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Remarkable progress in terahertz (THz) technology over the

past decade has been driven by the potential applications of

THz waves in areas such as biomedical imaging, long-range

screening, and organic materials identification [1]. This growth

is in no small measure related to the success of the quantum

cascade laser (QCL) which has established itself as one of

the most promising radiation sources at terahertz frequencies

[2]. The appeal of these novel semiconductor lasers stems

from their compact size, broad spectral coverage (∼ 1–5

THz), and high output powers [3]. The ability of THz QCLs

to generate coherent emission with quantum noise-limited

linewidths, make them particularly suited to the development

of interferometric THz sensing and imaging systems.

In this paper, we will discuss the dynamics of THz QCLs

based on the reduced rate-equation model and explore the

mutual interplay between the electro-optical and thermal pro-

cesses and the mode transition dynamics in these devices.

We will then focus on the effect of optical feedback on THz

QCLs, propose a number of interferometric schemes based

on feedback effect in cw driven and pulsed QCLs and finally

outline several practical applications of these interferometers.

Laser feedback interferometry (LFI) with THz QCLs is a

recently-developed technique, ideally-suited to the develop-

ment of compact THz sensing systems, in which radiation is

reflected back into the internal laser cavity from an external

target of interest. The optical feedback gives rise to measurable

changes in the electronic and optical behaviour of the laser,

in a phenomenon frequently referred to as self-mixing [4].

All LFI systems operate according to the same basic prin-

ciple: light emitted from a laser is transmitted to an external

target from which it is partially reflected back to the laser.

A portion of it re-enters the laser cavity, and there the re-

injected wave interacts (mixes) with the resonant modes of

the laser [4], [1]. Due to the self-coherent nature of laser

feedback interferometers, they are inherently highly sensitive,

suppressing most radiation entering the laser cavity that is not

their own. Furthermore, the maximum speed of response to

optical feedback is determined by the frequency of relaxation

oscillations in the laser itself [5]. By mixing in the laser

cavity, the re-injected light perturbs the intra-cavity electric

field, transferring this information from outside the laser cavity

(phase and amplitude in the transmission path and upon

reflection from the target) which then becomes measurable

through the resulting perturbations to the operating parameters

of the laser, such as a change in gain leading to variations in

optical power, lasing frequency, and laser terminal voltage.

These variations in the laser terminal voltage are frequently

monitored directly [6], [7].

Most THz LFI systems to date have employed THz QCL

sources in cw operation [8]. Nevertheless, pulsed THz QCL

operation yields superior performance over short timescales

compared with cw operation, owing to the lower internal Joule

heating within the THz QCL, and hence higher optical gain,

lower net electrical power consumption and higher wall-plug

efficiency. Indeed, pulsed THz QCLs have been demonstrated

with operating temperatures as high as 200 K and peak

THz output powers in excess of 1 W [3]. Single-mode THz

emission with broad frequency tuning is highly desired for a

wide range of spectroscopic sensing and imaging applications.

A challenge remains, though, in the interpretation of LFI

signals when a pulsed source is used, since the lasing dynamics

are significantly more complex than in cw operation. This is

caused by the interplay between the electro-optic response

to the retroinjected THz field and the thermal transients

occurring in a pulsed THz QCL. In this paper we present the

comprehensive model of these coupled effects (See Fig. 1),

thereby providing an accurate platform for predicting and

analysing the behaviour of a pulsed THz QCL under optical

feedback. We also discuss the role of frequency tuning for in-

terferometric applications and the means by which we achieve

it. We use the coupled-cavity (CC) THz QCL as an exemplar

structure with the extended frequency tuning range achieved

by localized electrical heating in an optically coupled passive

cavity. Figure 2 shows the steady-state spectral power density

(SPD) distribution as a function of the tuning current for a CC-

QCL simulated using our multi-mode reduced rate equations

model.

In the final part of the paper we will discuss the cw
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Fig. 1. Self-mixing response to thermal modulation. Part (a) shows drive
current to the laser and part (b) the optical output power with and without
optical feedback present. Cold finger temperature was 47 K, target reflectivity
0.2, and external cavity length 2.272 m, giving an Acket’s characteristic
parameter of 2.06.
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J. Cooper, P. Dean, S. P. Khanna, M. Lachab, E. H. Linfield, A. G.
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