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The accurate prediction of the conditions of a pressurized jet upon its expansion to atmospheric 

pressure is of fundamental importance in assessing the consequences associated with accidental 

releases of hazardous fluids from pressurized containments. An integral multi-phase 

compressible jet expansion model which for the first time accounts for turbulence generation is 

presented. Real fluid behavior is accounted for applying a suitable equation of state. Using the 

accidental release of two-phase CO2 from a pressurized system as an example, the proposed 

model is shown to provide far better predictions of the fully expanded jet momentum, and hence 

its downstream flow characteristics as compared to existing integral models where the impact of 

turbulence generation is ignored.  

Keywords: process safety, multiphase flow, turbulence, jet expansion  
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1. INTRODUCTION  

Over 3.6 million km of pressurized pipelines have been constructed to transport enormous 

quantities of highly flammable hydrocarbons around the world
1
. Globally, the total length of 

hydrocarbon transportation pipelines has increased a 100 fold in the past 50 years with over 

32,000 km of new pipelines being constructed every year. Despite the fact that pipelines are 

generally considered to be the safest mode of hydrocarbon transportation, it is estimated that 

there are an average of 250 pipeline rupture incidents per year, some resulting in catastrophic 

loss of life, property damage and environmental pollution
2,3

. According to data published by the 

US Department of Transport
4
, even short, simple pipelines will have a reportable accident during 

a 20 year life time. Operators of long pipelines (1000 km or over) can expect a reportable 

accident at a frequency of 1 per year. 

Ironically, pressurized pipelines are also expected to play a major role in combating the effects 

of global warming by transporting the captured CO2 from power plants for subsequent geological 

sequestration
5
. Notably, some estimates indicate that by 2030 there will be over 100,000 km of 

CO2 pipelines carrying millions of tons of CO2 across the globe
6
. Given that CO2 at 

concentrations greater than 10% v/v is asphyxiant, the safety of such pipelines has been the focus 

of significant attention in recent years
7,8,9

. 

As part of their safety assessment, the accurate determination of the conditions of the 

pressurized jet upon its expansion to atmospheric pressure in the event of pipeline failure is of 

fundamental importance. Such data serves as the source term for determining all the major 

consequences associated with an accidental release including fire, explosion or dispersion of 

hazardous/toxic clouds thus forming the basis for the safe pipeline routing and emergency 

response planning.   



 3 

The mathematical modeling of the transient outflow following pipeline failure may be divided 

into three sequential components. These include discharge at the rupture plane, which for the 

most part will be choked, jet expansion to atmospheric pressure followed by far-field dispersion 

of the merging cloud where air entrainment is expected to be significant. The modeling of 

discharge at the rupture plane for single- or two-phase fluids has been the subject of a number of 

studies
8,9,10

. Depending on their level of sophistication in terms of for example accounting for 

various pertinent phenomena such as heterogeneous flow behavior and phase dependent in-pipe 

heat transfer and frictional effects, reasonably good agreement with real pipeline rupture data has 

been reported.  Dispersion modeling of escaping buoyant or heavy clouds on the other hand is a 

mature subject having received considerable attention in the past decades
11,12,13

. However, the 

analytical modeling of the intermediate stage, i.e. the jet expansion to the ambient pressure is 

often based on simplistic physical approximations such as isenthalpic or isentropic jet expansion 

immediately downstream of the rupture plane
14,15

. This is a considerable drawback given that the 

predicted fully expanded conditions form the boundary conditions needed for the downstream 

dispersion simulation. The importance of the correct modeling of the jet expansion was clearly 

demonstrated in a study of the dispersion behavior of a flashing jet by Calay and Holdo
16

 using 

CO2 as the working fluid. 

In recent years, a number of robust Computational Fluid Dynamic (CFD) models, successfully 

resolving the flow field of expanding jets accounting for phase change, turbulence effects and 

shock formation have been developed.  

Liu et al.
17

 for example conducted CFD simulations for highly under-expanded single-phase 

CO2 jets, applying the Peng-Robinson (PR) Equation of State (EoS)
18

 to account for real gas 

behavior. The predicted fully expanded conditions were subsequently used as the boundary 
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conditions for dispersion modeling, obtaining good agreement with the recorded downstream 

CO2
 
concentration experimental data. 

In the case of dense-phase CO2 (i.e. pressure higher than 74 bar), widely considered to be the 

most economical way of its pipeline transportation
19

, the transition below the triple point (216.6 

K, 5.18 bar
20

) leading to solid CO2 formation is likely following accidental rupture. The 

possibility of solid formation is of concern given that the subsequent delay in its sublimation 

impacts the CO2 cloud dispersion hazard profile. To accout for CO2 liquid/solid transition, a 

composite EoS was proposed by Wareing et al.
21

. This EoS was later implemented in their CFD 

model for jet expansion and subsequent near-field dispersion
22

. The flow was assumed to be 

homogeneous and a thermodynamic relaxation model was applied to account for the delay in the 

sublimation of solid CO2. As part of the CO2QUEST
23

 and CO2PipeHaz
24

 EU-funded projects, 

the present authors successfully validated their model based on comparisons of the measured 

near-field CO2 temperatures and concentrations following the rupture of a fully instrumented 40 

m long, 0.5 m internal diameter dense-phase CO2 pipeline
25

.  

To account for the effects of solid phase CO2 particle dynamics on the dispersion behavior 

following pipeline failures, Gant et al. 
26

 used the fully expanded flow conditions predicted from 

a multiphase CFD model as the boundary conditions for their atmospheric dispersion model with 

Lagrangian particle tracking method. Relatively good agreement with the recorded experimental 

data for the downstream CO2 concentrations and temperatures was obtained.  

Despite their success, a major practical drawback associated with the use of expanded jet CFD 

models is the heavy computational workloads required to produce accurate simulations. This 

severely restricts their application when performing routine pipeline safety assessment. In such 

cases, by necessity multiple accidental release scenarios based on generic puncture diameters up 
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to full bore rupture will be required at various locations along the pipeline, particularly near 

populated areas. This will be even more problematic in the case of long pipelines (e.g. > 300 km) 

where computational run times will become prohibitive.  

Liu et al.
17

for example, showed that discretizing the computational domain into 0.49 million 

cells and using a time step size of 1.0×10
-7 

s was necessary to resolve the flow field of jet 

expansion while maintaining solver convergence. In their study of highly-turbulent under-

expanded hydrogen and methane jets, Hamzehloo and Aleiferis
27

 on the other hand showed that 

an even smaller time step of 5.0×10
-9 

s was required in order to produce reasonably accurate 

predictions of large pressure gradients in the flow close to the discharge orifice. Other relevant 

studies include the impact of changing back pressure on shock stability by Irie et al.
28

 and the 

Large Eddy Simulation of stable supersonic jets by Dauptain et al.
29

, both reported high 

computational demand to resolve the rapid transients.  

To address the heavy computational workloads associated with the CFD models, simple quasi-

one-dimensional jet expansion models have been developed. In particular, the steady one-

dimensional flow analytical jet expansion model developed by Le Martelot et al.
30

 deals with 

multi-phase flows by using the Stiffened Gas EoS (SG-EoS)
31

 and assuming homogenous 

equilibrium between the constituent fluid phases. However, this model is designed for confined 

flows in known geometries and hence not suitable for unconfined jets formed during accidental 

releases from pressurized pipelines. 

In their study of a two-phase jet close to a puncture based on homogeneous equilibrium and 

isentropic assumptions, Vandroux-Koenig and Berthoud
32

 considered the behavior of the jet 

fragmentation due to flashing. An over-prediction of the velocity at full expansion was found 

compared to the measured data.   
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More complete jet expansion integral models based on the conservation laws accounting for 

the inventible change in entropy and fluid acceleration, have been developed to provide the 

source term for the dwonstream dispersion modeling 
33,34,35

.  

The so far reported integral models neglect both viscous dissipation and turbulence effects. 

The net loss or gain of the jet’s mean bulk kinetic energy is the sum of pressure work, work done 

by viscous stress (i.e. viscous dissipation) and energy exchange between the mean bulk flow and 

the associated turbulence motions
36,37

. Although for most flows, viscous dissipation is relatively 

small and may be ignored, the potential error introduced by ignoring turbulence generation is 

uncertain. As the high-speed jet penetrates the surrounding air, turbulences at the jet boundary 

are produced. The kinetic energy of these turbulent motions, also known as the turbulent kinetic 

energy, is taken directly from the mean bulk flow. This leads to a loss of the mean bulk flow 

kinetic energy, which may be significant and should therefore be considered.  

This work presents the development and testing of a computationally efficient integral multi-

phase jet expansion model based on the solution of mass, momentum and energy conservation 

equations, which takes into account turbulence generation. Real fluid behavior is accounted for 

using a suitable equation of state. Using the accidental release of two-phase CO2 following the 

puncture of a high pressure containment as a working example, the integral model’s performance 

is evaluated by comparisons of its predictions against a rigorous but computationally demanding 

turbulent jet CFD model. The importance of turbulence generation is demonstrated by comparing 

the model predictions against those obtained where its effect is ignored.     

2. METHOD  

2.1 Integral jet expansion model. In this study, the emerging two-phase CO2 jet is assumed to 

be at thermodynamic and mechanical equilibrium within its constituent phases. Furthermore, air 
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entrainment is assumed to be negligible in the jet expansion region prior to its pressure 

equilibration with the surrounding ambient. 

Given the above, the conservation of mass, momentum and energy of the expanding jet can be 

written as follows
35

: 

222111 AUAU    (1) 

 21122221111 ppAUAUUAU    (2) 

22
2
22

2
11 UhUh   (3) 

where U  and A are the mean velocity and cross-section area of the expanding jet. p ,   and 

h  are the corresponding mean pressure, density and enthalpy respectively. The subscripts 1 and 

2 stand for the locations at the rupture plane and in the fully expanded jet. Solving the above 

algebraic system together with the Extended Peng-Robinson (EPR) EoS
38

, the fully expanded jet 

conditions including its density, enthalpy, velocity and area are obtained without considering the 

viscous dissipation and the turbulence generation.   

However, as stated in Introduction, turbulence generation may lead to losses in the mean bulk 

flow kinetic energy. To account for such effect,  an additional term, kt representing the 

corresponding turbulent kinetic energy following expansion to ambient pressure is added to 

equation (3). The resulting energy conservation is given by: 

tkUhUh  22
2
22

2
11  (4) 

Adequate modeling is required for kt; In order to express kt in terms of , we utilized the 

logarithmic velocity profile in the flow obtained from the solution of the k-İ turbulence model 

assuming constant pressure and shear stress across the jet following Richards and Hoxey
39

. In 

this case, kt is expressed as: 

2U
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



C

u
kt

2

  (5) 

where, Cµ is the model constant (Cµ = 0.09) and uĲ is the friction velocity which characterizes the 

logarithmic velocity profile of the flow: 
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where, ț and r0 are the Von Karman constant (ț = 0.41) and the aerodynamic surface roughness 

length (r0 = 0.0015), respectively
40

.  

Integrating equation (6) across the jet gives an expression relating the average velocity at full 

expansion, 2U  and the friction velocity, uĲ:   
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Rearranging equation (7) for uĲ and substituting into equation (5) gives: 
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 (8) 

Given that viscous dissipation (i.e. the conversion of kinetic energy to the internal energy) is 

negligible compared to turbulent kinetic energy production
36,37

, the enthalpy at full expansion, 2h  

can be expected to be the same as that predicted by solving equation (1) to (3). In order to correct 

the fully expanded jet velocity, 2U  and area, A2, equations (1), (4) and (8) are solved numerically 

using a non-linear algebraic solver in Matlab. 

2.2 CFD jet expansion model. In order to test the performance of the Integral Jet Expansion 

Model (IJEM) and Integral Jet Expansion Model with Turbulence (IJEM-T), their model 

predictions are compared to a rigorous CFD jet expansion model which resolves the key jet 
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expansion physical phenomena, including the phase change, formation of shocks prior to full 

expansion and turbulence effects. 

The following describes the governing equations of the flow field during jet expansion and the 

turbulence model used in this study. The pertinent thermodynamic properties of the CO2 jet are 

predicted using the EPR-EoS while that of the surrounding air are described by the standard PR-

EoS. 

2.2.1 Governing equations. The compressible Reynolds-Average Navier-Stokes multiphase 

mixture model is used to describe the mechanics of the flow. The resulting mass, momentum and 

energy conservation equations based on the homogenous equilibrium assumption are 

respectively given by: 
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where  , p  and T  are the mixture mean density, pressure and temperature respectively. E  is 

the mixture mean total energy ( 2
2

UphE   ). Ȝ and µ are the conductivity and viscosity 

of the mixture respectively. 
''
jiuu is the Reynolds stress tensor. SE is the volumetric heat 

production source term. The governing equations are solved in ANSYS Fluent 14.0 using a 

pressure-based implicit scheme
41.  
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2.2.2 Turbulence modeling. In order to provide closure to the Reynolds stress tensor, ''
ji uu  in 

equations (10) and (11), turbulent viscosity models are selected. According to the Boussinesq 

eddy viscosity assumption, the Reynolds stress tensor is proportional to the trace-less mean strain 

rate tensor, jiS ,
36

: 
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 (12) 

where µt is the turbulent viscosity. Amongst various turbulent viscosity models, two-equation 

models are chosen over less complex ones such as the mixing-length model because of the 

difficulties in specifying the algebraic mixing length scale for external flows (i.e. jet expansion). 

There are several well-established two-equation models, such as the k-İ model, the k-Ȧ model 

and the k-Ȧ Shear Stress Transport (SST) model42. In comparison with the k-İ model, the 

standard k-Ȧ model has the advantage of correctly predicting the turbulences in boundary layers 

(e.g. near solid boundaries) and adverse pressure gradients generated during flow separation. 

However, the standard k-Ȧ model is very sensitive to specific dissipation rate Ȧ specified at the 

flow boundaries, which makes it less applicable to free stream flows. On the other hand, the k-Ȧ 

SST formulation, combines features of both the k-Ȧ and the k-İ models, and has the capability of 

accurately predicting the turbulences in boundary layers as well as in high Reynolds number free 

stream flows. The k-Ȧ SST model transport equation set is given by:  
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where Pk and PȦ are the effective production rate of turbulent kinetic energy and its specific 

dissipation respectively. F1 is the blending function. Each invariant in the SST model (ık, ıȦ, ȕ, 

ȕ*
 and Į) is calculated by a linear combination of corresponding constants in the k-İ and k-Ȧ 

models: 

where model constants with subscript 1 and 2 correspond to the k-Ȧ and k-İ model respectively. 

Consequently, in the close wall region, F1 takes the value of 1 which corresponds to the standard 

k-Ȧ formulation; away from wall region, F1 takes the value of 0, which reduces the transport 

equation set to the k-İ model. 

In addition, modifications of the turbulence transport equations are required to take the fluid 

compressibility effect, also known as turbulent dilution effect, into account. Following Sarkar et 

al.43, the turbulent viscosity is related to the turbulent Mach number, ckM t /2  (where c 

stands for local speed of sound) through the relation,  )1(09.0 22
tt Mk  ; a source term 

 2
tk MS   is introduced to the RHS of the turbulent kinetic energy transport equation (13). 

2.2.3 Computational flow domain and boundary conditions. Figure 1A shows the 

axisymmetric computation flow domain adopted for simulating the expanding CO2 jet 

downstream of the 6 mm diameter, 9 mm long release nozzle. The computational flow domain 

dimensions are chosen as 200 mm across and 1000 mm long to fully envelop the expanding jet 

observed in the experiment (Figure 1B).  
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(15) 
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To close the conservation equations (9), (10) and (11) and the transport equations (13) and 

(14), the boundary conditions adopted for the flow are specified at the edges of the flow domain 

(Figure 1A):  

(i) Inlet: specified mass flowrate, pressure and temperature and turbulence quantities k and Ȧ. 

The latter are estimated as41: 

 
(16) 

 
(17) 

where I and l are respectively the turbulence intensity and the length scale defined as: 

 (18) 

 (19) 

where Re is the Reynolds number and D is the orifice diameter; 

(ii) Wall: zero-gradient boundary condition for pressure and temperature. The velocity, k and Ȧ 

in the cell adjacent to the wall are specified based on the standard wall function;  

(iii) Outlet (ambient): zero-gradient boundary condition for all the flow variables; 

(iv) Jet axis: symmetry plane boundary condition for all the flow variables. 

At time t = 0 s, the entire flow domain is initialized with stagnant air at the ambient conditions 

corresponding to each test (Table 1).   

Grid sensitivity analysis was carried out and little variance in the results (e.g. axial velocity) 

was found by increasing the number of grid cells from 0.3 to 0.7 million (see Figure 2). 

Therefore, the discretized flow domain with 0.3 million cells was adopted for the subsequent 

simulations. The flow Courant number is set to the recommended value of 541 and a typical time 
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2

3
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step size is 5×10-7 s. The convergence criterion is defined as the residual of each flow variable 

becoming less than 10-4.            

2.3 Fluid properties. The required CO2 phase equilibrium data are obtained using the EPR-

EoS capable of handling the phase transition to the solid phase: 

)()( bvbbvv

a

bv

TR
p







 
(20) 

where v and R are the specific volume and the universal gas constant respectively. a and b are 

model parameters specific to the vapor-liquid and vapor-solid two-phase mixtures.  

For a two-phase mixture at thermal equilibrium, the specific enthalpy of the mixture is given 

by: 

  slv hqhqh ,1  (21) 

where q  is the vapor phase mass fraction. Subscripts v, l and s respectively denote the vapor, 

liquid and solid phases. The mixture density is defined as: 

 
slv

qq
,

1
1

11


  (22) 

The transition from the CO2 liquid phase to solid phase across the triple point is modeled using 

a smoothing approach following Woolley et al.22: 

          TwTSTwTSTw sl  1  (23) 

  





 


b

TT
TS trtanh5.05.0

 
(24) 

where w(T) is the specific property of interest (density or specific enthalpy),  wl(T) and ws(T) are 

respectively the properties of the saturated liquid and solid phases. Ttr is the CO2 triple point 

temperature (216.6 K) and b is the smoothing factor (b = 5).  
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3. RESULTS AND DISSCUSSIONS 

Six case studies involving various release conditions, applying IJEM (Integral Jet Expansion 

Model), IJEM-T (Integral Jet Expansion Model with Turbulence) and the CFD model (as base 

case) are carried out to simulate jet expansion.  

3.1 Release conditions in the case studies. For the purpose of this study, the release 

conditions for the high pressure vessel CO2 release tests conducted by Hébrard et al.
44

 are 

selected as test cases for our simulations. In these tests, a 2 m
3
 heavily insulated spherical CO2 

tank was connected to a 50.8 mm diameter 6 m very smooth steel pipe incorporating a 9 mm 

long and 6 mm diameter orifice nozzle at its end. The other end of the pipe terminated at a height 

of ca. 150 cm above the vessel’s base. The vessel was initially partly filled with saturated liquid 

CO2. Upon instantaneous opening of the orifice using a pneumatically operated valve, 

approximate steady upstream conditions during the first 120 s of release were observed based on 

monitoring the mass release rate and the discharge temperature.  

The upstream and ambient conditions for each of the six case studies are presented in Table 1. 

Case studies 1a – 3a are for saturated vapor phase upstream whereas case studies 1b – 3b are for 

saturated liquid phase upstream. Table 1 also shows the corresponding calculated rupture plane 

(choked) conditions based on isentropic expansion approximation
45

 along with the liquid mass 

fractions at the nozzle orifice.  

3.2 CFD model results. Figure 3 to 6 respectively represents the CFD simulation results for 

the pressure, temperature, liquid/solid phase mass fraction, and velocity profiles along the jet 

axis as measured from the release point (the origin) at 1.0 s. Figure 3 also shows the 

corresponding CFD pressure contour plot presented as an example.  

Four distinct trends may be observed in the data presented. In the order of appearance these 

are: (i) An initial plateau representing the almost constant flow conditions across the 9 mm long 
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nozzle; (ii) The inflection points (ca. 15 mm downstream of the nozzle orifice) for the jet 

temperature and pressure. These correspond to the release of the latent heat of fusion associated 

with the transition through the triple point of CO2
21

; (iii) Discontinuities corresponding to the 

location of the Mach shock (ca. 30 mm from the puncture plane). It can be noticed that there is a 

spike in the temperature predictions at the Mach shock location. This is attributed to the second 

order interpolation scheme adopted in this study which is known to cause numerical oscillations 

at the flow locations with large gradients; (iv) A second plateau corresponding to jet pressure 

stabilization at ambient pressure (1.0 bar). At this point, the jet remains at its sublimation 

temperature of 194.3 K (see Figure 4) and solid phase CO2 is present (at mass fraction of ca. 

0.40, Figure 5).  

Figure 7 is the corresponding CFD contour plot for CO2 mass fraction. As it may be observed, 

air entrainment only occurs at the jet boundary as most of the jet core is pure CO2. This   

supports the validity of negligible air entrainment assumption employed in the integral jet 

expansion model.  

Figure 8 to 10 respectively represents the corresponding CFD model generated cross-section 

radial profiles (solid lines) for the fully expanded jet momentum flux, temperature and density 

(ca. 30 mm from the rupture plane). The plots’ origins represent the jet centers. Additionally, in 

order to enable quantitative comparisons between the CFD and the integral model predictions, 

the representative integrated averages are presented by the dotted lines. The cut off points (dotted 

vertical lines) represent the locations of the jet/air boundaries; they are determined by conserving 

the discharge mass flowrate.     
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It is interesting to note the larger size of the expanded jet radius in the case of the liquid CO2 

upstream as compared to the vapor upstream (cf. Figure 8A and Figure 8B). Also, as expected 

the jet radius increases with an increase in the upstream pressure.   

Referring to the temperature plots (Figure 9) as it may be observed, in all cases the jet 

temperature remains constant at the CO2 sublimation temperature (194.3 K) across its radius. 

The crossing of the expanded jet boundary is marked by a rapid rise in temperature due to the 

mixing with surrounding warmer air.  

Turning to Figure 10B, as expected in the case of the liquid upstream scenarios, a rapid drop in 

the density is observed on crossing the jet boundary due to the mixing with less dense 

surrounding air. The above trends are far less dramatic in the case of the vapor upstream (Figure 

10A) due to its similar density at full expansion as compared to the surrounding air. The 

predicted higher density near the interior of the jet cross-section in case study 1b is due to its 

higher CO2 solid phase mass fraction as compared to the other case studies.  

3.3 Integral model results. Table 2 represents the jet temperature, CO2 solid phase mass 

fraction, jet radius and momentum flux predictions for all the test scenarios as predicted by 

IJEM. In order to demonstrate the impact of turbulence generation, the momentum flux 

predictions by IJEM-T are also presented. Given that both integral models ignore any 

dissipation, for the same case study only one set of thermodynamic data (temperature and CO2 

solid phase fraction) is presented.  

As it may be observed, the same trends in the data as compared to the CFD predictions 

described above are obtained. The fully expanded jet temperature corresponds to the CO2 

sublimation temperature (194.3 K). Furthermore, an increase in the upstream pressure is 

manifested in an increase in the fully expanded jet radius, hence its area.  
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3.4 Comparison of the model results. Figure 11 to 13 respectively presents the comparisons 

of IJEM and IJEM-T predictions against the averaged CFD simulation data for the fully 

expanded jet conditions including the density, internal energy and jet momentum flux. Since 

thermodynamic predictions are the same for both integral models, only one set of data for these 

predictions is presented. The 45 degree line is also drawn in each figure to provide a direct 

measure of the degree of disagreement with the CFD predictions.  

Given that the fully expanded jet is at solid/vapor equilibrium, as can be expected, all the three 

models predict the temperature of the CO2 jet to be at the sublimation point (194.3 K).   

Turning to the density predictions (Figure 11), the maximum percentage difference between 

the integral models and the CFD models is ± 5%.  

Figure 12 shows the comparison of the corresponding internal energy predictions. The 

reasonably good agreement (± 5 %) between the two models is indicative of the validity of 

negligible dissipation assumption made in the integral models.   

Moving to Figure 13 showing the comparison of the momentum flux predictions from the 

three models, it is clear that IJEM model grossly over predicts the momentum flux by more than 

50%. In the case of IJEM-T, which accounts for turbulence generation, this disagreement is 

significantly reduced, producing a maximum overestimate of ca. 15%. This finding is significant 

given that the jet momentum dictates the subsequent ‘spread’ of the dispersing cloud.  

4. CONCLUSIONS 

Understanding and the accurate modeling of the characteristics of a high pressure jet prior to 

its full expansion to ambient pressure is pivotal to the proper modeling of its subsequent 

atmospheric dispersion behavior. 

In this work, the development and testing of an integral multi-phase jet expansion model aimed 

at dealing with the heavy computational workloads associated with CFD models serving the 
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same purpose was presented. In contrast to previous approaches, the integral model for the first 

time accounted for the inevitable losses in the bulk mean kinetic energy of the expanding jet due 

to turbulence generation. The verification of the model was based on the comparisons of its 

predictions against a multiphase CFD jet expansion model accounting for key physics involved 

including phase change, shock formation and turbulence effects. Due to its rigor, the 

computational loads associated with the CFD models are usually intensive. This makes it 

impractical as a tool for routine safety assessment of the consequences associated with accidental 

releases form high pressure containments.   

The verification tests involved a series of realistic case studies for the high pressure releases of 

gaseous and liquid phase CO2 from a pressurized storage tank discharging through a nozzle. Our 

previously developed EPR-EoS was employed to provide the pertinent phase equilibrium data 

including accounting for CO2 solids formation as a result of the significant temperature drop 

associated with the jet expansion process.   

Typical fully expanded jet characteristics reported included its radius, temperature, density, 

fluid phase mass fraction and momentum flux.  

The CFD simulations presented many of the expected subtle features of the jet behavior, 

including the shocks, the radial and axial decreases in the jet pressure and temperature followed 

by rapid recoveries at the Mach shock location and upon crossing the atmospheric boundary.  

Using the generated CFD profiles, representative integrated average values of the jet 

characteristics were obtained. In order to demonstrate the impact of ignoring turbulence 

generation, the results were in turn compared against those from the existing integral models. 

It was observed that in all the cases, within the range tested, although an increase in the 

upstream pressure results in an increase in the jet area, the expanded jet momentum upon 
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reaching the surrounding ambient is relatively unchanged. Furthermore similar values for the jet 

thermodynamic properties such as density and internal energy were obtained as compared to 

those predicted from the CFD model, indicating negligible viscous dissipation during jet 

expansion. 

However, the jet momentum flux was the parameter whose predicted magnitude was by far the 

most affected by the simulation technique employed. Here it was shown that ignoring turbulence 

generation during jet expansion results in as much as 50% overestimate of the jet momentum 

flux as compared to the CFD predictions. This overestimate was substantially reduced to a 

maximum of 15% when the mean kinetic energy loss associated with turbulence generation was 

incorporated in the developed integral model.   

This finding has significant implications given that the jet momentum dictates the ‘spread’ of 

the subsequent dispersing cloud impacting many of its consequences including, where relevant 

its toxicity, flammability, explosion overpressure and ultimately the minimum safety distances to 

populated areas.   

It should be noted that the jet expansion models presented in this study are based on the 

homogenous flow assumption. In the case of highly flashing flows, the finite evaporation or 

condensation rates along with relative acceleration between the fluid phases may result in 

thermodynamic and mechanical non-equilibrium. Also, as is the case with all mathematical 

models simulating real processes, where practical, validations against experimental data would 

be extremely useful. To this end, as part of the CO2QUEST project, we devoted significant effort 

in developing techniques for recording the jet expansion zone concentration, pressure and 

temperature immediately downstream of the release point. Unfortunately our attempts failed due 
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to the extremely high momentum of the expanding jet which resulted in the damage and in some 

cases, the dislodging of the inline recording instrumentations. 

Developing a computationally efficient non-equilibrium jet expansion model along with the 

construction of the robust instrumentation technology, including remote sensing for model 

validations are subjects of our ongoing work. 
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Table 1:  Case study flow conditions; Subscript 0, ‘amb’ and 1 represent the upstream, ambient 

and rupture plane conditions respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 Case study 
no. 

଴ܶ 

(K) 
 ଴݌

(bar) 
௔ܶ௠௕ 

(K) 
 ௔௠௕݌

(bar) 
ଵܶ 

(K) 
 ଵ݌

(bar) 
Liquid 
phase 
mass 

fraction  

V
ap

or
 

up
st

re
am

 1a 264.3 27 272.1 1 246.0 16 0.07 

2a 280.1 44 281.6 1 260.7 25 0.11 

3a 278.1 39 278.1 1 258.5 23 0.10 

Li
qu

id
 

up
st

re
am

 1b 264.3 27 272.1 1 256.3 22 0.94 

2b 280.1 44 281.6 1 271.2 33 0.91 

3b 278.1 39 278.1 1 267.2 30 0.90 



 22 

 

Table 2: The fully expanded jet conditions (at ambient pressure). 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Case 
study 
no. 

Temperature 
(K) 

Solid phase 
mass 

fraction 

Radius 
(IJEM) 

(m) 

Radius 
(IJEM-T) 

(m) 

momentum 
flux 

(IJEM) 
(kg/m-s2) 

momentum 
flux 

(IJEM-T) 
(kg/m-s2) 

V
ap

or
 

up
st

re
am

 1a 194.3 0.08 0.0084 0.0097 4.13×105 1.99×105 

2a 194.3 0.10 0.011 0.013 4.04×105 2.12×105 

3a 194.3 0.09 0.010 0.012 4.08×105 2.11×105 

Li
qu

id
 

up
st

re
am

 1b 194.3 0.40 0.017 0.019 0.91×105 0.51×105 

2b 194.3 0.35 0.019 0.022 1.19×105 0.70×105 

3b 194.3 0.36 0.018 0.021 1.21×105 0.69×105 
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LIST OF FIGURE CAPTIONS  

Figure 1: The expanding CO2 jet; (A) computational domain (B) photograph of the actual 

expanding jet. 

Figure 2: Grid sensitivity analysis using case study 1b as an example. 

Figure 3: Pressure profile for the expanding CO2 jet for case study 1b; (A) along the jet axis (B) 

contour plot.  

Figure 4: Temperature profile along the jet axis for case study 1b. 

Figure 5: Liquid/solid phase mass fraction profile along the jet axis for case study 1b. 

Figure 6: Velocity profile along the jet axis for case study 1b. 

Figure 7: CO2 mass fraction contour plot for the expanding jet for case study 1b. 

Figure 8: Fully expanded jet momentum flux profiles along the jet radius for the various case 

studies (see Table 1); (A): vapor upstream (B): liquid upstream. Solid lines: CFD simulation; 

Dotted lines: representative integrated average values. 

Figure 9: Fully expanded jet temperature profiles along the jet radius for the various tests (see 

Table 1); (A): vapor upstream (B): liquid upstream. Solid lines: CFD simulation; Dotted lines: 

representative integrated average values. 

Figure 10: Fully expanded jet density profiles along the jet radius for the various tests (see Table 

1); (A): vapor upstream (B): liquid upstream. Solid lines: CFD simulation; Dotted lines: 

representative integrated average values. 
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Figure 11: Model comparison – the predicted jet density at full expansion; dash-dot lines show 

the percentage deviation of the integral model predictions from the CFD model predictions. 

Figure 12: Model comparison – the predicted jet internal energy at full expansion; dash-dot lines 

show the percentage deviation of the integral model predictions from the CFD model predictions. 

Figure 13: Model comparison – the predictions of averaged momentum flux by IJEM model, 

IJEM-T model and the CFD model; dash-dot lines show the percentage deviation from the CFD 

model. 
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