
This is a repository copy of Peptide mass fingerprinting using field-programmable gate
arrays.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/10484/

Article:

Bogdan, I.A., Coca, D. and Beynon, R.J. (2009) Peptide mass fingerprinting using
field-programmable gate arrays. IEEE Transactions on Biomedical Circuits and Systems ,
3 (3). pp. 142-149. ISSN 1932-4545

https://doi.org/10.1109/TBCAS.2008.2010945

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

142 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 3, NO. 3, JUNE 2009

Peptide Mass Fingerprinting Using
Field-Programmable Gate Arrays

István A. Bogdán, Daniel Coca, and Rob J. Beynon

Abstract—The reconfigurable computing paradigm, which
exploits the flexibility and versatility of field-programmable gate
arrays (FPGAs), has emerged as a powerful solution for speeding
up time-critical algorithms. This paper describes a reconfigurable
computing solution for processing raw mass spectrometric data
generated by MALDI-TOF instruments. The hardware-im-
plemented algorithms for denoising, baseline correction, peak
identification, and deisotoping, running on a Xilinx Virtex-2
FPGA at 180 MHz, generate a mass fingerprint that is over 100
times faster than an equivalent algorithm written in C, running on
a Dual 3-GHz Xeon server. The results obtained using the FPGA
implementation are virtually identical to those generated by a
commercial software package MassLynx.

Index Terms—Biomedical computing, field-programmable
gate arrays (FPGAs), mass spectrometry, optimization methods,
proteins.

I. INTRODUCTION

M
ASS spectrometry has evolved rapidly in the past
decades, becoming one of the most reliable proteomics

research tools. The amount of data that is currently generated by
mass spectrometers around the world is growing at increasing
rates. Processing and interpreting mass spectrometric data rely
on computer algorithms and proteomic databases running on
standard microprocessor systems.

Peptide mass fingerprinting is a protein identification tech-
nique in which mass spectrometry is used to determine the
masses of peptide fragments generated by specific diges-
tion. The proteins are identified by matching the measured
molecular masses of peptide fragments against theoretical
peptides generated from protein-sequence databases. Peptide
mass fingerprinting involves two basic operations, namely,
the processing of raw spectra to derive a mass fingerprint and
using the mass fingerprint to search the protein database for a
possible match. A correlation score is computed between the
database entries and the unknown peptide fragment mass list.

Manuscript received February 06, 2008; revised June 02, 2008. Current
version published May 22, 2009. This work was supported by the BBSRC
under Grant BBS/B/16402 and sponsored by Xilinx, Inc., who donated the
FPGA devices and design tools used in this work. This paper was recom-
mended by Associate Editor R. Butera.

I. A. Bogdán and D. Coca are with the Automatic Control and Sys-
tems Engineering Department, Sheffield University, S1 3JD, U.K. (e-mail:
i.bogdan@sheffield.ac.uk; D.Coca@Sheffield.ac.uk).

R. J. Beynon is with the Proteomics and Functional Genomics Group, Fac-
ulty of Veterinary Science, University of Liverpool, Liverpool, L69 7ZJ, U.K.
(e-mail: r.beynon@liv.ac.uk).

Digital Object Identifier 10.1109/TBCAS.2008.2010945

The matches with the highest score are the final protein list to
be returned to the user.

While the processing time for performing protein identifica-
tion is relatively low, it is still greater than the spectra acquisition
time and is limited by the microprocessor clock frequency.

The most effective approach to speed up computations in-
volves the development of dedicated hardware processors that
are optimized to perform specific algorithms. The speed up in
computation, compared with the standard sequential micropro-
cessor, is achieved by concurrent implementation of different
arithmetic and logic operations that make up a computational
loop and by concurrent execution of several computation loops.
A major drawback of this approach used to be the prohibitive
costs associated with manufacturing a dedicated integrated cir-
cuit [application-specific integrated circuit (ASIC)].

The hardware implementation approach has become a cost-
effective solution thanks to the availability of high-density field-
programmable gate arrays (FPGAs) and of high-level system
design and development tools, which make the implementa-
tion of very complex hardware designs possible with almost
the same ease as the software implementation. An FPGA is
a large-scale IC that can be programmed (and reprogrammed)
after it has been manufactured.

Early attempts to use FPGA devices in biocomputation were
made to accelerate gene-sequence analysis [7]. FPGAs, which
are well suited for high-performance, high-bandwidth, and par-
allel-processing applications, have been successfully employed
to speed up DNA sequencing algorithms [8]–[10], [6], [11],
[13]. FPGAs were also used in the attempt to accelerate the
search of substrings similar to a template in a proteome [12].
More recently, FPGAs have been used to accelerate sequence
database searches with MS/MS-derived query peptides [4]. This
hardware-based solution can reportedly locate a query within the
human genome about 32 times faster than a software implemen-
tation running on a 2.4-GHz processor. A hardware-sequence
alignment tool implemented in FPGA is also available [14].

This paper describes the design and hardware implementation
of a raw spectra processor which performs all computational
tasks involved in the generation of a mass signature from a raw
spectrum, namely, smoothing, peak detection, and deisotoping.
The processor, which is implemented on a Xilinx XC2V8000
FPGA and runs at 180 MHz, achieves more than 100 fold
speedup compared with a C software implementation running
on a dual 3-GHz Xeon Server with 4-GB of memory. In an ear-
lier paper [15], we have successfully tested the implementation
in terms of peak extraction and deconvolution accuracy against

1932-4545/$25.00 © 2008 IEEE

Authorized licensed use limited to: Sheffield University. Downloaded on March 08,2010 at 04:28:15 EST from IEEE Xplore. Restrictions apply.

BOGDÁN et al.: PEPTIDE MASS FINGERPRINTING USING FPGAS 143

commercial software implementations. This paper focuses in
more detail on the actual processor design.

II. ALGORITHM DESCRIPTION

Following specific protein digestion, a MALDI-TOF mass
spectrometer generates pairs of mass-to-charge (m/z) and
abundance values symbolized with

. Typically, the number of points in the
spectrum ranges from a few thousand to a few hundred thou-
sand. The determination of experimental peptide masses (the
so-called peptide mass fingerprint) requires relatively complex
processing of the raw mass spectrum in order to discriminate
between spectral peaks that correspond to digested peptides
and associated isotopes and the spurious peaks caused by noise
and sample contamination.

The FPGA spectra processor was designed to implement,
with some variations, an algorithm proposed in [1] which is used
in a popular mass spectrometry software package. The current
processor implements additional optional smoothing operation
and uses a different algorithm to implement deisotoping [see
Step 6)] . The algorithm was found to be computationally
efficient and well suited for hardware implementation but, in
principle, other peak extraction algorithms could be considered
for hardware implementation.

Step 1) Smoothing (Optional): Performing Savitzky–Golay
smoothing over the raw input spectrum can reduce the effect
of instrumentation noise. The algorithm is based on performing
a least-squares linear regression fit of a polynomial of degree

over at least data points around each point in the
spectrum to smooth the data. The main advantage of this pro-
cedure is that it tends to preserve the shape of the signal peaks
[3]. The smoothing operation is implemented as a standard fi-
nite-impulse-response (FIR) filter

where is the size of the smoothing window,
is the input data stream, is the FIR output, and are the
time-varying filter coefficients. For a given filter of order
and (odd) frame size , all of the coefficients
needed to implement the smoothing operation to form a
matrix . In a smoothing filter implementation, the last

rows are used for the first data points, the first
rows are used with the last data points, and the

middle row is used with the rest of the spectrum. The Sav-
itzky–Golay smoothing operation can be represented in matrix
form as follows:

More details about this procedure can be found in the original
paper [3]. Typically, for processing a raw spectrum, filters of
order and a frame length were found to produce
the best results for spectra having around 50 samples/(m/z). The
hardware implementation allows the user to specify the size of
the smoothing window and the corresponding
filter parameters.

Step 2) Baseline and Noise Detection: The raw spectrum
mass list is divided into small intervals

of width , and local minimum , maximum , and
abundances and their differences are computed [1]. In the
equation that will be shown, the pairs correspond to data
points

where denotes the smallest integer greater than
or equal to . For each integer mass in the spectrum

, a symmetric window of width
is placed around, and the baseline and noise levels are estimated
as follows:

where is the index of the leftmost subinterval
covered by and is the index of the rightmost
subinterval covered by [1]. Subsequently, the
signal-to-noise ratio (SNR) is computed for each spectral
point

Authorized licensed use limited to: Sheffield University. Downloaded on March 08,2010 at 04:28:15 EST from IEEE Xplore. Restrictions apply.

144 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 3, NO. 3, JUNE 2009

where denotes the largest integer smaller than or equal to
.

Step 3) Spectrum Segmentation: According to the signal-to-
noise ratio (computed in the previous step) relative to a user
adjustable threshold SN [1], the spectrum is segmented into
three categories: noise , support

, and signal .
Step 4) Peak Detection: Peaks are constructed from data

points that are signal or support points and are bounded by
noise. A collection of data points used to construct a
peak has the following criteria:

or for . The center of the mass
and relevant molecule abundance are computed for each
constructed peak [1] as follows:

Step 5) Clustering: This involves grouping valid peaks into
clusters. Two peaks and are in the same cluster if

, where is a user-defined parameter
(typically,) [1]. A valid cluster has at least one peak
with a data point in .

Step 6) Peak Deisotoping: The major difference compared
to [1] is the method used by the FPGA processor to implement
aggregation of natural isotopomers (due primarily to the nat-
ural abundance of C and N). The algorithm implemented
in FPGA uses Poisson distributions to approximate the isotopic
patterns for every peptide [2]. The expected proportional abun-
dance of the heavier isotopes , with re-
spect to the monoisotopic peaks , are computed
as follows:

(1)

where is the theoretical abundance of the first isotope
of is the abundance of the second isotope, etc.
The best-fit Poisson models of isotopic distributions are shown
to match those of theoretical distributions [2].

The complete processing step for a cluster of consecutive
peaks can be summarized as follows.

• The leftmost peak in the cluster is always considered to be
a monoisotope [2].

• Compute the expected abundance of the heavier isotopes
[2].

• Subtract these higher contributions from the actual abun-
dances of the next peaks

. Only the results higher
than a threshold (ISOTHR) are retained for further pro-
cessing [2].

These substeps are recursively repeated for the residual
cluster until all of the residual peaks are less than the threshold
[2]. For example, if

becomes the next monoisotope and the steps are
repeated.

Fig. 1. Deisotoping example. (a) Overlapped peaks. (b) Isotopes of peak 1.
(c) Delsotoped residuals.

Fig. 2. Raw spectrum processor block diagram.

The procedure is illustrated on Fig. 1. Here, a small cluster
of four peaks is depicted in Fig. 1(a). The first peak
is considered monoisotope. Its isotopic distribution is shown in
Fig. 1(b). Fig. 1(c) shows the resulting residual cluster after sub-
tracting (b) from (a).

III. HARDWARE IMPLEMENTATION

The block diagram of the hardware processor is depicted on
Fig. 2. The implementation has two major functional blocks:
1) a peak detection unit, which identifies all significant spectral
peaks and 2) a peptide identification unit that generates the final
list of peptide masses and associated abundances.

The peak detection unit implements smoothing, baseline,
and noise-level estimation in order to discriminate between
signal and noise peaks. The first block is a Savitzky–Golay
smoothing filter [3] that implements the equations from the
first algorithmic step. It has a user-defined window that can be
chosen according to the instrument resolution setting (number
of data points recorded per 1 m/z unit). The smoothing opera-
tion is optional; the user can specify if the data are preprocessed
or not by the SGSEL input flag. A 43-tap FIR filter implements
the Savitzky–Golay smoothing filter with coefficients that may
be reloaded as user parameters in an LUT.

Authorized licensed use limited to: Sheffield University. Downloaded on March 08,2010 at 04:28:15 EST from IEEE Xplore. Restrictions apply.

BOGDÁN et al.: PEPTIDE MASS FINGERPRINTING USING FPGAS 145

Fig. 3. Savitzky–Golay filter implementation.

Fig. 4. Peak construction first-in first-out (FIFO) block diagram.

The coefficients are loaded into the FIR on its dedicated in-
puts (COEF, LOAD, COEF WE). The first spectral abun-
dances are loaded as coefficients and the last rows
of the filter coefficient matrix are loaded on the FIR data input.
Then, the middle row of the filter coefficients is loaded as co-
efficients and the spectrum is loaded at the FIR data input. Fi-
nally, the last data points are loaded as FIR coefficients, the
last rows of the coefficient matrix are loaded as data
input. The block diagram of the FIR filter, depicted on Fig. 3, is
implemented as a single channel highly parallel filter by using a
Xilinx Logicore block [5]. While the abundances are smoothed,
the mass list is delayed by the FIR latency. Processing time for
this step is given by

where is the spectrum length, is the clock period, and
all constants inside the first round bracket are specified in the
Xilinx LogiCore FIR implementation datasheet [5].

The peak construction pipeline (stages long)
is depicted in Fig. 4. It implements the algorithmic steps de-
scribed in the previous section (Steps 2–4). The sorting FIFO
detects the minimum and maximum abundances and
computes their differences over a sliding window of length

. It is implemented by using a filter with a structure similar to
a median filter that sorts in ascending order its input data stream
over its filter length. Instead of computing the median, the max-
imum and minimum values are found.

Fig. 5. Cluster flag generation FIFO.

Baseline and noise are computed over a bigger spectral in-
terval of small windows of length Baseline and noise de-
tection are implemented using 32-b pipeline dividers and accu-
mulators. Spectrum segmentation is performed by computing
an SNR for each delayed spectrum data point according
to Step 3). The result is then compared with the user-selectable
threshold (SNTHR), and a classification flag coded on two
bits is assigned for each data point. The flag can be 1, 2, or
3 depending on whether the respective data point is classified
as noise, support, or signal, respectively. The original spectral
points , their associated classification flag , and the base-
line are aligned and fed into the peak construction state
machine. Here, the centered mass and baseline-subtracted
abundance of spectral peaks are computed according to al-
gorithm Step 4).

Steps 1–4 are implemented in a pipeline manner and the total
processing time is given by

The last functional block of the peak detection unit—the
cluster flag generator FIFO is depicted in Fig. 5. Its role is to
detect possible peak candidates that are isotopes of one or more
singly charged chemical compounds, separated by the mass of
a neutron. This group of peaks is called a cluster. Clustering
involves grouping together peaks so that the m/z (mass to
charge ratio) distance between two successive peaks is between

and , where is a user-selectable value, typically
set to 0.20. The circuit is a delay line for the input data peaks
with a maximum length of .

It is assumed that the spectrum is sorted by increasing mass.
The distance between the masses of all consecutive signal peaks
starting with the lowest mass value is computed. To speed
up computations, there are circuits that compute mass differ-
ences between and the following

consecutive mass values in
parallel. In our design, is an adjustable parameter, which is
selected according to mass spectrometer resolution, to be larger
than the maximum number of signal peaks that are registered

Authorized licensed use limited to: Sheffield University. Downloaded on March 08,2010 at 04:28:15 EST from IEEE Xplore. Restrictions apply.

146 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 3, NO. 3, JUNE 2009

within a window of m/z. Typically, about 50–100 sam-
ples/(m/z) are taken, so the FIFO length (60 120)/3
20-40 or less. The output of the circuit is a cluster flag of
bits, which is generated for each peak . If the distance
between and is within the range of m/z, the th
bit in is set to 1, indicating that is a potential isotope of

. If all of the bits in the flag are zero, this indicates that
has no isotopes.

The peptide identification unit consists of two dual-port
random-access-memory (RAM) devices A and B (embedded
RAM blocks), and two state machines: 1) a clustering and 2) a
deisotoping machine. The output of the peak detection unit
(peak mass , peak abundance , and cluster flag) is
stored in RAM (A) at consecutive addresses, starting from zero.
After all peaks are stored, the clustering state machine switches
the input multiplexer and clustering starts.

Clustering is simply a sorting process in which peaks be-
longing to the same cluster are grouped together and stored at
consecutive memory locations. In addition, clusters are also in-
dexed so that consecutive clusters are stored consecutively in the
memory. If the th bit of a cluster flag at address is one, the
peak at address is in the same cluster as the original peak
form address . The process continues until the flag associated
with a signal peak in the cluster only has zero entries. Clustering
is implemented as a state machine that sequentially reads the
first dual-port RAM (A). Each location stores the peak informa-
tion as a 108-b word: 32 b for mass,
32 b for abundance, 32 b for the cluster flag, and 12 b for the
cluster index. The cluster flag is used to calculate the memory
location of the peaks that are part of the same cluster while the
cluster index is an integer that uniquely identifies clusters.

The clustering process is illustrated in Fig. 6. Here, the triplets
in RAM (A) are

generated by the cluster flag generator FIFO, explained earlier,
and stored at consecutive addresses from 0 to . All of these
peaks are analyzed starting from address 0. A 12-b counter that
stores the maximum cluster index during operations is reset to
1. In this example, [Fig. 6(a)], the bit of the cluster flag
is one. This indicates that the peak stored at address

is a heavier isotope of the first peak . In the first
step, the mass and abundance of the first peak from location 0 in
RAM (A) is written to location 0 from RAM (B), and the cluster
index of the peak at the first location of RAM (B) is assigned to
the clustering index counter value (1—in our case).

The cluster flag field, where was stored, is overwritten with
the address of the next memory location in RAM (B), where the
next peak from the cluster will be stored. The process is repeated
for the next peak from cluster 1 which is stored at address in
RAM (A). Since, in this example, the cluster flag of the peak

is null, this means that there are no more peaks to be
added to the current cluster (i.e., cluster 1 will consist of only
two peaks), and the cluster index counter is incremented to 2.
Clustering continues with the remaining peaks from RAM (A)
that were not yet visited. In this example, the next peak that will
be considered is address 1. Here, the cluster flag is 0, so there are
no other peaks to be added to this cluster. The process continues
until all of the peaks from RAM (A) are visited. As a result,
RAM (B) will hold the same peak list, this time, it is rearranged

Fig. 6. Memory operations during clustering. (a) STEP 1. (b) STEP 2. (c) STEP
3.

Fig. 7. Fragment of a processed spectrum.

in ascending order according to cluster index and spectral mass.
The time required to perform clustering depends on the number

of detected peaks in the spectrum, the number of identified
clusters, and the number of peaks in a cluster. In the worst-case
scenario, the processing time is given by

where the multiplicative factor of 10 is given by the longest
cycle of the clustering state machine.

The final processing step required to generate the peptide fin-
gerprint is deisotoping. In practice, deisotoping is required be-

Authorized licensed use limited to: Sheffield University. Downloaded on March 08,2010 at 04:28:15 EST from IEEE Xplore. Restrictions apply.

BOGDÁN et al.: PEPTIDE MASS FINGERPRINTING USING FPGAS 147

Fig. 8. Block diagram of the complete protein identification solution.

cause one cluster may contain more than one peptide. In other
words, the peaks in a cluster can be viewed as a superposition of
isotopic distributions of two or more peptides. The deisotoping
unit identifies all peptides (the mass of the monoisotope) within
a cluster and calculates the total abundance of the peptide cor-
responding to each monoisotope. The hardware implementation
of deisotoping is based on an approximation of isotopic patterns
by Poisson distribution as presented in Step 6) of the algorithm
in the previous section [2]. Starting with the first peak in a cluster
(assumed to be a monoisotope), the algorithm generates the the-
oretical isotopic distribution based on peak height (abundance)
and mass value. The computed abundance values are then sub-
tracted from the original peaks at the corresponding m/z values.
Following subtraction, any negative abundance value is set to
zero. The procedure was illustrated in Fig. 1. The step is then
repeated, with the remaining (height-adjusted) peaks. At each
step, the monoisotopic mass value and original and total abun-
dance (the sum of the monoisotopic peak and its theoretical iso-
topic abundances) are recorded in the final peak list.

The deisotoping unit processes previously computed clus-
ters from the dual-port RAM (B), writes back partial results
in RAM (B), and the final peak list in RAM (A). When deiso-
toping starts, the first location from RAM (B) is read in the first
step. The first peak of each cluster is considered monoisotope
and is written to RAM (A), where the final peaks are stored.
The theoretical abundance of the first heavier iso-
tope is computed by using (1) and is used to update the total
abundance field (used previously to store the cluster flag) as

. Then, the next peak from the cluster is read
from RAM (B) and the difference be-

tween the abundance of this peak and the theoretical abun-
dance contribution of the previous monoisotope is
computed. If the residual abundance is less than
a user-defined threshold (ISOTHR), the peak is con-
sidered to be a higher isotope of the detected monoisotope and
is no longer stored or processed.

However, if , the residual peak
is stored back to RAM (B) to be analyzed

as the second monoisotope (peptide) in the cluster. The identi-

TABLE I
PEAK PROCESSOR USER-DEFINED PARAMETERS

fication of the isotopes of the first peak in the cluster continues
until all of the peaks in the cluster are visited.

The total abundance of the peptide is updated step by step
until the last peak in the cluster is processed. Deisotoping of
the first cluster continues with the second monistotope residual
peak) identified in the cluster and so on.

This operation is performed for all clusters stored in RAM
(B). When processing ends, the harvested peak list in RAM (A)
is ready to be used to search the protein database.

If the number of detected peaks is and the number of
clusters is , the minimal processing time for deisotoping is

when each cluster has one peak . If each peak
in each cluster is a monoisotope, each cluster is processed in

cycles, where is the number of peaks in the
cluster. If is the average number of peaks in a
cluster, the processing time for deisotoping is

where the multiplicative constant 28 is the length of the longest
cycle in the deisotoping state machine.

An example of the spectrum fragment from the range of 1032.
5–1036.5 m/z is depicted in Fig. 7. The figure shows all peaks
in the cluster, the identified peptide masses, and the abundance
associated with each peptide.

The implemented peak processor has a number of user-ad-
justable parameters, which are given in Table I. A block diagram
of the complete FPGA solution, including the database search
system, is shown in Fig. 8.

Authorized licensed use limited to: Sheffield University. Downloaded on March 08,2010 at 04:28:15 EST from IEEE Xplore. Restrictions apply.

148 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 3, NO. 3, JUNE 2009

TABLE II
IMAPCT OF SPECTRUM LENGTH ON PERFORMANCE

The implementation uses fixed-point arithmetic on 32 b with
the fractional part on 12 b.

IV. RESULTS

The spectrum processor was implemented on an FPGA
motherboard equipped with a Xilinx Virtex-II XC2V8000
FPGA (46 592 individual slices/8 million equivalent gates),
4-MB ZBT RAM communicating with the host PC server via a
PCI interface (32 b, 33 MHz). The server is a Dual 3.06 GHz
Xeon processor machine with 4-GB RAM.

The initial design was developed by using Xilinx’s System
Generator (6.3) for Matlab (7.0). The resulting VHDL code was
refined and optimized by using Xilinx ISE Foundation (7.1)
and Modelsim (SE 5.7d). The mass/abundance data were rep-
resented as unsigned integer numbers (32 b with 12 b after the
radix point).

The user FPGA from the motherboard is used to implement
the spectrum processor (Virtex-II XC2V8000). The actual de-
sign occupies 73% of total FPGA resources (34 139 slices) and
runs at 180 MHz.

The 4 MB of ZBT RAM is enough to store 512 K samples of
mass-abundance pairs of 32 b each.

The motherboard has sockets that can host additional FPGA
modules hosting a Virtex-II XC2V8000 FPGA device and 1 GB
of DDR SDRAM. These modules are used to host the database
search engine [18].

In the first instance, the hardware implementation was vali-
dated by comparing the results of processing mass spectrometric
data generated by the FPGA implementation and the equivalent
C software implementation of the algorithms. The reference C
program was run on a dual 3.06-GHz Xeon processor server. In
all tests, both implementations produced identical results.

The impact of the spectral length on processing time was
measured by using spectra with various lengths but constant iso-
topic composition and noise levels. The results are summarized
in Table II.

Each C simulation was repeated 30 times and the average pro-
cessing time is used here. The standard deviation for the speed
gain is shown in brackets. The average speed gain of the FPGA
implementation is 122.07. The processing times are shown in
Fig. 9. The FPGA processing time is unscaled, but the pro-
cessing time of the C implementation is scaled down by a factor
of 100.

It should be noted that the time elapsed for initializations of
memory locations before the effective processing of data and

Fig. 9. Impact of spectrum length on processing time.

TABLE III
IMPACT OF SPECTRAL COMPLEXITY ON PERFORMANCE

disk-access time are not included in the software processing
time. Only the processing of effective algorithmic steps is mea-
sured. Initializations add, on average, 30 ms to the C processing
time, resulting in an increased average speed gain of 169. The
maximum speed gain, however, could be as high as 200.

Another simulation shows the effect of the spectral com-
plexity over performance. The spectral length was kept
constant at 175 000 data points, while the isotopic complexity
(the number of relevant peaks) was modified. A different noise
profile was used here, compared to the previous simulations.
The performance results are given in Table III. The results are
also shown in Fig. 10.

In this case, speed of the hardware processor is almost linear
with insignificant fluctuation. On average, the speed gain is in-
fluenced by the spectral length and less influenced by the spec-
tral profile. The peak detection unit is a pipeline so the perfor-
mance of this block is linear of the spectral length and it does
not depend on the spectral composition.

The performance of the peptide identification unit signifi-
cantly depends on the spectral profile (noise, number of detected
peaks, and their abundances). However, its processing time is in-
significant—compared to total processing of the spectra by the
peak detection unit.

The FPGA spectrum processor was compared to a commer-
cial product MassLynx (Waters Corp.). A recombinant protein

Authorized licensed use limited to: Sheffield University. Downloaded on March 08,2010 at 04:28:15 EST from IEEE Xplore. Restrictions apply.

BOGDÁN et al.: PEPTIDE MASS FINGERPRINTING USING FPGAS 149

Fig. 10. Impact of spectrum complexity on processing time.

designed as an internal standard for multiplexed absolute pro-
tein quantification [16], [17] was digested with trypsin to re-
lease 20-limit peptides of known identity. The digested mate-
rial was analyzed by MALDI-ToF MS and the raw data were
processed separately by using the MassLynx package and the
FPGA processor.

The FPGA implementation and MassLynx correctly identi-
fied all of the peaks [15]. The intensities of the different peaks
correlated well, irrespective of the method used to process the
spectrum (sample correlation coefficient of 0.9874).

V. CONCLUSION

This paper presented a hardware solution, based on FPGA
devices, to accelerate algorithms used in peptide mass finger-
printing. Results show that a significant increase in processing
speed is achieved, compared to software implementations run-
ning on conventional microprocessor-based systems. Once the
processing speeds are achieved, it is possible to implement real-
time processing of spectra during DAQ.

REFERENCES

[1] J. Samuelsson, D. Dalevi, F. Levander, and T. Rögnvaldsson, “Mod-
ular, scriptable and automated analysis tools for high-throughput
peptide mass fingerprinting,” Bioinformatics, vol. 20, pp. 3628–3635,
2004.

[2] E. J. Breen, F. G. Hopwood, K. L. Williams, and M. R. Wilkins, “Au-
tomatic poisson peak harvesting for high throughput protein identifica-
tion,” Electrophoresis, vol. 21, pp. 2243–2251, 2000.

[3] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of
data by simplified least squares procedures,” Anal. Chem., vol. 36, pp.
1627–1639, 1964.

[4] T. A. Anish, M. Dumontier, J. S. Rose, and C. W. V. Hogue, “Hard-
ware-accelerated protein identification for mass spectrometry,” Rapid
Communi. Mass Spectrom., vol. 19, pp. 833–837, 2005.

[5] Datasheet DS240 May 2004, Distributed Arithmetic FIR Filter V9.0,
Xilinx Inc..

[6] D. Lavenier, “Speeding up genome computations with systolic accel-
erator,” SIAM News, vol. 31, no. 8, pp. 1–8, 1998.

[7] B. Fagin, J. G. Watt, and R. Gross, “A special-purpose processor for
gene sequence analysis,” Comput. Appl. BioSci., vol. 9, pp. 221–226,
1993.

[8] R. Hughey, “Parallel hardware for sequence comparison and align-
ment,” Comput. Appl. BioSci., vol. 12, pp. 473–479, 1996.

[9] P. Guerdoux-Jamet and D. Lavenier, “SAMBA: Hardware accelerator
for biological sequence comparison,” Comput. Appl. BioSci., vol. 13,
pp. 609–615, 1997.

[10] A. Wozniak, “Using video-oriented instructions to speed up sequence
comparison,” Comput. Appl. BioSci., vol. 13, pp. 145–150, 1997.

[11] A. S. Guccione and E. Keller, “Gene matching using Jbits,” in Proc.
Reconfigurable Computing is Going Mainstream, 12th Int. Conf. Field-
Programmable Logic and Applications, 2002, pp. 1168–1171.

[12] A. Marongiu, P. Palazzari, and V. Rosato, “Designing hardware for
protein sequence analysis,” Bioinformatics, vol. 19, pp. 1739–1740,
2003.

[13] H. Simmler, H. Singpiel, and R. Männer, “Real-time primer design for
DNA chips,” Intersci. Concurrency Comput.: Practice Experience, vol.
16, pp. 855–872, 2004.

[14] T. Oliver, B. Smidth, D. Nathan, R. Clemens, and D. Maskell, “Using
reconfigurable hardware to accelerate multiple sequence alignment
with ClustaIW,” Bioinformatics, vol. 21, pp. 3431–3432, 2005.

[15] I. Bogdán, D. Coca, J. Rivers, and R. J. Beynon, “Hardware accelera-
tion for processing mass spectrometric data for proteomics,” Bioinfor-
matics, vol. 23, pp. 724–731, 2007.

[16] R. J. Beynon, M. K. Doherty, J. M. Pratt, and S. J. Gaskell, “Multi-
plexed absolute quantification in proteomics using artificial QCAT pro-
teins of concatenated signature peptides rates,” Nature Meth., vol. 2, pp.
587–589, 2005.

[17] J. M. Pratt, D. M. Simpson, M. K. Doherty, J. Rivers, S. J. Gaskell,
and R. J. Beynon, “Multiplexed absolute quantification for proteomics
using concatenated signature peptides encoded by QconCAT genes,”
Nature Prot., vol. 1, pp. 1029–1043, 2006.

[18] I. Bogdán, J. Rivers, J. R. Beynon, and D. Coca, “High-performance
hardware implementation of a parallel database search engine for
real-time peptide mass fingerprinting,” Bioinformatics, vol. 24, pp.
1498–1502.

István A. Bogdán received the B.S. degree in applied electronics from “Tran-
silvania” University, Brasov, Romania, in 1995, and the M.Phil. degree in elec-
tronic engineering from Sheffield University, Sheffield, U.K., in 2006.

From 1998 to 2001, he was a Research Assistant in the Electronic and Elec-
trical Engineering Department, Sheffield University. In 2004, he joined the Au-
tomatic Control and Systems Engineering Department, Sheffield University, as
a Research Assistant. His interests are parallel computing, hardware-acceler-
ated algorithms, embedded systems, field-programmable gate-array systems and
very-large scale integrated chip design.

Daniel Coca received the M.Eng. degree in electrical engineering from the
“Transilvania” University, Brasov, Romania, in 1993 and the Ph.D. degree in
control systems engineering from Sheffield University, Sheffield, U.K., in 1997.

Since 1997, he has been a Research Associate in the Automatic Control and
Systems Engineering Department at the University of Sheffield. From 2002 to
2004, he was a Lecturer in the Department of Electrical Engineering and Elec-
tronics at the University of Liverpool, Liverpool, U.K. Since 2004, he has been
with the Department of Automatic Control and Systems Engineering, Sheffield
University, where he is currently Senior Lecturer. His research interests are mod-
elling, identification and control of complex systems, and bioimaging and bio-
logical data analysis using reconfigurable computers.

Dr. Coca is a Chartered Engineer (CEng) and member of the Institution of
Engineering and Technology (IET).

Rob J. Beynon received the B.Sc. degree in biochemistry and the Ph.D. degree
in enzymology from the University of Wales, Wales, U.K., in 1974 and 1978,
respectively.

He began his career at the University of Liverpool, Liverpool, U.K., and in
1993, became Chair of Biochemistry at the University of Manchester Institute
of Science and Technology, Manchester, U.K. His main areas of research are
protein chemistry, proteomics, proteolysis, and proteolytic enzymes. He is the
author of many papers. He assumed Chair of Veterinary Basic Sciences, Univer-
sity of Liverpool, Liverpool, U.K., in 1999, was the Chair of the Engineering and
Biological Systems Committee of the Biotechnology and Biological Sciences
Research Council from 2006 to 2009, and was Associate Dean for Research
from 2002 to 2008.

Prof. Beynon was the winner of the Glaxo Partnership Award 1994 and of
the Marbocyl Prize for Research Excellence in 2006. He was a member of the
Research Assessment Exercise Subpanel 16 (2005 to 2008)

Authorized licensed use limited to: Sheffield University. Downloaded on March 08,2010 at 04:28:15 EST from IEEE Xplore. Restrictions apply.

