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Temperature Response Functions (G-Functions) for Single Pile Heat 

Exchangers 

Abstract 

Foundation piles used as heat exchangers as part of a ground energy system have the potential to 

reduce energy use and carbon dioxide emissions from new buildings. However, current design 

approaches for pile heat exchangers are based on methods developed for boreholes which have a 

different geometry, with a much larger aspect (length to diameter) ratio.  Current methods also 

neglect the transient behaviour of the pile concrete, instead assuming a steady state resistance for 

design purposes.  As piles have a much larger volume of concrete than boreholes, this neglects the 

significant potential for heat storage within the pile. To overcome these shortcomings this paper 

presents new pile temperature response functions (G-functions) which are designed to reflect 

typical geometries of pile heat exchangers and include the transient response of the pile concrete. 

Owing to the larger number of pile sizes and pipe configurations which are possible with pile heat 

exchangers it is not feasible to developed a single unified G-function and instead upper and lower 

bound solutions are provided for different aspects ratios. (172 words) 

Keywords: ground heat exchanger, pile, ground energy system, ground source heat pump system 

 

Main Notation: 

c concrete cover to pipes (mm) 

Fo Fourier number (normalised time) 

G G-function or temperature response function 

hi heat transfer coefficient (W/m
2
K) 

H pile length (m) 

n number of pipes 

q heat transfer per unit depth of pile (W/m) 

r radius (m) 

rb pile radius (m) 

R resistance (mK/W) 

t time (s) 

T temperature (K) 

α thermal diffusivity (m
2
/s) 

∆ change in value 

Φ normalised temperature response 

λ thermal conductivity (W/mK) 

Subscripts: 

b borehole or pile 

c pile concrete 

f fluid 

g ground 

i inner 

o outer 

p pipe 
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1 Introduction 
Use of ground heat exchangers as part of a ground source heat pump system is an important means 

of reducing energy consumption in buildings. Traditionally the most commonly constructed type of 

heat exchangers are horizontal “slinky” type systems and deep boreholes.  While horizontal systems 

are designed largely empirically, commercial software based on numerical and analytical methods is 

available for borehole heat exchangers. Recently there has been an increase in the use of building 

piled foundations as heat exchangers [1] as this can bring both material and carbon savings 

compared with the construction of special purpose deep boreholes.  However, new design methods 

have not yet been developed for pile heat exchangers. Instead, methods developed for boreholes 

are typically applied, despite the different geometry of piles and boreholes.  Geometrical differences 

are best captured by the aspect ratio (AR), which is the length (H) to diameter (2rb) ratio of the heat 

exchanger. Piles typically have an AR of between 10 and 50, while for boreholes it may exceed 1000.  

In addition, large diameter piles offer opportunities for heat storage within the pile, something that 

established and emerging design methods neglect.  Owing to these geometrical differences, optimal 

thermal efficiency is not necessarily being achieved for heat pump systems which use pile heat 

exchangers as the ground source.  

1.1 Existing Design Approaches 

It is now 25 years since Eskilson published his pioneering thesis [2] which presented so called G-

functions for a range of borehole heat exchanger configurations. These functions give the 

normalised temperature (Φ) change of the ground at the edge of the borehole as a function of the 

Fourier number (or normalised time) resulting from a constant applied heat flux (q).  It is assumed 

that the temperature is everywhere the same in the ground at the outset, and that the ground 

surface and far field conditions have a constant temperature equal to this initial value. The G-

functions were developed by a combination of numerical and analytical means, assuming that the 

borehole is effectively a line heat source of finite length. The finite length is important, as the 

presence of a surface boundary condition of constant temperature leads to the development of a 

thermal steady state in the long term. Under these conditions, there is no further change in 

temperature for further input of heat at a constant rate.  The time at which steady state occurs 

depends on the aspect ratio of the heat exchanger.  

Eskilson [2] published a number of different g-function graphs showing the ground temperature 

response for a range of different borehole layouts, thus enabling the thermal interference between 

adjacent borehole heat exchangers to be taken into account.  These G-functions now underpin a 

number of major commercial software packages which interpolate between pre-programmed g-

functions according to the borehole configuration chosen by the designer.  This accessible design 

approach has helped the adoption of borehole heat exchangers across many parts of the world, but 

especially northern Europe and North America. Some improvements have been made to the basic G-

function concept since then; for example Bandos et al [3] have developed a method to include 

fluctuations in the ground surface temperature and the UK Partners in Innovation Project [4] 

developed software which allowed direct superposition of the single borehole G-functions in order 

to remove the need to interpolate between pre-programmed curves. However, the fundamental 

approach has remained unchanged.  
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As Eskilson’s G-functions are based on a finite line heat source model, when they are applied to 

larger diameter pile heat exchangers they will underestimate the temperature change at smaller 

timescales [5].  Because of this, it is common to adopt a hollow cylindrical heat source model [6, 7] 

for pile heat exchangers.  This model, first proposed by Ingersoll et al [6] and fully developed for 

ground heat exchanger applications by Bernier [7], is identical to the line source approach except 

that the source of the heat is assumed to be applied at the borehole or pile radius.  The major 

disadvantage of this approach is that the cylindrical heat source is hollow; therefore all heat is 

assumed to flow outwards.  However, recent work [8] has shown that for most pile heat exchangers 

the temperature response of the ground will fall somewhere between a line source model and the 

solid cylinder model of Man et al [9]. The latter is similar to the hollow cylindrical heat source 

approach, but critically assumes that heat can flow inwards from the heat source at the pile radius 

into the mass of the concrete as well as outwards into the ground.  However, because none of these 

simple heat source models take into account the real geometry of pile heat exchangers (ie the 

particular arrangements of pipes within the pile concrete) none of them can fully characterise the 

early thermal behaviour.   

In addition, the reduced aspect ratio of piles can be important. Field data for pile heat exchangers 

are rare, but a test plot of 300 mm diameter 10 m long piles was established by Wood et al [10]. 

Subsequent analysis showed discrepancies when attempting to predict the field fluid temperature 

results using software based on the finite line source model [11]. This was attributed by the authors 

to the short length of the piles. However, lack of similar high quality case studies for other pile 

geometries and pipe arrangements is problematic for validation of design methods. Recent 

instrumentation installed in the UK will contribute to increasing knowledge in this area [12].  

Another disadvantage of current pile heat exchanger design approaches is that a simple heat source 

model, used to predict the temperature changes in the ground, is usually combined with the 

assumption that the pile itself is at steady state. This assumption allows a constant resistance to be 

used when calculating the temperature difference between the heat transfer fluid and the edge of 

the pile. This method has been adopted on the basis of it’s successful use in the design of borehole 

heat exchangers. However, pile heat exchangers can exceed 1m in diameter and therefore have a 

much larger area of concrete in their cross section. As a result they take much longer to reach steady 

state [13].  This means that to capture their early thermal behaviour appropriately, a constant 

resistance is no longer appropriate and a transient approach to the heat transfer in both the 

concrete and the ground should be taken.   

Recently Li & Lai [14] have started to address these limitations by the development of G-functions 

based on superposition of infinite line sources in composite media. These two region analytical 

models are complex and the superposition must be derived for particular arrangements of pipes.  

They are also only applicable in the short term due to the infinite length of the heat source. G-

functions are typically normalised with respect to thermal conductivity, and it is more difficult to 

normalise the temperature response function when there are two sets of thermal properties 

involved, ie the ground and the concrete. Li & Lai chose to normalise by the concrete conductivity, 

with the result that the gradient of the temperature response function will depend on the ground 

conductivity. This illustrates the difficulty of making a universal temperature response function for 

pile heat exchangers given the additional importance of the concrete behaviour to the overall 

performance of the pile.  



5 

Because of the complexities of pile heat exchanger geometries the problem is also well suited to 

numerical simulation.  Codes developed for use with borehole heat exchangers, eg [15, 16] are 

equally applicable to pile applications.  In addition, numerical methods may be used to couple the 

thermal and mechanical aspects of the pile behaviour [17]. This paper makes used of numerical 

solution of the diffusion equation to consider a wide range of pile heat exchanger geometries.  We 

present new G-functions for pile heat exchangers based on empirical equations derived from 

extensive numerical simulations of a range of pile heat exchangers of different sizes and pipe 

arrangements.  The G-functions can be viewed as an update to the previous works of Eskilson, taking 

into account typical pile heat exchanger geometries.    Given the large number of variables which 

affect the performance of a pile heat exchanger it is not possible to develop a single universal G-

function. Instead lower and upper bounds for different combinations of pile and pipe sizes and 

arrangements are presented so that the functions can remain as simple as possible. The new G-

functions offer substantial improvement on existing solutions as they account for transient heat 

storage within the pile and are applicable over a full range of timescales. This is achieved by using 

separate G-functions for the temperature responses of the ground surrounding the pile (pile G-

functions) and of the pile itself (concrete G-functions). As a lower and upper bound approach is 

adopted the new functions are also much simpler than the analytical solutions proposed by Li & Lai 

[14]. This means they can be readily and easily adopted into design software (an example using 

Matlab is presented later in the paper) and will be applicable to a far wider range of construction 

scenarios.  

2 Ground Temperature Response Functions (Pile G-functions) 
G-functions for pile heat exchangers are presented here as temperature response functions which 

provide a relationship between normalised temperature (Φ) and the Fourier number (Fo) for a 

constant rate of heat transfer q (W/m), where: 

T
q

g
∆=Φ

πλ2
 (1) 

and 
2

b

g

r

t
Fo

α
=  (2) 

∆T is the change in temperature, λg is the soil thermal conductivity, αg is the soil thermal diffusivity 

and t is the elapsed time since application of the heat flux.  The subscripts f and g will be used with Φ 

to denote the response of the fluid and the ground (at the pile radius where r=rb) respectively.  

The temperature response of the ground (Φ) is normalised by the soil thermal conductivity, λg, as is 

typical for the design of ground heat exchangers.  The impact of the concrete thermal conductivity, 

λc, will be taken into account by consideration of the relative conductivities of the ground and the 

concrete. The temperature response of the concrete itself is discussed in Section 3.  

2.1 Short Term Behaviour: 2D Simulation 

Short term ground temperature response functions based on two dimensional numerical analyses 

have been presented in Loveridge et al [8] for a range of typical pile sizes and pipe arrangements 

(Table 1).  The numerical models were constructed using the software COMSOL and comprise 
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horizontal slices through the pile and surrounding ground.  As the simulation principally concerned 

the temperature changes occurring in the ground and concrete, and given that the pipes and fluid 

reach a thermal steady state rapidly, these elements were not included.  Instead, a constant heat 

flux was applied to the boundary condition representing the outside of the pipes and the 

temperature changes due to conduction in the concrete and the ground were recorded.  Full details 

of the numerical set up including meshing and boundary conditions are given in [8]. Two 

dimensional analysis is justified for timescales between Fo=1 and Fo=10 (depending on the accuracy 

required) as the pile end effects are not yet significant.  The inclusion of three dimensional effects 

will be discussed in Sections 2.2 & 2.3.   

Based on average temperatures around the pile circumference, a summary of the model ground 

temperature responses, plotted as Φg against normalised time, Fo, is presented in Figure 1.  A range 

of curves is possible depending on the number and arrangement of the heat exchanger pipes, the 

size of the pile and the relative properties of the pile concrete and the surrounding ground.  Typically 

the responses lie between two analytical solutions: 

1. The simplified line source (Equation 4), where the exponential integral in Equation 3 is 

replaced by a log-linear relationship: 







=Φ

Fo
Ei

4

1

2

1

 

(3) 

( )[ ]γ−≈Φ Fo4ln
2

1

 

(4) 

2. The solid cylinder solution [9], which when simplified becomes:  
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
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(5) 

The hollow cylinder model, commonly used for boreholes, was found to be less appropriate for 

representing pile heat exchangers.  

Table 1 Pile heat exchanger geometries and range of properties used in the 2D Model 

Pile 

Diameter 

Pipe 

External 

Diameter 

Number 

of Pipes 

Pipe Positions (see note) Ground and 

Concrete 

Conductivity 

Ground and Concrete 

Volumetric Heat 

Capacity 

300 mm 25 mm 2 Edge – 50 mm cover 

1 W/mK or   

2 W/mK 
1.6 MJ/m

3
K 

Central – 105 mm cover 

600 mm 4 Edge – 75 mm cover 

Central – 255 mm cover 

1200 

mm 

8 Edge – 75 mm cover 

4 Central – 555 mm cover 

Note: cover is the amount of concrete between the pipes and the ground; centrally placed 

pipes are assumed to be symmetrically placed around a 40mm diameter steel bar. 
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Figure 1 – Range of short term pile temperature response functions for the cases given in Table 1 

(based on 2D numerical simulations by Loveridge et al [8]) 

 

 

Table 2 Upper Bound (UB) and Lower Bound (LB) temperature responses as for the cases shown in 

Table 1 and Figure 1. 

 Pile 

Diameter, 

2rb 

Number 

of Pipes, 

n 

Concrete 

cover, c  

Concrete 

conductivity 

Concrete 

volumetric 

heat capacity 

Ground 

conductivity 

Ground 

volumetric 

heat capacity 

UB 1200 mm 8 75 mm 

cover 

2 W/mK 1.6 MJ/m
3
K 1 W/mK 1.6 MJ/m

3
K

 

LB 1200 mm 4 555 mm 

cover 

1 W/mK 1.6 MJ/m
3
K 2 W/mK 1.6 MJ/m

3
K

 

 

Ground temperature responses are closest to the line source solution (Equation 4) when the pipes 

are positioned in the centre of the pile, and closest to the solid cylinder model (Equation 5) when the 

pipes are nearer the pile edge. When the concrete conductivity is less than that of the ground, the 

response will move closer to the line source; when the reverse is true the response tends to move 

closer to the solid cylinder solution.  The results for smaller diameter piles tend to be positioned 

more centrally between the line source and solid cylinder solutions, while larger diameter piles have 

a more varied response. Consequently both the lower and upper bound responses are given by 

larger diameter piles, as summarised in Table 2.  

2.2 Long Term Behaviour: 3D Simulation 

In the longer term full three dimensional simulations are required in order to determine the 

temperature response functions for pile heat exchangers. This is because the short length of most 

piles means that the ground surface boundary condition will rapidly start to influence the results. In 

the very long term the temperature response will converge towards that of other existing analytical 
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solutions: the finite line source, fine solid cylinder and finite hollow cylinder all become equivalent as 

Fo becomes large (typically greater than 100). To confirm the thermal behaviour of pile heat 

exchangers over intermediate timescales a three dimensional model was set up using the finite 

element software ABAQUS in heat conduction mode. To reduce the number of simulations required, 

only the upper and lower bound scenarios (refer to Table 2) identified in Section 2.1 were developed 

into full three dimensional models.  While more extreme scenarios could possibly be found, the 

conditions presented in Figure 1 are intended to represent the range of conditions likely to be 

encountered in most practical scenarios. As the temperature response will be affected by the 

surface boundary, different aspect ratios have been considered for both the upper and lower bound 

cases.  Based on previous studies of constructed pile heat exchangers [5], aspect ratios of 15, 25, 

33
1
/3 and 50 have been used.  

The model is based around a quarter cylindrical sector (Figure 2), taking account of symmetry to 

reduce the size of the model. A constant rate of heat flux is applied at the pipe boundaries; the 

temperature response at these boundaries and at the edge of the pile is calculated by the model. 

The pipes themselves were not modelled, so that any thermal resistance associated with the pipe or 

the fluid was not included in the model. This is considered appropriate as this element of the heat 

transfer process will reach steady state rapidly and is also straightforward to calculate by other 

means (refer to Section  4.14.1). The model contains the ground surrounding the pile up to a radial 

distance of 25 m and beneath the base of the pile to the same distance.  Sensitivity analyses have 

shown that this is appropriate for times up to Fo=200.  

Figure 2 Schematic of three dimensional model for Fo < 200 (detail shown for upper bound case) 

 

 

The soil and concrete properties used in the model are given in Table 2.  The properties were 

assumed to be constant throughout the simulations and are not subject to change with 

temperature. This is considered appropriate for the relatively small temperature changes associated 

with ground energy systems.  The lines of symmetry in the model were insulated, while the outer 
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radial edge, along with the top and base, are kept at a constant temperature of zero degrees.  The 

initial temperature everywhere in the model was also zero degrees so that the model output 

provided a direct change in temperature values at any given point.  No groundwater flow, or other 

external influence on heat flow, was permitted.  

The model was meshed using 8 node linear heat transfer brick elements.  Element sizes were 

adjusted to balance accuracy of results and analysis run times.  The results were verified in two 

ways. Short time outputs were compared to the response functions presented in Loveridge et al [8] 

while the final temperature changes at Fo=200 were compared to the results of existing finite line 

and finite cylinder source models.  In all cases the average temperature (both in terms of 

circumferential and vertical variation) at the pile edge was used by taking the mean of the calculated 

temperatures at all the nodes forming the circumferential surface of the pile. Normalised 

temperatures were typically within 0.005 of the known solutions, which is equivalent to temperature 

differences of no more than 0.01 degrees.  

For the largest values of Fo (typically Fo>100), the upper and lower bound pile scenarios are 

equivalent and standard finite line source methods have been used to calculate the steady state 

section of the temperature response functions for the four different aspect ratios.   

2.3 Simulation Results 

Figures 3 and 4 show the results of the three dimensional model plotted as average ground 

temperature response functions for four different aspect ratios for the upper and lower bound pile 

scenarios respectively.   Also shown are the upper and lower bound short term responses from the 

two dimensional model. Differences between the two dimensional and three dimensional cases first 

appear after Fo=1, becoming significant (up to 10% to 15%) by Fo=10. These differences are greatest 

for smaller aspect ratio piles. Although not shown for clarity, by Fo=100 the model results have 

converged with Eskilson’s finite line source.   

Combining the results from the 2D and 3D models and the finite line source, the overall average 

temperature response functions for pile heat exchangers are given in Figure 5.  Eight separate curves 

are required to characterise the response: four aspect ratios for each of the upper and lower bound 

solutions.  For times up to approximately Fo=10 the temperature response is controlled by the pile 

internal geometry (size, number and arrangements of pipes). At this time only two curves are 

distinguishable: the upper and lower bound, as the aspect ratio does not yet influence the 

temperature response significantly.  At larger values of Fo, the upper and lower bound curves plot 

on top of each other, but diverge according to the pile aspect ratio (effectively the pile external 

geometry). Therefore effectively only four curves are visible at larger values of Fo.  

The upper bound solutions typically apply to cases where the heat transfer pipes are installed close 

to the edge of the pile cross section, with larger diameter piles being closest to the upper bound. 

The lower bound solutions typically apply to cases where the pipes are installed in the centre of the 

pile. Again larger diameter piles are more likely to be closer to the bound, with smaller diameter 

piles falling between the upper and lower bounds.  It is important to note that there is no significant 

straight line portion of the temperature response curves in Figure 5. This means that the flow is 

never purely radial as assumed in some simpler models.  
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To allow for easier implementation of the temperature response functions a curve fitting exercise 

has been carried out for the eight G-functions presented in Figure 5, the results of which are 

contained in Appendix A.  

 

Figure 3 Average ground temperature response from 3D model (upper bound) 

 

Figure 4 Average ground temperature response from 3D model (lower bound) 
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Figure 5 Pile heat exchanger G-functions 

 

3 Transient Thermal Resistance of the Pile (Concrete G-functions) 
To incorporate the transient response of the pile concrete into the overall temperature response 

function, the proportion of the steady state thermal resistance that has been achieved at a given 

value of Fo has been calculated using the output from the 2D model.  As 90% to 95% of the steady 

state in the concrete is reached by Fo=1, this 2D simplification is considered appropriate. At any 

given time the thermal resistance of the concrete part of the pile is calculated according to Equation 

6: 

q

TT
R

bp

c

−
=  (6) 

where pT  and 
bT are the integral mean values of the temperature at the pipes and the pile edge 

boundaries respectively, and q is the total heat flux applied to the all the pipe boundaries.  The 

steady state resistance is the asymptotic value of Equation 6 calculated at larger values of time, 

typically when Fo approaches 10.  Thus at any point in time the transient value of Rc can be 

compared with the steady state value. A summary of the results of these calculations is shown in 

Figure 6 and Figure 7.  As the response is specific to the pile construction and cannot be generalised 

into a single universal response curve, pairs of upper and lower bound solutions have been 

developed for the cases where the pipes are in the centre and near the edge of the pile respectively.  

The two cases have been treated separately as, especially for larger diameter piles, the shapes of the 

curves are different. In all cases the upper bound solutions represent the case of a large pile where 

the ground is less conductive than the pile concrete. The lower bound represents the opposite 

situation, with a small pile and the ground being more conductive than the pile.  To allow these 
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response curves to be implemented as concrete G-functions, curve fit data for Figures 6 and 7 are 

presented in Appendix B. 

Figure 6 Concrete G-functions: proportion of steady state thermal resistance as a function of Fo 

(pipes placed centrally) 

 

Figure 7 Concrete G-functions: proportion of steady state thermal resistance as a function of Fo 

(pipes placed near the pile edge) 
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4 Calculating the Fluid Temperature Response using New Pile and 

Concrete G-functions 
To determine the overall temperature response function of a pile heat exchanger, three elements 

must be considered: 

1. The thermal resistance of the pipes and fluid 

2. The transient pile concrete response 

3. The ground response 

Thus: 

g

g

ccpf G
q

GqRqRT
πλ2

++=∆  (7) 

where q is the heat transfer rate per metre length of the pile heat exchanger, Rp is resistance of the 

pipes (including the fluid), Gc is the concrete G-function describing the transient concrete response 

and Gg is the pile G-function for the transient response of the ground surrounding the piles.  

4.1 Pipe Resistance 

Rp can be defined as the sum of the pipe conductive resistance and the pipe convective resistance as 

follows: 

pcondpconvp RRR +=
 
 (8) 

The convective resistance is then: 

ii

p
hrn

R
conv π2

1
=

 (9) 

where n is the number of pipes within the heat exchanger cross section, ri is the pipe internal radius 

and hi is the heat transfer coefficient.  The latter can be calculated using a number of standard 

equations such as the Dittus-Boelter equation [18] or the Gnielinksi correlation [19]. The pipe 

conductive resistance can be assessed using the equation for the resistance of a hollow cylinder, 

which for n pipes in parallel gives: 

( )

pipe

io
p

n

rr
R

cond πλ2

ln
=

 (10) 

where ro is the outer radius of the pipe.  

4.2 Pile Concrete Resistance 

The resistance of the concrete part of the pile, termed Rc, can be calculated numerically as per 

Equation 6, or analytically by the complex multi-pole method [20]. Alternatively, simpler empirical 

equations for determining Rc are available [13]. For the special case of a pile with only two pipes in 

the cross section, the multi-pole method becomes easier to apply. The first order multipole and 

related line source equations for the two pipe case are presented by Hellstrom [21].   
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4.3 Pile and Concrete G-Functions 

The new G-functions are presented in Figures 5, 6 & 7. For easier implementation in analysis, 

empirical equations for the curves have been calculated by a least squares regression, using 

approximately equal periods of ln(Fo). Equations for Gg are given in Appendix A and depend on the 

pipe arrangements and the pile aspect ratio respectively.  Equations for Gc (Fo<10) are given in 

Appendix B according to the pile size and pipe arrangements. For Fo>10 the pile concrete is at steady 

state and Gc can be taken to equal 1.   

5 Example Applications 

5.1 Controlled Energy Input 

To demonstrate the application of the new G-functions and to highlight the differences between this 

and existing design equations, an example thermal load profile has been used to calculate the 

ground and fluid response for a number of different cases.  The calculations are carried out for a 600 

mm diameter, 20 m long pile heat exchanger (AR=33 
1
/3) with a thermal conductivity of λc=1 W/mK. 

The surrounding ground is assumed to have thermal properties described by λg=2W/mK and           

αg=1x10
-6 

m
2
/s. The pile concrete thermal resistance Rc is 0.075 mK/W and the pipe resistance Rp is 

0.025 mK/W for four pipes placed near the edge of the pile.  The building thermal load profile for a 

typical year has been developed from a numerical simulation of a modern multi-use development in 

the South East of England, scaled down to an appropriate level for a single pile.  The profile, shown 

in Figure 8, includes heating and cooling loads, and has been used as hourly input data with changes 

in load on daily cycles.  

Figure 8 Example thermal loads for one year commencing in autumn (insets shows daily cycle detail) 

 

Note: positive thermal loads are heat injection to the ground (building cooling); negative 

thermal loads are heat extraction from the ground (building heating) 
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5.1.1 Ground Temperature Response Functions 

Using these input parameters, the temperature change in the ground has been calculated for a one 

year period for the following ground temperature response functions (Figure 9): 

1. An infinite line source (using the exponential integral, Equation 3) 

2. A finite line source [2] with AR=33 
1
/3 

3. An upper bound pile G-function (Equation A-1) with AR=33 
1
/3 

4. A lower bound pile G-function (Equation A-2) with AR=33 
1
/3 

Functions 1 and 2 represent those regularly used in current practice.  The hollow cylinder is also 

used in some commercial software, but as discussed this is not considered appropriate and 

therefore has been discounted in this example. Functions 3 and 4 are the new G-functions proposed 

by this study.  For clarity of subsequent presentation the solid cylinder model [9] has not been used 

as this would be close in behaviour to the proposed upper bound solution. The two-zone analytical 

solutions of Li & Lai [14] has not been used in this comparison as the results should be equivalent to 

the upper and lower bound pile G-functions if calculated for the same pipe positions and soil and 

concrete parameters.  However, the complexity of these functions does not make them attractive to 

routine implementation.  

It should also be noted that when using the full analytical form of the infinite line source (Equation 3) 

rather than the mathematical simplification (Equation 4), then the line heat source plots between 

the upper and lower bound pile G-functions (Figure 9).  This is because Equation 3 is representative 

of the case where the ground and concrete conductivity are equal and the pipes are in the centre of 

the pile.  This is the equivalent of the lower part of the range of responses for λc=λg as shown in 

Figure 1.  

Figure 9 Temperature response functions used in the example calculations 
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To include the hourly fluctuations in applied thermal load, q, superposition has been applied to the 

thermal load time series according to the following equation: 

( ) ( )[ ]inin

ni

i g

i

n FoFoGFoFoG
q

T −−−=∆ −

=

=

∑ )1(

1 2πλ
  (11) 

where n is the point in normalised time in which the superposition is evaluated and G is the G-

function (one of the cases 1 to 4 above) calculated at the value of Fo prescribed in the equation.  

Equation 11 has been coded in the software Matlab to allow calculation of the sum in hourly 

timesteps for the period of one year.   

Figure 10 Differences in temperature response for a finite and infinite line source model: a) over one 

year; b) minimum temperatures during heat extraction; c) maximum temperatures during heat 

injection 

 

Figure 10 shows the calculated temperature changes in the ground for the infinite and finite line 

source.  Figure 10a presents the data for the entire year and shows that the peak temperatures do 

not always correspond exactly with the peak thermal loads owing to the cumulative effect 

throughout the year. Figures 10b and 10c show the results in more detail for the periods when the 

calculated temperature changes are greatest.  This illustrates the importance of taking into account 
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the finite length of a pile heat exchanger, even for an operational period as short as one year.  It can 

be seen that the infinite line source always overestimates the extreme temperatures in summer and 

winter, with the finite line source providing a smaller range of calculated temperature changes.  

Thus, while the infinite line source may be conservative in predicting temperature change, it does 

not offer the most energy efficient design solution. This effect will be more significant for smaller 

aspect ratio piles and for unbalanced thermal loads over longer time periods.   

The subsequent figures show comparisons between the other temperature response functions listed 

above.  They all show the same overall pattern of temperature change, but with important 

differences concerning the calculated minimum and maximum temperature changes. Therefore, for 

clarity, only the minimum and maximum temperature changes are shown in the following figures, 

equivalent to parts b and c of Figure 10. Figure 11 shows the difference in temperature response 

according to the idealised geometry of the pile, ie whether an upper bound, lower bound or line 

source is chosen to represent the pile and pipe arrangements. In all cases the finite length of the 

heat exchanger is accounted for (ie response functions 2, 3 & 4 are compared). The upper bound pile 

G-functions shows a greater range of temperature changes than the lower bound pile G-function 

and the finite line source. This is especially the case during the middle part of the year (summer) 

when the magnitude of the heat injection peaks are particularly high (Figure 8) and greater in 

magnitude than the corresponding daily heat extraction peaks in winter.  The lower bound and line 

source solutions also show greater lag in response time with smaller more damped responses to the 

heat input compared with the upper bound. The calculated temperature difference between the 

different functions is up to approximately 0.5
o
C. 

Figure 11 Differences in temperature response for the pile G-functions compared with a finite line 

source model: a) minimum temperatures during heat extraction; b) maximum temperatures during 

heat injection 

 

It is also worth noting that the hollow cylinder model, which although not compared directly in these 

analyses, is known to predict greater temperature changes than the upper bound pile G-function 

(Figure 1).  Like the use of the infinite line source, this would also provide a conservative alternative 

solution for predicting temperature changes around pile heat exchangers.  However, the differences 
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shown in Figure 1 would be exacerbated for small timescale changes in heat flux and thus this 

approach is not be recommended.  

5.1.2 Concrete G-functions 

The most important difference in the calculated temperature changes between existing methods 

and the proposed new G-functions occurs when the contribution of the pile concrete is included in 

the calculations. Figures 10 and 11 only consider the temperature change in the ground, ie just the 

third term in Equation 7. The overall fluid temperature response is calculated by applying Equation 7 

in full, using superposition to consider the transient response of the pile concrete.  Figure 12 

compares an upper bound pile G-function where a steady state is assumed in the pile concrete (ie 

Gc=1) with the case where transient behaviour is taken into account by use of a concrete G-function 

(equation B-1). In this case lower bound conditions for the concrete have been assumed.  Generally, 

use of steady state resistance for the pile concrete (Gc=1) will overestimate the range of 

temperature response. This means that there are missed opportunities to improve the system 

efficiency during design.  For the example thermal loads analysed, there is a temperature difference 

of up to 2
o
C between the steady and transient approaches in the summer and a smaller 1

o
C 

temperature difference in winter. Greater differences would be expected in cases where the hourly 

variations of thermal loads are most extreme.  Also worth noting is that the inclusion of the concrete 

within the model gives a much wider range of calculated temperatures, with the fluid temperature 

change ranging from -9
o
C to +18

o
C, compared with the ground temperature changes which are only -

4.5
o
C to +7.5

o
C.  This reflects the important, yet often underestimated role, of the pile concrete in 

the overall heat transfer and storage around pile heat exchangers.  

Figure 12 Differences in temperature response for upper bound pile G-functions using steady state 

and transient approaches to the pile concrete: a) minimum temperatures during heat extraction; b) 

maximum temperatures during heat injection 

 

5.2 Controlled Temperature Range 

The analysis above demonstrates that for the example scenario use of the new concrete G-function 

results in a calculated temperature change range which is 3
o
C less than the case where a constant 

steady state Rb is applied.  To translate this temperature difference into energy savings the reverse 

problem is analysed.  This is more realistic of real operation, where typically temperature limits are 
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applied to the fluid as it enters and leaves the heat pump and the aim of design is to maximise the 

amount of energy which can be extracted from, injected into or stored within the ground, while not 

exceeding those limits.  

The same scenario as the above example is used, with a 600 mm diameter, 20 m long pile heat 

exchanger (AR=33 
1
/3) with a concrete thermal conductivity of λc=1 W/mK. The surrounding ground 

is assumed to have thermal properties described by λg=2W/mK and αg=1x10
-6 

m
2
/s. The pile 

concrete thermal resistance Rc is 0.075 mK/W and the pipe resistance Rp is 0.025 mK/W for four 

pipes placed near the edge of the pile.  Assuming a typical initial ground temperature of 12
o
C, 

temperature limits are specified at 2
o
C and 32

o
C (ie changes of -10

 o
C and +20

 o
C).  Two cases are 

considered: the upper bound pile G-function where a steady state is assumed in the pile concrete (ie 

Gc=1) with the case where transient behaviour is taken into account by use of a concrete G-function 

(equation B-1).  The traditional finite line source is not considered in this example. Although this 

approach would result in a smaller quantity of energy being calculated compared to the upper 

bound pile G-function, the difference is secondary compared to the differences between the 

transient and steady state approach to the pile concrete.  

For simplicity, both of calculation and of presentation of the results, the amount of energy 

obtainable between these temperature limits has not be absolutely maximised.  Instead, the shape 

of the respective heating and cooling demand curve (Figure 8) has been maintained, but the power 

input at each of the hourly time steps has been increased by an equal amount pro rata. The total 

annual energy input represented by Figure 8 is 4115 kWhrs/yr heating and 4224 kWhrs/yr cooling.  

These figures are the contribution of one pile heat exchanger, whereas in a real system many pile 

heat exchangers would be working together to provide a meaningful contribution to the building 

heat and cooling demand.  

Figure 13 shows the relationship between the available energy and the specified fluid temperature 

limits for the two cases under consideration. The greater the temperature limits the greater the 

energy obtainable from the ground. For the temperature limits specified (-10
 o

C and +20
 o

C) the 

difference in available energy between the steady state and transient (concrete G-function) cases 

are approximately 350 kWhrs/year and 525 kWhrs/year in heating and cooling respectively.  These 

figures refer to a single pile. This amounts to respectively 8% and 10% increases in available energy 

when the concrete G-function is used compared to the traditional steady state approach.  

For the example considered, the improvement is greatest in the case of cooling, or heat injection to 

the ground.  This is because the cooling loads change more rapidly compared to the heating loads 

(refer to Figure 8).  The greater the short term fluctuations in thermal load the more important it 

becomes to consider the transient behaviour of the pile concrete, effectively the short term storage 

of energy in the concrete.  In this example energy storage totals approximately 0.9 MWhrs/year per 

pile. For larger diameter piles or where the short terms fluctuations in thermal loads are greater this 

figure would be substantially increased. The use of an infinite line source (refer to Figure 10) or a 

finite line source (refer to Figure 11) instead of an upper bound pile G-funciton would also 

underestimate the energy available.   
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Figure 13 Relationship between allowable fluid temperature change and available energy for 

example single pile heat exchnager: a) heating; b) cooling 

 

Note: refer to text for details of pile and thermal load scenarios considered 

5.3 Discussion 

The calculation results presented in Figures 10, 11, 12 and 13 are examples based on particular pile 

properties and thermal loading conditions.  Some of the differences between the results obtained 

using pile and concrete G-functions and those using traditional line source approaches are small, 

while others are significant. Under-predicting temperature ranges as shown in Figure 12 would lead 

to a reduction in the assessed energy capacity of the system as demonstrated in Figure 13. This is 

because systems must operate within defined temperature limits and use of a steady state pile 

resistance would suggest that less heat transfer is possible within any given limits.  In this context, 

3
o
C is significant, representing 0.9 MWhr/year for a single heat exchanger. This aspect of behaviour 

is especially true for pile heat exchangers for two reasons. First they must be operated across 

smaller ranges of temperatures than borehole heat exchangers to remove any risk of ground 

freezing at low temperatures. Secondly, they also contain a much larger volume of concrete in their 

cross section.   

The actual impact of the differences between implementing pile and concrete G-functions compared 

with traditional methods will depend on the particular scheme details. However, based on the 

underlying equations it can be inferred that benefit from using pile and concrete G-functions will be 

greatest when: 

1. There is a lower bound condition with respect to transient behaviour of the pile concrete.  

This would occur in situations where the pile concrete is less conductive than the ground.  

2. Piles are of larger diameter.  Although larger diameter piles are associated with the upper 

bound concrete G-functions, the pile diameter is a non-dimensioning variable for the Fourier 

Number, Fo. This means that a one hour time step for larger diameter piles will be 

equivalent to a much smaller value of Fo and hence a lesser proportion of steady state in the 

pile.  

3. Thermal load scenarios are such that there are significant changes in applied heat flux over 

small timescales, especially when the overall applied thermal load is also large. It is in these 

scenarios that heat storage in the pile will be most significant.  
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4. In long term analyses where there is a net imbalance of heat transfer with respect to heat 

injection and heat extraction.  

6 Conclusions 
New G-Functions for pile heat exchangers have been presented, split into pile G-functions which 

describe the temperature changes in the ground and concrete G-functions which describe the 

temperature changes within the pile itself. The functions capture the short term variation in 

behaviour depending on the internal pipe arrangements and the material thermal properties in 

addition to the transient heat transfer and storage within the pile concrete. At larger timescales 

Eskilson’s G-functions, based on a finite line source, are appropriate.  As the short and long term 

behaviour depends on the internal and external geometry respectively, it has not been possible to 

develop a single unified G-function for all pile heat exchangers. Instead, lower and upper bound 

solutions have been presented which can be combined according to the specific circumstances 

under consideration.  This provides a flexible approach which will improve the accuracy of 

temperature calculations associated with pile heat exchangers.  In particular, including the transient 

temperature change in the concrete will reduce the range of calculated fluid temperatures, or 

conversely allow greater energy to be obtained within fixed temperature limits. Thus the proposed 

new G-functions provide the opportunity for greater efficiency for heat pump systems.  In the 

examples given, this translates to an increase in energy obtained of around 10%.  The actual value 

which will be appropriate for a specific scheme will depend on the details of the pile and ground 

conditions.  However, it will be greater in cases where the piles are of large diameter and the 

concrete is of low conductivity compared to the surrounding ground.  
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Appendix A Curve Fit Results for Ground Temperature Response 

Functions 
 

The ground temperature response G-function for the upper bound solution for Fo>0.1 takes the 

form: 

( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] hFogFofFoeFodFocFobFoaGg lnlnlnlnlnlnln
234567

++++++=
 

(A-1)
 

where the curve fitting parameters are defined in Table A-1. For Fo<0.1 then Gg should be set to 

zero. 

Table A-1 Curve fitting parameters for upper bound Gg for 0.1<Fo<100,000 

 AR=15 AR=25 AR=33 AR=50 

a -4.837x10
-7

 -3.796x10
-7

 -2.192x10
-7

 -5.142x10
-8

 

b 6.597x10
-6

 6.441x10
-6

 4.311x10
-6

 8.756x10
-7

 

c 6.592x10
-5

 4.129x10
-5

 2.939x10
-5

 3.233x10
-5

 

d -8.843x10
-4

 -8.687x10
-4

 -7.328x10
-4

 -5.292x10
-4

 

e -4.678x10
-3

 -3.276x10
-3

 -2.647x10
-3

 -2.79x10
-3

 

f 0.03975 0.04415 0.0443 0.04284 

g 0.3018 0.3071 0.3076 0.3144 

h 0.5715 0.5819 0.5861 0.597 

Sum of square 

errors 
4.755x10

-3
 1.963x10

-3
 4.36x10

-3
 3.988x10

-3
 

Coefficient of 

determination (R
2
) 

0.99993 0.99998 0.99996 0.99997 
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The ground temperature response G-function for the lower bound solution for Fo>0.25 takes the 

form: 

( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] hFogFofFoeFodFocFobFoaGg lnlnlnlnlnlnln
234567

++++++=
   

(A-2)
 

where the curve fitting parameters are defined in Table A-2. For Fo<0.25 then Gg should be set to 

zero. 

Table A-2 Curve fitting parameters for lower bound Gg for 0.25<Fo<100,000 

 AR=15 AR=25 AR=33 AR=50 

a 2.68x10
-7

 -6.108x10
-7

 -8.984x10
-7

 -8.741x10
-8

 

b -1.306x10
-5

 1.83x10
-5

 3.137x10
-5

 8.243x10
-6

 

c 1.827x10
-4

 -1.942x10
-4

 -3.894x10
-4

 -1.835x10
-4

 

d -9.15x10
-5

 1.366x10
-3

 2.361x10
-3

 1.894x10
-3

 

e -0.01434 -0.01275 -0.01257 -0.01375 

f 0.05634 0.04932 0.04341 0.04905 

g 0.3722 0.3863 0.3928 0.3997 

h 0.3989 0.4173 0.4245 0.4267 

Sum of square 

errors 
2.332x10

-3
 4.502x10

-3
 8.38x10

-3
 6.404x10

-3
 

Coefficient of 

determination 

(R
2
) 

0.99995 0.99993 0.99989 0.99993 
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Appendix B Curve Fit Results for Transient Pile Temperature 

Response Functions 
The pile temperature response G-function for Fo<10 takes the form: 

( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( ) gFofFoeFodFocFobFoaGp ++++++= lnlnlnlnlnln
23456

  
(B-1) 

where the curve fitting parameters are defined in Table B-1. For Fo>10 Gp should be set to 1. for 

Fo<0.01 Gp should be set to zero.  

Table B-1 Curve fitting parameters for Gp for 0.01<Fo<10  

 Central Pipes Pipes Near Edge 

 Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

a -1.005x10
-4

 3.552x10
-5

 -1.438x10
-5

 -2.991x10
-5

 

b -2.335x10
-4

 6.017x10
-5

 1.276x10
-5

 -8.037x10
-6

 

c 0.003037   -6.033x10
-4

 9.534 x10
-4

 8.612 x10
-4

 

d 0.001803   0.001301   1.307 x10
-4

 -0.001126   

e -0.04339   -0.00744   -0.02446   -0.01086   

f 0.1029   0.02559   0.07569   0.04785   

g 0.9095   0.9694   0.921   0.939   

Sum of square 

errors 
5.11x10

-4
 4.28x10

-5
 9.28x10

-4
 8.96x10

-5
 

Coefficient of 

determination 

(R2) 

0.99993 0.99995 0.99979 0.99990 

 


