficient allocation along with

appropriate v/f levels of used cores need to be identified.

The identification of efficient allocation and v/f levels has

been accomplished by performing design-time profiling of the

jobs [11]. These profiling results are used to facilitate light-

weight run-time resource allocation as the compute intensive

part is shifted to design-time. Such allocation approaches have

been proven promising to design job-specific-clouds, where

the clients (or customers) and their jobs to be submitted

for execution are pre-defined, which can be realized from

the historical data [11], [12]. However, these approaches do

not perform run-time adaptive allocation by monitoring the

availability of cores on different servers and execution status

of the jobs.

Motivational Example: Fig. 1 shows a motivational ex-

ample to execute an arrived job on one server of a many-

core HPC system (data center) when employing non-adaptive
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Fig. 1. Motivation example showing non-adaptive and adaptive allocation.

and adaptive allocations. The server contains three cores and

two of them are busy, i.e., executing some other jobs, when

the job arrived. The non-adaptive allocation approaches (top

part of Fig. 1) always execute the job on the same allocated

core at an identified v/f level (e.g., on core 3 at voltage

level V1) in view of optimizing completion time (determining

value) and energy consumption. The operating voltages for

different executions are represented by various heights. Since

no motoring is performed for the job execution status to check

whether it is executing slower of faster than expected (based

on average or worst-case execution time) and availability of

cores, the operational v/f and number of used cores remain

constant. This might lead to high energy consumption and

late completion, resulting in low value. Opportunity: By em-

ploying monitoring [13], the execution status of the jobs and

availability of cores over the servers can be made available at

different moments of time, e.g., at checkpoint 1 and checkpoint

2 (bottom part of Fig. 1). These checkpoints occur periodically

at a specified interval. Based on the execution status at the

checkpoints, the number of cores to be used by the job and

operational v/f levels of cores can be changed (increased

or decreased) to jointly optimize the value (depending on

completion time) and energy consumption. For example, at

checkpoint 1, the job is reallocated to two cores from one

core and to three cores from two cores at checkpoint 2 while

applying appropriate v/f levels to cores. To perform efficient

run-time adaptation, the premier allocations and v/f levels

for different number of cores can be identified at design-

time in order to use them at run-time [11], [14]. Note that

the adaptation step can also migrate the job to some other

server of the HPC system that has high availability of cores

at current checkpoint. These considerations might lead to

early job completion to realize high value, and low energy

consumption due to executions at lower operating voltages.

Contribution: In this paper, we propose a monitoring-

enabled adaptive resource allocation approach to efficiently

execute jobs arriving at different moments of time on a many-

core HPC system. The jobs are profiled in advance to identify

the efficient allocations and v/f levels from value and energy

point of view when using different number of cores. Since

jobs are profiled in advance, it is assumed that all the clients

(or customers) and their jobs to be submitted for execution in

the HPC data center are known in advance. This is true for

several data centers as they serve only a fixed set of known

customers and such information facilitates to design promising

job-specific-clouds [11], [12]. The profiling results are used

to perform efficient run-time allocation and adaptation. The

monitoring information in terms of jobs execution status and

availability of system cores at different moments of time is

used as feedback to decide whether allocation and v/f levels

of used cores by an executing job should be changed to jointly

optimize value and energy. In case the change is beneficial,

the proposed approach performs adaptation (migration) on

higher or lower number of cores by selecting the appropriate

allocation and v/f levels of cores from the profiling results.

The adaptation step can perform migration within the same or

to a different server and takes such migration overheads into

account.

II. RELATED WORK

Existing resource allocation approaches for HPC systems

employ various principles to optimize the overall value to

be achieved by servicing the arrived jobs. For example, an

approach in [15] chooses the highest value job first. This

approach might lead to small amount of available resources

if a high value job requires a large amount of resources. As a

remedy to this problem, the job having maximum value density

can be chosen first, where the value density is computed

as value divided by the amount of required computational

resources [16]. Variants of value density approaches have also

been proposed [16]–[18]. Another approach to pre-empt the

low value executing jobs in order to assign freed resources to

high value arrived jobs is also proposed [19]. However, these

approaches do not consider energy consumption optimization

and DVFS capable cores. Further, run-time adaptive allocation

is not employed.

Energy optimization approaches for HPC data centers have

focused mainly on virtual machines (VMs) consolidation and

DVFS. In consolidation, VMs with low utilization are placed

together on a single host (server) so that other used hosts

can be freed to shut them down [20]–[22]. DVFS approaches

for HPC data centers are explored to save dynamic energy

consumption [6], [11]. The approach of [6] does not consider

jobs containing dependent tasks, whereas [11] considers them.

For dependent tasks, DVFS approaches from other domains,

e.g. embedded systems [14], can be employed, but they do

not perform optimization for value. Further, energy can also

be optimized by performing energy-aware resource allocation

[23]. The approaches considering DVFS and optimizing both

the value and energy consumption are recently reported [5],

[11], but they do not perform adaptive resource allocation

as job execution status and available system cores are not

monitored.

There has been some efforts to achieve (monitor) the job

execution and system cores status in order to make decisions

to perform adaptive resource allocation [13]. However, these

efforts do not consider dependent jobs or tasks and do not
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Fig. 2. System model adopted in this paper. A cloud data center containing
different nodes (servers) with dedicated cores (PEs) to execute jobs (Js)
submitted by multiple users.

exploit DVFS and design-time profiling results. In contrast, our

approach considers all the above aspects. The use of profiling

results facilitates efficient initial allocation with appropriate v/f

levels of used cores and efficient adaptation on lower or higher

number of cores based on the monitoring status, resulting in

optimized value and energy.

III. SYSTEM MODEL AND PROBLEM DEFINITION

Our system model is based on typical industrial HPC

scenario and presented in Fig. 2. Various users submit a set of

jobs at different moments of time to be executed in the many-

core HPC platform (data center) . The jobs are submitted

to the platform resource manager that allocates resources to

them. This section provides preliminaries pertaining to the

system model along with the problem definition.

A. Job and its Value Curve Model

Each job j is modelled as a directed acyclic graph TG =
(T ;E), where T is the set of tasks of the job and E is the set

of directed edges representing dependencies amongst the tasks.

Fig. 3 (a) shows an example job containing 4 tasks (t1,..,t4)

connected by a set of edges. Each task t ∈ T is associated

with its execution time (ExecTime, measured as worst-case

execution time (WCET)), when allocated on a core operating

at a particular voltage level. Such information can be obtained

from previous executions of the tasks. Each edge e ∈ E
represents data that is communicated between the dependent

tasks. A job j is also associated with its arrival time ATj .

Each job is considered to have a soft real-time deadline,

implying that the violation of deadline does not make the

computation irrelevant, but reduces its value for the user [5],

[6], [8]. The value of the job to the user depends upon the

completion time and is represented by value curve. Fig. 3 (b)

shows a typical value curve, where vertical and horizontal axes

show the value and completion time, respectively. It indicates

that if the job is completed before it’s soft deadline, a high

value as that of the value at job arrival is achieved. After

the deadline, the value curve is a monotonically-decreasing

function and trends towards zero with the increasing comple-

tion time, as shown in Fig. 3 (b). This implies that the value

achieved decreases with increased in the completion time and

deadline missed by large margins may result in zero value.

t2

t1

t4

t3

Completion Time

Value (currency)

(a) Job (b) Value curve of the job

Deadline

Arrival Time

Fig. 3. An example job model and its value curve.

We assume value curve of each job is given and the value

curve incorporates the soft real-time deadline by representing

the value over the completion time based on the deadline.

Such a value curve reflects job’s business importance assessed

by the end user while following a domain specific economic

model. The description of the economic model is orthogonal

to our approach and out of scope of this paper.

B. Many-core HPC Platform Model

The HPC platform HP contains a set of nodes

(PG1, ..., PGN ), as shown on the right hand side of Fig. 2.

A node (server) n contains a set of homogeneous cores Cn,

referred to as processing elements (PEs), which communicate

via an interconnect. Each core is assumed to support DVFS

[24]. A platform resource manager controls access of plat-

form resources and coordinates the execution status of jobs

submitted by the users, which facilitates efficient management

of resources and incoming requests.

C. Energy Consumption of a Job

The total energy consumption (Etotal) of a job is computed

as the sum of dynamic and static energy:

Etotal = Edynamic + Estatic (1)

The dynamic energy consumption for all the tasks in the

job is estimated from equation (2).

Edynamic =
∑

∀t∈T

(ExecT ime[t] → cv)× (pow → cv)] (2)

where ExecT ime[t] → cv and pow → cv are the execution

time of task t mapped on core c operating at voltage v, and

corresponding power consumption, respectively. It is assumed

that the power consumption at different operating voltages is

known in advance and taken from chip manufacturer’s data

sheet. Estatic is computed as the product of overall execution

time of the job and static power consumption of the used cores.

D. Problem Definition

To efficiently service the arrived jobs, the target research

problem considers the following set of input, constraints and

objective.

• Input: Workload, i.e., Job set (j1, ..., jM ), Value curve

of each job V Cj incorporating its soft real-time deadline,

Arrival time of each job ATj (j ∈ {1, . . . ,M}), Cores of

the HPC platform nodes (PG1, ..., PGN ), Voltage levels

(v1, ..., vl) supported by each core.
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Fig. 4. Monitoring-enabled adaptive resource allocation.

• Constraints: Limited resources (cores) on each node of

HP .

• Objective: Maximize overall value V altotal and mini-

mize energy consumption Etotal.

For an arrived job, first, the allocation process followed

by the platform resource manager needs to identify the node

to execute the job, tasks-to-cores allocation inside the node,

and the v/f levels of the cores executing tasks of the job.

Then, depending upon the job execution status and available

system cores, the job should be reallocated within the current

or to a different node with a new tasks-to-cores allocation and

v/f levels. This reallocation (adaptation) process is repeated

whenever it is beneficial from value and energy perspective.

Since there are several possible allocations (tasks-to-cores

assignments) for a job and several voltage scaling (VS) options

for each allocation, exploring the complete design space to

identify the optimal design in terms of value and energy might

not be feasible within acceptable time. Therefore, only efficient

allocations and appropriate VS options need to be evaluated.

Further, for dependent tasks, applying VS on a core is rather

challenging as one needs to capture the VS effect on the

execution of dependent tasks allocated on other cores.

IV. PROPOSED MONITORING-ENABLED ADAPTIVE

RESOURCE ALLOCATION APPROACH

In contrast to conventional existing efforts that consider only

few aspects in the allocation process, our approach considers

all the following aspects: 1) jobs containing dependent tasks,

2) apply DVFS, 3) jointly optimize value and energy, 4) utilize

design-time profiling results, and 5) perform adaptive resource

allocation.

An overview of our proposed approach is provided in Fig.

4. The approach performs design-time profiling of the jobs

obtained from the historical data. At run-time, the profiling

results are used to perform efficient allocation for the arrived

jobs and adaptation (reallocation) for the executing jobs.

The decisions for the reallocation are made based on the

jobs execution and resources’ availability status, which are

obtained by a monitoring framework. We consider a similar

monitoring framework as that of [13]. The details of the

profiling, allocation, and reallocation steps are as follows.

A. Design-time Profiling

For each job, the profiling step identifies the allocation

and v/f levels leading to optimized response time (deter-

mines value) and energy consumption when utilizing different

amount of computing power in terms of number of cores.

The response time should be minimized to optimize value

and is calculated as the difference between the end and start

time of the job execution after allocating resources to it.

To minimize both response time and energy consumption,

we consider to minimize the product of response time and

energy consumption in order to jointly optimize value and

energy. At different number of used cores, since an exhaustive

search might not be performed within a limited time, the

allocation and v/f levels leading to the minimum product value

are identified by employing a genetic algorithm (GA) based

evaluation. We chose NSGA-II as the underlying GA to steer

the optimization process [25]. The number of cores is varied

from one to the number of tasks in the job in order to exploit

all the potential parallelism present in the job by assuming

that each task can occupy only one core. For each job, the

allocation, v/f levels, value corresponding to the response time

and energy consumption at different number of used cores are

stored as the profiling results (Fig. 4).

B. Run-time Resource Allocation and Reallocation

To perform resource allocation and reallocation (adaptation)

by using the profiling results, the manager follows Algorithm

1. For all the arrived jobs, the algorithm takes profiling

results from the storage, their value curves, and the HPC

Platform HP as input and identifies a value and energy

optimizing allocation based on the number of available cores at

different nodes in the platform. Further, at various checkpoints

(monitoring points), the algorithm checks execution status

of allocated/executing jobs and availability of resources to

identify a new allocation and v/f levels of used cores in order

to perform reallocation whenever profitable.

The algorithm checks mainly for three events as follows:

1) any already allocated job(s) finish execution to update the

platform resources (lines 1-3), 2) any job(s) arrive into the

platform to be put into a job queue (lines 4-6), and 3) check-

point occurs during execution to try to perform adaptation

(reallocation). In case of both the events 1) and 2) or any of

them, the algorithm tries to perform resource allocation for the

queues job(s) having non-zero values (lines 18-28). However,

if event 3) is also detected at the same time, the adaptation

is tried first (lines 7-17) followed by the allocation (lines 18-

28). This ensures that the executing jobs are given priority

over the queued jobs to be allocated so that value and energy

of the executing jobs can be further optimized before doing

optimizations for the queued jobs. If such measures are not

taken, further optimization opportunity for the executing jobs

can be missed, which may lead to lower overall value and

higher energy consumption. The details of the adaptation and

allocation steps are as follows.

1) Adaptation (lines 7-17): The adaptation (reallocation)

for all the executing jobs is tried at all the checkpoints incurred

over the system execution. These checkpoints usually occur at



ALGORITHM 1: Resource Allocation and Adaptation

Input: Incoming Jobs with arrival times, Jobs’ profiling results
and value curves, HPC Platform HP .

Output: Resource Allocation for Incoming Job and
Reallocation for Executing Jobs.

1 if allocated job(s) finish execution then
2 Update platform resources;
3 end
4 if job(s) arrive then
5 Put the job(s) in JobQueue;
6 end
7 if checkpoint occurs then // Try Adaptation

8 for count = 0 to nrExecutingJobs do
9 Capture deviations of executing and non-adapted jobs;

10 Estimate remainedT ime, newEndT ime and
newV alueDensity/newEnergyDensity of deviated
jobs when utilizing different number of available cores
in various nodes;

11 Select maxV aluePerEnergyDensityJob, its Node,
nrUsedCores, new v/f levels, newV alue,
newEnergy, and newAllocation;

12 if newV alueDensity/newEnergyDensity >
valueDensity/energyDensity &&
reallocationGain > reallocationOverhead then

13 Adapt (Reallocate)
maxV aluePerEnergyDensityJob on
nrUsedCores cores of selected Node by
following newAllocation to perform execution at
new v/f levels;

14 Update platform resources;
15 end
16 end
17 end
18 if JobQueue contains job(s) having positive values then

// Try Allocation

19 for count = 0 to JobQueue.size() do
20 Collect bids from all nodes and select maxBid;
21 if maxBid > 0 then
22 Compute value/energy estimates of unscheduled

jobs when utilizing maxBid cores;
23 Select maxV aluePerEnergyJob and its value,

energy, allocation, and v/f levels from
profiling results;

24 Schedule maxV aluePerEnergyJob on node
having maxBid cores by following the
allocation to perform execution at v/f levels;

25 Update platform resources;
26 end
27 end
28 end

a regular interval, which can be varied. If these checkpoints

occur quite often, the reallocation might need to be performed

frequently. Since there is an overhead to check the need for

reallocation at each checkpoint in terms of time and energy,

the frequent checks might delay the jobs completion time and

thus overall value might get reduced and energy consumption

might get increased considering the fact that energy needs

to be dissipated for a longer time. In case of less frequent

checkpoints, the instances for profitable reallocations can be

missed and it might not be possible to optimize the value and

energy for the executing jobs. The effect of the varying number

of checkpoints on the considered performance metrics (value

and energy) is shown in the next section.

At each checkpoint, to perform reallocation for all the

executing jobs, all of them (count = 0 to nrExecutingJobs,

line 8) are tried to be reallocated on a higher or lower number

of cores based on the jobs execution status and availability

of cores. The jobs execution status is captured from the

monitoring framework in terms of their deviation from the

actual expected progress at the checkpoint. If the deviation is

positive, i.e. job execution has exceeded the checkpoint, it is

tried to be reallocated on a higher number of cores within the

currently allocated node or on a different node with a new

allocation and v/f levels. The maximum number of used cores

is the number of tasks in the job, which can exploit all the

potential parallelism. However, in case of negative deviation,

the job is tried to be reallocated on a lower of number of

cores on the currently allocated node. The reallocation process

continues until all the executing jobs are tried to be reallocated.

To perform reallocation, first, deviations of executing and

non-adapted jobs are captured (line 9). The non-adapted jobs

are those for whom reallocation has not been performed. Then,

for all the deviated jobs, i.e., jobs with positive or negative

deviations, remained time to complete (remainedT ime), new

end time (newEndT ime), and value density divided by en-

ergy density (newV alueDensity/newEnergyDensity) are

estimated when using different number of available cores in

various nodes (line 10). These entities are estimated as follows.

remainedT ime = remainedWork × completionT imeusedCores

(3)

newEndT ime = progreesedT ime+ remainedT ime (4)

newV alueDensity

newEnergyDensity
=

newV alue/remainedT ime

newEnergy/remainedT ime
(5)

where completionT imeusedCores is the completion time at

the used number of cores and remainedWork is computed

by looking the deviation included end time and the deviation

at the current checkpoint, and it is normalized with respect

to the total work to be done from start to end time of the

job. The progreesedT ime is the job progressed time by the

checkpoint. The selection of value and energy density helps

to choose the job leading to maximum value and minimum

energy consumption with minimal remaining completion time

(remainedT ime). Thus, a job is selected that will complete

soon and lead to high value and low energy consumption.

This also provides opportunity to use the released resources

by early completion for allocating queued jobs or profitable

reallocations.

From all the deviated jobs, the one leading

to the maximum value per energy density

(maxV aluePerEnergyDensityJob, computed by Equation

5) is selected along with its node, number of used cores, v/f

levels of cores, new value, new energy and new allocation

(line 11). The allocation, v/f levels, value and energy

consumption are simply selected from the profiling results,

which facilitates for fast run-time computations. For the

new allocation of maxV aluePerEnergyDensityJob, if the

new value density over energy density is greater than that

of the previous allocation and estimated reallocation gain is

greater than the reallocation overhead, the job is reallocated

to the selected node based on the new allocation to perform



execution at identified new v/f levels. The reallocation

overhead consists of time and energy required to find a

profitable instance of adaptation and perform reallocation

to a higher or lower number of cores within the same

executing node or a different node. The overhead to reallocate

(migrate) the tasks to a different node is higher than that of

the migration within the same node. These overheads are

taken into account along with the overhead to set the cores

to be used on new v/f levels. Such a reallocation leads to

optimized value and energy. After performing reallocation,

the platform resources are updated and opportunity for the

next reallocation is explored.

2) Allocation (lines 18-28): To perform resource allocation

for all valuable queued jobs (i.e., jobs having positive values),

all of them (count = 0 to JobQueue.size(), line 19) are tried

to be allocated on the platform resources as along as any core

is available. The allocation process ensures that a queued job

having zero value at the allocation time is dropped from the

queue as no value can be made out of it. The allocation process

continues until all the arrived jobs are allocated or dropped due

to having zero value while waiting in the job queue.

In the allocation process, first, bids (in terms of number of

available cores) from different platform nodes are collected,

then the maximum bid (maxBid) and the corresponding node

is selected (line 20). Choosing such a node to use its cores

helps to achieve better load balancing amongst nodes and thus

better resource utilization. In case more than one nodes have

the same amount of bid, any of them is chosen. If the estimate

of maxBid is greater than zero (maxBid > 0, line 21), i.e.,

at least one core is available in the platform, the value/energy

estimates of jobs utilizing maxBid cores are computed and

the job leading to maximum value per energy consumption

(maxV aluePerEnergyJob) is selected to be scheduled to

the node having maxBid cores by following the allocation

and v/f levels leading to the optimized value and energy. The

computation of value/energy for each job considers its value

at the allocation time and the exact number of cores to be used

by the job computed as minimum between maxBid and the

number of cores to be used to achieve maximum value/energy.

The platform resources are updated after scheduling each job

to have up to date resources’ availability information for the

next allocation instance. This helps to achieve an accurate

and efficient allocation. Similar process is repeated for all the

arrived jobs.

V. EXPERIMENTAL RESULTS

The proposed resource allocation approach is implemented

in a C++ prototype and integrated with a SystemC functional

simulator. As a workload, job models from historical data of

an industrial HPC system (data center) at High Performance

Computing Center Stuttgart (HLRS) are considered, where

the jobs have varying arrival time. To sufficiently stress the

platform, we consider all the jobs arriving over a month. To

remain close to the reality, it is considered that higher number

of jobs arrives in peak times, i.e. weekdays and daytimes as

compared to off-peak times, i.e. weekends and night times.

Each job contains a set of dependent tasks as described earlier.

The number of tasks in the jobs varies from 5 to 10 and tasks

execution is in the order of minutes or hours. Further, it is

assumed that the value curve of each job is given.

To evaluate our approach for different number of available

servers (nodes), varying number of nodes are considered in the

HPC platform, where each node contains a total of 10 cores

as in modern servers. Further, to evaluate the approach for as-

sorted chip manufacturing technologies that will enable higher

number of cores at each node, experiments are performed with

varying number of cores at each node while considering a

fixed number of nodes. The number of cores is varied such

that it covers a broad spectrum of technologies including

advanced servers to be available in future. The platform cores

are assumed as the cores of Intel Core M processor, which

supports 6 v/f levels of operation. The reallocation overhead

along with the overhead to set the v/f levels is taken into

account. For each job, such overheads are computed and stored

in advance in order to use them during run-time reallocation.

In addition to overall value and energy consumption, we also

evaluate the percentage of rejected jobs that are removed from

the job queue as their value becomes zero before the resources

become available to allocate them. The rejected jobs also

include jobs achieving zero value after their execution, which

can be prevented by employing proper admission control and

schedulability analysis. Further, we have also analyzed the

effect of number of checkpoints on the value and energy

consumption in order to identify the exact number of check

points or checkpoint interval leading to optimized value and

energy consumption.

Experimental Baselines: We compare results obtained

from our approach to those of [15], [14], and [11] as they

can be applied to jobs containing dependent tasks. Table I

summarizes these approaches and their used abbreviations.

The approaches of [15] and [14] do not use profiling results

and thus allocations and v/f levels are identified at run-time.

The allocations in these approaches are found in a manner such

that the load across the used cores is balanced. The approach of

[15] optimizes only the value by finding an efficient allocation

while keeping the operating v/f levels of the used cores at the

highest levels. This approach helps to recognize energy savings

by approaches applying DVFS. To employ this approach, the

adaptation step (lines 7-17 in Algorithm 1) from our approach

is removed and value optimizing allocations are found at run-

time. The approach of [14] identifies v/f levels of used cores

to optimize only energy consumption. Therefore, it has been

extended to optimize both the value and energy for a fair

comparison. To employ this approach, the efficient allocations

leading to minimal response time (determining value) are

found as described earlier and then the v/f levels of the used

cores by the greedy algorithm of [14] that fixes v/f levels of

cores one-by-one during consecutive iterations. Further, the

adaptation step from Algorithm 1 is removed. This approach

optimizes value and energy separately in the identifications

of allocations and v/f levels, respectively, and is referred to

as ValEnSepOpt. In [11], the value and energy are optimized

jointly by utilizing the profiling results and the approach is

referred to as ValEnJoinOpt. To employ this approach, the



TABLE I
APPROACHES CONSIDERED FOR COMPARISON

Approaches Abbreviation References

Value Optimization ValOpt [15]
Value and Energy Separate Optimization ValEnSepOpt [14]

Value and Energy Joint Optimization ValEnJoinOpt [11]
Value and Energy Adaptive Optimization ValEnAdaptOpt Proposed
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Fig. 5. Value/Energy at different number of checkpoints.

adaptation step is removed from Algorithm 1. In addition to

utilizing profiling results, our approach (Algorithm 1) employs

adaptation and is referred to as ValEnAdaptOpt.

A. Effect of number of checkpoints on value and energy

consumption

Fig. 5 shows the value over energy (value/energy) estimates

achieved by our approach ValEnAdaptOpt when different

number of checkpoints is considered by varying the checkpoint

intervals. The shown result considers 3 available nodes in

the platform, where each node contains 10 cores. A lower

checkpoint interval represents higher number of adaptations,

where an adaptation is tried at the regular checkpoint interval.

It can be observed that when adaptation is tried at every

minute, i.e. checkpoint interval is 1, value/energy estimate

is low due to frequent adaptation trials, which incurs high

overhead in terms of time and energy and the timing overhead

delays the allocation and thus completion (determining value)

of queued jobs. The value/energy estimate initially increases

with the checkpoint interval as the check-pointing overheads

are reduced. At higher values of checkpoint interval, the

estimate decreases as opportunities of adaptation are missed

for higher number of executing jobs. This indicates that the

number of checkpoints should be appropriately chosen mainly

based on the job arrival patterns and the same has been

considered for all the conducted experiments.

B. Value and energy consumption with varying number of

nodes

Fig. 6 shows the influence of the number of available

nodes (servers) on the overall value and energy consumption

when various approaches are employed. The value and energy

results are normalized with respect to (w.r.t.) the value and

energy by ValOpt approach at 2 nodes. For our approach, fixed

check-pointing intervals of five minutes are considered after

analyzing value and energy at various checkpoint intervals as

described in the previous subsection. A couple of observations

can be made from Fig. 6. 1) Overall value by all the ap-

proaches increases with the number of nodes due to increased
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processing capability leading to completion of higher number

of jobs before their value becomes zero. 2) ValEnAdaptOpt

approach achieves higher overall value than other approaches.

This is due to the fact that adaptation leads to early completion

of executing jobs and thus higher values for them. Further,

earlier completion leaves resources for the queued jobs to

be allocated and completed sooner, leading to higher values.

3) ValEnAdaptOpt performs better than other approaches if

both the value and energy metrics are to be jointly optimized

as value achieved per unit of energy consumption, i.e. value

divided by energy. On an average, ValEnAdaptOpt achieves

9.46% higher value than that of ValEnJoinOpt, which provides

better results as compared to other existing approaches.

C. Value and energy consumption with varying number of

cores in each node

Fig. 7 shows the overall value and energy consumption

when the number of cores at each node is varied from 10

to 20 for a total of 3 considered nodes. The value and

energy results are normalized w.r.t. the value and energy by

ValOpt approach at 10 cores. A couple of observations can be

made from the figure. First, the value by all the approaches

increases with the number of cores due to increased processing

capability leading to completion of higher number of jobs

before their value becomes zero. Second, ValEnAdapt achieves

higher overall value than other approaches. Additionally, when

both value and energy needs to be jointly optimized as value

achieved per unit of energy consumption, i.e. value over

energy, ValEnAdapt provides better results as compared to

other approaches.

D. Percentage of rejected jobs

Table II shows the rejected jobs (%) at different number of

available nodes when various approaches are employed. The

average over all the nodes is also shown for all the approaches.

It can be observed that, on an average, our proposed approach

ValEnAdaptOpt rejects lower number of jobs as compared to

the baseline approaches. Our approach has lowest rejection

of jobs as the adaptation process completes executing jobs

early and freed resources are used by the queued jobs before

their values become zero. Thus, lower rejections are achieved.

It can also be observed that the rejections are lowered with
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TABLE II
PERCENTAGE OF REJECTED JOBS AT DIFFERENT NUMBER OF NODES

ValOpt ValEnSepOpt ValEnJoinOpt ValEnAdaptOpt

2 58.8% 56.2% 48.8% 48.8%
3 41.2% 37.4% 26.2% 25.8%
4 26.2% 22.8% 07.4% 07.2%
5 14.2% 13.6% 00.0% 00.0%
6 08.6% 08.6% 00.0% 00.0%

Average 29.8% 27.7% 16.4% 16.3%

increased number of nodes due to larger number of resources’

availability. This metric is important from users’ satisfaction

point of view as they do not want their jobs to be rejected.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an adaptive resource allocation approach

for HPC data centers. The approach uses design-time profiling

results to perform efficient allocation and reallocation. The

profiling step combines identification of efficient allocation

and appropriate v/f levels to jointly optimize value and energy

consumption. It has been shown that efficient allocation and

reallocation has led to significant reduction in energy con-

sumption and enhancement in value. In future, we plan to

extend our approach to heterogeneous HPC data centers, where

servers may contain different types of processing cores.
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