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Abstract

Eddy formation and presence in a plane laminar shear flow configuration consisting of

two infinitely long plates orientated parallel to each other is investigated theoretically. The

upper plate, which is planar, drives the flow; the lower one has a sinusoidal profile and is

fixed. The governing equations are solved via a full finite element formulation for the gen-

eral case and semi-analytically at the Stokes flow limit. The effects of varying geometry

(involving changes in the mean plate separation or the amplitude and wavelength of the

lower plate) and inertia are explored separately. For Stokes flow and varying geometry,

excellent agreement between the two methods of solution is found. Of particular interest

with regard to the flow structure is the importance of the clearance that exists between the

upper plate and the tops of the corrugations forming the lower one. When the clearance

is large, an eddy is only present at sufficiently large amplitudes or small wavelengths.
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However, as the plate clearance is reduced, a critical value is found which triggers the

formation of an eddy in an otherwise fully attached flow for any finite amplitude and ar-

bitrarily large wavelength. This is a precursor to the primary eddy to be expected in the

lid-driven cavity flow which is formed in the limit of zero clearance between the plates.

The influence of the flow driving mechanism is assessed by comparison with correspond-

ing solutions for the case of gravity-driven fluid films flowing over an undulating substrate.

When inertia is present, the flow generally becomes asymmetrical. However, it is found

that for large mean plate separations the flow local to the lower plate becomes effectively

decoupled from the inertia dominated overlying flow if the wavelength of the lower plate

is sufficiently small. In such cases the local flow retains its symmetry. A local Reynolds

number based on the wavelength is shown to be useful in characterising these large-gap

flows. As the mean plate separation is reduced, the form of the asymmetry caused by in-

ertia changes, and becomes strongly dependent on the plate separation. For lower plate

wavelengths which do not exhibit a kinematically induced secondary eddy, an inertially

induced secondary eddy can be created if the mean plate separation is sufficiently small

and the global Reynolds number sufficiently large.

Keywords: Laminar shear flow; flow structure; eddies; finite elements; semi-analytic

methods.

1 Introduction

The problem of laminar shear flow in a fluid confined between two rigid surfaces, one fixed

the other moving, remains one of fundamental interest, with Couette flow between two infi-

nite, perfectly parallel flat plates being arguably the archetypal example; another is Taylor-

Couette flow in the small gap formed between two concentrically aligned cylinders. Not

surprisingly, the literature associated with these two classical problems is correspondingly

vast, but an overview of their essential features can be found in, for example, Tritton [1],

Spurk & Aksel [2].

In practice, the confining rigid surfaces generating a shear flow are rarely everywhere com-

pletely equidistant from each other. This might be by design or due to eccentricity inherent
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within the system, as in the case of fluid film lubrication [3]. The surfaces involved may

also feature additional complicating factors in the form of random surface asperities or well-

defined surface patterning, which can occur either naturally or as a consequence or indeed

requirement of a particular manufacturing process [4]. Manufactured functional surfaces

arise across a broad swathe of engineering applications and have particular relevance with

respect to lubricant friction problems [5], where regular surface patterning is being used in-

creasingly to improve the performance of tribological components [6]. The key feature that

unifies these and related problems is that, even in the absence of inertia, irregular confining

geometry is a trigger for eddy formation [7].

The presence of eddies is of both practical and scientific interest since the onset of recirculat-

ing flow can enhance load carrying capacity significantly and reduce frictional drag in, for ex-

ample, lubricated contacts [8, 9], as well as affecting wear characteristics by trapping loose,

sub-micron particles [6]. Related examples of where exploration of the effects of local flow

structure within laminar shear flow has proved extremely informative include the role played

by eddies in industrial roll coaters [10, 11, 12], eddy formation and the effect of localised

disturbances on stagnation lines [13, 14], and eddy motions and flow patterns [15, 16, 17].

Eddies have also been shown recently to play an important role in enhancing mass trans-

port [18], and global heat transfer via thermal mixing [19].

The focus of the present investigation is that of laminar shear flow between two horizon-

tally aligned plates; the driving upper plate being planar, the lower one fixed and having a

sinusoidal profile. Of particular relevance is the early work of Pozrikidis [20] for the case of

creeping flow in two-dimensional periodic channels, which he formulated using a boundary

integral method for Stokes flow. This work provided detailed streamline plots of the under-

lying flow structure and established a criterion for flow reversal; results that remained at the

forefront for almost two decades before influencing subsequent complementary theoretical

investigations. The first of these was for the case of Stokes flow through a wavy walled chan-

nel [21, 22], followed recently by the case of Couette flow for the same problem, including

non-zero Reynolds number effects in the context of the onset of flow separation [23]. Explo-

ration of the latter was, however, limited by the analytical approach adopted. What remains
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outstanding and forms the thrust of the present work is a systematic exploration to identify

those factors which govern/control the size, shape and presence of eddies as the confining

geometry (mean plate separation, or amplitude and wavelength of the lower plate) is varied

— not just in the creeping flow limit but when significant inertia effects are present also, in

order to reveal and understand the subtle inter-play between the two.

The problem under consideration is specified in Section 2, together with the two methods

of solution employed. The first, and principal, method involves a full finite element solution

of the Navier-Stokes and continuity equations; the second is comprised of a semi-analytical

variational formulation for Stokes flow, solved using Ritz’s direct method. This is followed,

Section 3, by the results from a comprehensive and systematic investigation of the com-

bined effects of changes to the flow geometry and inertia present on local flow structure;

comparisons with corresponding gravity-driven free-surface film flow over an inclined wavy

substrate [24], are drawn. Of particular interest is the kinematic and inertial manipulation of

eddies. The findings are summarised in Section 4.

2 Problem Specification and Solution

2.1 Flow geometry, field equations and boundary conditions

The two-dimensional, steady, isothermal shear flow of an incompressible Newtonian liquid,

of density ρ and constant dynamic viscosity η, confined between two horizontally aligned rigid

plates is considered. The upper flat plate, moving with speed U0, is separated by a mean

distance H from the stationary lower one which has a sinusoidal profile. The solution domain

and associated (X,Y ) coordinate system are shown in Fig. 1, where Y = 0 corresponds

to the mean position of the wavy lower plate. The governing steady Navier–Stokes and

continuity equations for the velocity field U = (U, V ) and the pressure P are, in dimensional

form,

ρ (U · ∇)U = −∇P + η∇2
U , (1)

∇ ·U = 0. (2)
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Figure 1: Schematic of the defining geometry for plane laminar shear flow between a flat moving

upper and a fixed corrugated lower plate.

Along the lower plate, the profile of which is given by B(X) = −A cos (2πX/Λ), where A

is the amplitude and Λ the wavelength, the fluid velocity satisfies the no–slip condition

U (X,Y = B(X)) = 0 , (3)

while at the upper flat plate Y = H the inhomogeneous no–slip condition

U (X,H) = (U0, 0) , (4)

holds. The problem is closed by the prescription of periodic boundary conditions for U and P

to the left and right in the flow direction.

2.2 Methods of solution

Two different approaches are employed to solve the governing equations subject to the pre-

scribed boundary conditions. The first and main method involves a full numerical solution

using a finite element (FE) decomposition of the domain of interest; the second, restricted

to Stokes flow conditions, takes the form of a semi-analytic series solution.

The governing equations are written in dimensionless form, with all lengths scaled by

H, velocities by U0, and stresses by ηU0/H. This results in the following dimensionless

Navier–Stokes and continuity equations,

Re(u · ∇)u = −∇p+ ∇2
u , (5)

∇ · u = 0 , (6)
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where lowercase symbols are dimensionless variables corresponding to their uppercase

equivalents, and Re = ρU0H/η is the Reynolds number. The contour of the lower plate is

given by y = b(x) = −(a/h) cos (hx), where a = 2πA/Λ and h = 2πH/Λ. Then, the no–slip

conditions at the lower plate read

u (x, y = b(x)) = 0 , (7)

while at the upper plate

u (x, y = 1) = (1, 0) . (8)

2.2.1 Finite Element Formulation

The field equations (5, 6) are solved using the same Bubnov-Galerkin weighted residual finite

element (FE) method used by Scholle et al. [24] to investigate the corresponding problem of

gravity-driven film flow over a corrugated substrate. However, the formulation is somewhat

simpler in the present case, as the rigid upper plate requires less sophisticated treatment

than a free-surface [25]. Accordingly, only a brief summary of the key features is provided

below.

The domain is tessellated into triangular Taylor-Hood ‘V6/P3’ elements, over each of

which the velocity and pressure fields are represented by means of biquadratic and bilinear

interpolation functions, respectively. The system of algebraic FE equations corresponding

to the governing partial differential equations is obtained by substituting the elemental rep-

resentations of u and p into weak forms of (5) and (6), with the interpolating functions for u

and p as the weights. The result is a set of algebraic residual equations to be solved for the

nodal velocities and pressures.

At the solid boundaries the no–slip condition is applied by dropping the momentum resid-

uals there and inserting the known values of u and v explicitly into the FE equations. Periodic

flow boundary conditions are imposed at the inlet and outlet by assigning the same freedom

number to corresponding velocity and pressure freedoms on the two boundaries.

The global matrix of FE equations was solved by Newton iteration, with the Jacobian

inverted using the Frontal Method. For the linear Stokes flow cases, the problem is solved

after a single iteration; for non-zero Re typically 4 iterations were sufficient to reduce the L2
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norm of the residuals to below 10−8. Grid independence of solutions was investigated using

three different mesh levels, with grid independence achieved with a mesh containing 6450

elements and 13125 nodes. All reported solutions were obtained using this mesh structure.

Determination of Stationary Points and Streamlines

The results presented below use the position of the centre of each eddy as a means of

characterising them, especially in studying asymmetry arising from inertial effects. The con-

tinuous, piecewise biquadratic representation of the velocity field makes the FE method well

suited for calculating accurately the points within the domain where both velocity compo-

nents vanish.

For efficiency, the eddy centres are identified in a two-stage process. First an element-by-

element sweep through the mesh is made to determine the maximum and minimum values

of u and v in each element, and, from these, whether or not an eddy centre lies within the

element. For each element identified as containing such a point, Newton iteration is then

used to solve the two simultaneous biquadratic velocity equations to obtain the coordinates

of the eddy centre.

The streamfunction field, ψ, is also represented biquadratically within each V6/P3 ele-

ment, with streamfunction freedoms at each of the six nodes. The latter are obtained by

solving a weighted residual form of the following Poisson–type equation

∇2ψ =
∂u

∂y
− ∂v

∂x
, (9)

with ψ specified everywhere on the boundaries. The value ψ = 0 is taken along the lower

plate, and the variation of ψ at the periodic boundary is found by integrating the horizontal

component of velocity along the boundary. The uppermost value then gives the streamfunc-

tion value of the upper plate.

The reported eddy depths are obtained by calculating the vertical distance from the lower

plate to the point where the dividing streamline, or separatrix, crosses the vertical centreline

of the domain. This is readily obtained by considering the edge of each element that lies

along the centreline and solving the quadratic equation ψ = 0 along the element edge.
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2.2.2 Semi–analytical approach (Stokes flow)

The FE method described above has been shown to produce results in very good agreement

with previously published experimental flow visualisation of free-surface flows. In the present

problem there is a lack of experimental data with which to compare, however it is possible to

confirm the FE predictions for Stokes flow using a semi-analytical approach as follows. The

field equations (5, 6) can be obtained by variation of the integral

I =

∫∫
A

L (∂iuj, ξ) dx dy (10)

over the flow domain A, with the Lagrangian

L = L (∂iuj, ξ) = Φ (∂iuj) + ξ∂iui , (11)

where Φ denotes the dissipation function

Φ (∂iuj) = 2 (∂xu)
2 + (∂yu+ ∂xv)

2 + 2 (∂yv)
2 , (12)

and ξ is a Lagrange multiplier which is introduced in order that the continuity equation forms

a kinematical constraint. According to Millikan [26], variation with respect to the fields u, v

and ξ leads to the Stokes equations and the continuity equation respectively, provided that

the Lagrange multiplier ξ is related to the pressure and given by ξ = −p/2.

According to the no–slip conditions (7), (8), the variations δu and δv of the velocity field

have to vanish at the boundary. For the pressure p, however, allowing for free variation at

the boundary leads, according to Anthony [27], to the additional Neumann-type boundary

condition

ni

∂L
∂ (∂iξ)

= n · u = 0 . (13)

Hence, the kinematic boundary conditions along the upper and the lower plates, which are

the normal components of (7, 8), feature automatically in the variational formulation, whereas

the respective tangential components at these two boundaries have to be prescribed explic-

itly and depend on the choice of test functions.

Motivated by the periodicity of the fields in the x–direction, it is convenient to express u,

v and p as truncated Fourier series expansions

p(x, y) =
N∑

n=−N

Pn(y) exp (inhx) , ui(x, y) =
N∑

n=−N

Ui,n(y) exp (inhx) , (14)
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with N ∈ N, in order to perform the integration over x in (10). It has been shown [28], that

the Fourier representation exists only for a weakly undulating lower plate, a limitation that

can be overcome by applying a Padé approximation as used by Malevich et al. [22, 23],

which although straightforward is a laborious procedure. An alternative to direct use of the

divergent series (14) is obtained by means of the following coordinate transformation

R = hx , Q =
y − b(x)

1 − b(x)
. (15)

which maps the flow domain of interest to the rectangular domain [0, 2π] × [0, 1] over which

the corresponding Fourier expansions for u, v and p converge,

p(R,Q) =
N∑

n=−N

pn(Q) exp (inR) , ui(R,Q) =
N∑

n=−N

ui,n(Q) exp (inR) . (16)

Prior use of this ‘non–orthogonal’ series representation has led to rapid convergence, see

for example Scholle et al. [19], with the series truncated at N = 4. Furthermore, a simplified

form of the no–slip conditions (7) at the lower plate results by virtue of the transforma-

tion (15).

Ritz’s direct method is employed in order to obtain the necessary semi-analytic solutions,

the technical details of which are provided in Appendix A.

3 Results and discussion

In order to quantify the effects of geometric and material parameters on the formation, shape

and size of eddies within the domain, it is useful to define a set of measurables with which

to represent the eddies. These are shown in Fig. 2, where D is the eddy depth measured

along the vertical centreline from the lowest point on the lower plate to the separatrix, CY is

the elevation of the eddy centre above the lowest point, and ∆X is the horizontal position of

the eddy centre relative to the centreline. For Stokes flow conditions, symmetry dictates that

the eddy centre always lies on the centreline, so ∆X gives a simple measure of asymmetry

resulting from inertial effects. Similarly, the quantity ∆D is the change in eddy depth from

the corresponding Stokes solution. Note that ‘horizontal’ and ‘vertical’ here refer respectively

to the directions parallel to and perpendicular to the upper uniform rigid plate.
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Though the formulation and solution of the dimensionless governing equations uses the

mean plate separation, H, as the characteristic length, in the discussion of results below

it is more convenient to use either the wavelength, Λ, or amplitude, A, of the lower plate

as the length scale. Since both scales are used to illustrate different features, most results

are presented with the relevant scale explicitly stated. However, it is useful to specify a

dimensionless parameter which characterises the geometry of the sinusoidally profiled plate;

this is defined here as the waviness, a = 2πA/Λ. A corresponding dimensionless mean gap

is also defined as h = 2πH/Λ.

The limit of small mean plate separation is very different from the limit of small Nusselt

film thickness in the corresponding gravity-driven free-surface film flow over a substrate with

the same sinusoidal profile. In the film case, the angle of substrate inclination, α, is impor-

tant. For sufficiently large inclinations, where tanα > a, all points on the substrate have a

downward slope, and therefore as the Nusselt film thickness tends to zero, the result is a

complete drainage of the film from the surface of the substrate. On the other hand, when

tanα < a, the same limit results in trapped liquid lying stationary in basins formed by the

undulations of the substrate. When the Nusselt film thickness is very small but non-zero,

eddies are therefore only present at sufficiently small α and sufficiently large a [29].

When the upper boundary is a rigid moving plate, rather than a compliant free-surface,

the inclination of the system is irrelevant. The quantity equivalent to the Nusselt film thick-

ness in this case is the clearance, H − A, between the upper uniform plate and the tops of

the corrugations forming the lower one. The limit H → A results in a type of lid–driven cavity,

and therefore one would expect an eddy to exist even for very small values of a, if H − A is

sufficiently small.

3.1 Kinematically induced eddies in Stokes flow

Kinematically induced eddies arise as a result of geometrical constraints, and persist in the

limit Re → 0. In this section, therefore, fluid inertia is neglected, and geometrical effects

are explored under Stokes flow conditions. Fig. 3 illustrates the effect of the clearance and

waviness on the onset of eddies by plotting the vertical position, CY , of the eddy centre as

a function of (H − A)/Λ for different a. Note that this graph is equivalent to that in Fig. 4
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in Scholle et al. [24], which considers the corresponding free-surface film flow. Agreement

between the finite element and the semi-analytical results is generally good, particularly for

small clearances. The deviations for larger clearances are attributable to a decrease in the

spatial resolution due to enlargement of the flow region at constant number of modes, N ,

in the truncated series (14). It is possible to increase the accuracy of the semi-analytical

calculations by increasing N , but due to the balance between accuracy and computational

effort, this is not done here. The semi-analytical calculations presented are sufficient to cor-

roborate the finite element results, and the latter method is used to produce all subsequent

results.

Fig. 3 shows that for large clearances, an eddy centre is only present for sufficiently large

a, and that CY increases very slowly with increasing clearance. This is similar behaviour

to the film case, as one might expect at first glance, given that for large mean gaps/film

thicknesses the flow local to the surface of the undulating plate should become insensitive

to the exact form of the distant upper boundary. However, there is a difference between the

two: in the film case, it is possible to induce a substantial eddy in a previously fully attached

flow by increasing the film thickness [24]; this is not possible in the rigid-plate case. This

difference between the two flows is due to the different driving forces in the two cases. In

the rigid-plate flow, the fluid is driven by the motion of the upper boundary, whose speed, U0,

is independent of the gap between the plates. The free-surface flow, however, is driven by

the gravitational body force, resulting in a fluid speed at the free surface proportional to H2
f

— in fact Uf = ρgH2
f sinα/2η, where Hf is the film thickness and g is the acceleration due to

gravity.

Fig. 4 compares the velocity profiles calculated along the vertical centreline of the domain

for two different film/gap thicknesses. Consider first the thinner film, where Hf/A = 7. This

Nusselt film thickness (i.e. that corresponding to a film flowing over a uniform surface) gives

rise to a film of mean thickness 7.68 when the same film flows over the wavy plate, as a

result of the previously observed film thickening effect of the topography [29]. Hence the

rigid-plate flow used to compare with this free-surface flow is that where H/A = 7.68. The

position of the upper boundary in this case is shown as the lower horizontal dotted line,

and corresponds to the free-surface position. The free-surface flow velocity profile is scaled

so that Uf = U0 in this case. The difference in the two profiles is clear, with the plate-
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driven profile showing the expected linearity above the topography, and the gravity-driven

profile showing a roughly quadratic form in accordance with Wierschem et al. [30]. When

the Nusselt film thickness is doubled (giving a corresponding mean thickness H/A = 14.698,

shown as the upper dotted line) U0 remains the same, but Uf is quadrupled, resulting in

a much more exaggerated difference in velocity profile. Consequently, increasing the film

thickness in the free-surface case tends to increase the shear rate in the upper half of the

topography valley, leading to eddy formation, but increasing the gap in the rigid–plate case

decreases the shear rate, since U0 remains fixed.

Returning now to Fig. 3, and considering the change in eddy centre position as H de-

creases, one can see that for larger values of a, where an eddy already exists, the size of

the eddy increases sharply, while for small values of a an eddy is created and rapidly grows

as H → A. This is the opposite behaviour to the corresponding free-surface flow, where the

eddy disappears as Hf → 0, unless a is sufficiently large, in which case it shrinks in size to

a minimum. As H → A, the fact that U0 is fixed in the rigid-plate flow now acts to increase

the shear rate in the valley of the topography and, as explained above, the flow approaches

a lid-driven cavity, where an eddy is to be expected.

Note that the levelling off, and subsequent dip in CY , asH → A is a result of the separatrix

reaching its maximum extent, as shown in Fig. 5. The limiting value of the eddy depth, D, is

2A, since then the upper plate makes contact with the lower wavy plate, and becomes the

bounding streamline of the eddy enclosed in the resulting closed cavity. However, for small

clearances between the plates, the separatrix rises above the tops of the wavy plate, see

Fig. 5(a,c). This is a consequence of the difference in shear rate and velocity profile between

the shallow inlet and the deep middle of the domain, and the fact that the flux between

the upper plate and the separatrix must match that entering (and leaving) the domain. A

consequence of the proximity of the upper plate is the change in shape of the separatrix

from concave to convex, as seen in Fig. 5(b).

It is evident from Fig. 3 that there is a critical value of the plate clearance which triggers

the formation of an eddy in an otherwise fully attached flow, and that this value depends

on the waviness of the lower plate. Fig. 6 explores this in more detail via a control space

diagram in which the dimensionless clearance, h − a = 2π(H − A)/Λ is plotted against

the waviness, a = 2πA/Λ. The curves show critical combinations of these parameters at
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which new eddies are created, with the flow structure in each region of the map indicated

by a typical streamline plot. The critical curves were obtained using the shear stress at the

lowest point on the lower plate, which varies continuously as the parameters are varied but

changes sign when an eddy appears or disappears. Results for the corresponding free-

surface film flow based on the experimental results presented by Wierschem et al. [29] in

Fig. 8 are shown for comparison purposes. These are given by the two grey-shaded lines

indicating the critical Nusselt film thicknesses for the appearance of the first two eddies as

a function of the waviness of the substrate. Though the critical values of waviness for large

gaps agree with those for thick films in Wierschem et al. [29], the behaviour at small gaps

is again opposite to the free-surface case, with the effect of narrowing the gap being to

decrease the critical waviness for the appearance of each eddy.

For large gaps, the critical values of waviness, acrit, appear to be equally spaced. This

is confirmed in Fig. 7 where the values of acrit are plotted (as black circles) against the

number of eddies. The solid line is a linear fit to the data, giving acrit = −0.67901 + 1.4653Ne

(where Ne is the number of eddies produced), with a correlation coefficient of 0.99992. As

a comparison, the corresponding critical values of waviness in the case of free-surface film

flow [28], with Nusselt film thickness h0 = 10, are included in Fig. 7. They are seen to be

very close to the rigid-plate ones. Note that though the critical curves seem to approach a

constant a as h− a increases, they in fact exhibit a maximum a at h− a ≈ 6 and then show

an extremely small decrease in a as h− a increases. This means that the earlier statement

that eddies cannot be created by increasing the gap between the plates is not strictly true,

since one could in theory fix the value of a very close to but to the left of one of the critical

curves, then increase h until the critical curve is crossed. However, the resulting eddy would

be so tiny as to be undetectable in practice.

As an aside, it is interesting to explore the relative characteristics of the eddies in the

sequence seen at large a, such as that in Fig. 6(e). For Stokes flow in a sharp–cornered,

straight–sided wedge, driven by an arbitrary distant disturbance, by his well-known analysis

Moffatt [31] revealed the existence of an infinite sequence of eddies for wedge angles below

a critical value. Adjacent eddies in the sequence were compared in terms of their relative

distances from the corner, and their relative ‘intensities’, as measured by the ratio of local

velocity maxima along the wedge centreline. The analysis showed that both of these ratios
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are constant for any pair of adjacent eddies in the sequence, and that they depend only on

the angle of the corner. In the present problem, the smooth, rounded nature of the bottom

boundary results in a finite rather than infinite sequence of eddies, and Table 1 compares

adjacent eddies for the conditions in Fig. 6(e). Here n refers to the number of the eddy, with

n Cn
Y /C

n+1

Y In/In+1 θn Rn
A

1 1.98 362 26.7◦ 2.03

2 2.57 402 19.1◦ 2.08

3 — — 25.1◦ 2.00

Table 1: Position and intensity ratios for the sequence of eddies shown Fig. 6(e). The ratios between

the 3rd and 4th eddies are not given as the 4th eddy is not fully formed in this case.

n = 1 being the primary (uppermost) eddy. Following the definitions of Fig. 2, Cn
Y /C

n+1

Y is

the ratio of the heights of the eddy centres above the lowest point of the valley, while In/In+1

gives the relative intensities based on local velocity maxima along the centreline. The angle

θn represents the angle between the tangents to the upstream and downstream flanks of the

valley at a height of Cn
Y , and the quantity Rn

A is an eddy aspect ratio, defined as the ratio

of the vertical distance between the eddy’s dividing streamlines to the horizontal distance

across the valley at height Cn
Y .

As can be seen, neither the position nor the intensity ratio is the same for the two eddy

pairs considered, and this is due to the nonlinear form of the boundary. However, the values

are consistent with those for a straight-sided wedge, when the variation with wedge angle

is considered. See Gaskell et al. [32] for a convenient tabulation of Moffatt’s results, and

corresponding finite element results for both Stokes and Navier-Stokes flow in a triangular

lid-driven cavity. Interestingly, despite the variation in the position and intensity ratios, the

aspect ratio of each eddy appears to be essentially constant, at approximately 2.

While the scaling with Λ used in Fig. 6 is useful for revealing the geometric criteria for

the appearance of secondary and further eddies, it disguises the behaviour in the small

clearance and long wavelength limit. Fig. 8 offers an alternative view by replotting the critical

curves using the amplitude, A, as the lengthscale, and plotting the clearance against the

wavelength. This illustrates that even for very long wavelengths, there is a critical gap below
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which an eddy is present. However, kinematically induced secondary eddies are not possible

for large wavelengths, as one would expect. The critical curve for the existence of the primary

eddy is reasonably well approximated by (H − A)/A = 2.3 + 1/[1.03Λ/A − 8.25], with the

asymptotic value of the critical gap therefore being Hcrit/A = 3.3. The leftmost streamline

plots in Fig. 8 also show the expansion and increased curvature of the eddy as the gap is

reduced below Hcrit.

3.2 Inertial effects on kinematically–induced eddies: large gaps

The domain geometry is uniquely specified by three characteristic lengths, namely H, A and

Λ, and in this section, H is taken to be larger than both A and Λ. It therefore represents

the global scale while A and Λ, which are taken to be of the same order, represent the local

scale. This is the configuration considered in the study of the corresponding free-surface

film flow [24].

Fig. 9 illustrates the typical effect of increasing Re on the shape of a kinematically induced

eddy when H is large. The plot shows the change in eddy depth, the shift in eddy centre

position, and the change in shape of the separatrix, when the geometry is fixed and Re

increases. For reference, the position of the separatrix and eddy centre at Re = 0 are

repeated in the overlaid plots. The effect is qualitatively identical to the free-surface case: the

eddy increases in size and becomes asymmetric, with the separatrix higher on the upstream

side of the domain [24, 33]. In accordance with this, the eddy centre moves upstream. The

curves in Fig. 9 are extremely close to those in Fig. 6 of Scholle et al. [24] but the Reynolds

number here is approximately double that in the free-surface case, due to the difference in

driving mechanism between the two cases.

In capturing the influence of the wavy substrate geometry on the structure of the flow

when Re �= 0, Scholle et al. [24] used the concept of a ‘local Reynolds number’, in which the

topography wavelength rather than the film thickness is used as the characteristic length.

The equivalent quantity in the present rigid-plate problem is

ReΛ =
ρΛU0

2πη
, (17)

and this is useful in illustrating how, as Λ decreases, the flow within the shelter of the lower
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plate becomes essentially decoupled from the inertia–dominated overlying flow. This effect

is shown in the bottom graph of Fig. 10, which plots the horizontal shift in the eddy centre

position as a function of ReΛ at a fixed global Reynolds number of Re = 228, chosen for

comparison with Fig. 8 of Scholle et al. [24].

For small ReΛ, corresponding to small Λ, the eddy centre lies close to the centreline, and

the size of the gap has very little influence on the position. The overlaid streamline plots

also show that in this parameter range the eddy structure is symmetrical, despite the global

Reynolds number being 228. Hence the flow within the valley is essentially a Stokes flow, and

is isolated from the overlying inertial flow. However, at ReΛ ≈ 13, there is a transition in the

behaviour, and for larger ReΛ the structure becomes markedly asymmetrical, and the size of

the gap has a significant influence on the position of the eddy centre. For such conditions

the flows within the valley and above the lower plate become fully coupled. Note that in

the upper graph, which indicates the variation in the eddy depth, there is no corresponding

transition in behaviour, because the size of the eddy is strongly influenced by the waviness

in both Stokes and inertial regimes.

As discussed in the previous section, for gaps above the critical value, there is a crit-

ical wavelength beyond which kinematically induced eddies no longer appear. Using the

relationship ReΛ = Re · Λ/2πH, one can include the critical wavelength in Fig. 10 for each

gap, and this is done via the open circles part way along each curve. For conditions to the

left of each circle, an eddy would persist if Re were reduced to zero, but for conditions to

the right, the eddy would disappear if Re were to be sufficiently reduced. Hence the open

circles mark the transition from kinematically to inertially induced eddies. As ReΛ is further

increased, eventually a second critical wavelength is encountered, beyond which the shape

of the lower plate is too shallow to sustain an eddy at that particular Re, and the inertially

induced eddy therefore disappears. This is indicated by the termination of each curve. Note

that for wavelengths (i.e. ReΛ) beyond the second critical value, it is still possible to generate

another eddy by increasing Re sufficiently.
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3.3 Inertial effects on kinematically-induced eddies: small gaps

The differences between the present rigid-plate flow and the corresponding free-surface

flow for small mean gaps/film thicknesses has already been discussed in the context of

Stokes flow, but there is a further difference when inertial effects are of interest. In the free-

surface case, it is difficult to increase the Reynolds number substantially when the film is

thin, because the characteristic speed of the flow is proportional to the square of the film

thickness. In the rigid-plate flow, however, the speed of the moving plate is an independent

parameter, allowing a wider range of Re to be realised.

Fig. 11 shows streamline plots which illustrate the change in eddy shape as Re increases,

for two different gap sizes. In the upper row, H/A = 4, and at first increasing Re has the same

effect as described in the last section for large gaps: the separatrix rises on the upstream

side to become inclined, and the eddy centre moves upstream (Fig. 11b). However, beyond

Re ≈ 50, the eddy centre moves back towards the centre of the domain, and the separatrix

becomes more level as it rises up the downstream flank of the valley (Fig. 11c). For larger

Re the eddy centre moves further downstream.

In comparison, when H/A = 2, under Stokes conditions the eddy is already closer to

the tops of the corrugations forming the lower plate, and in this case increasing Re causes

the eddy centre to move directly downstream, resulting in a more exaggerated asymmetry.

The effects of Re at different H/A are compared more quantitatively in Fig. 12, which plots

the horizontal shift in the eddy centre position. Note here that the sign of ∆X is preserved,

with a negative value indicating a shift upstream. For comparison, the ∆X curve from Fig. 9

with H/A = 14.2 is included. As can be seen, for intermediate gap sizes, the shift is at first

upstream, but after reaching an apparent limiting position, the eddy centre moves back in

the downstream direction. Between H/A = 2 and H/A = 3 there appears to be a critical

gap below which the shift in eddy centre position is in the downstream direction only. The

downstream shift also appears to have a limiting position, with the eddy centre moving back

towards the centre of the domain for very small gaps. This upstream-downstream movement

of the eddy centre position is similar to that seen in the classic rectangular lid-driven cavity.

In the case of the latter, as Re is increased the eddy centre shifts first in the direction in which

the lid is moving, reaches a limiting position and then moves back in the opposite direction

17



as the flow becomes akin to a solid body rotation; see for example Wright & Gaskell [34].

The most intriguing feature of Fig. 12 is the start of an additional curve near the centre of

the plot. This corresponds to a secondary eddy which appears when H/A = 1.2. When Re

is sufficiently large, the reverse flow along the downstream flank of the valley is sufficiently

strong to create an inertially induced secondary eddy. (As Fig. 6 shows, the value of a =

1.257 in Fig. 12 is well below the critical value for the appearance of a kinematically induced

secondary eddy.) Fig. 13 shows the development of this eddy as Re increases. Since the

flow along the lower plate is in this case right to left, the eddy appears on the downstream

rather than upstream side of the valley – compare Fig. 13(c,d) with the streamline plots in

Fig. 10. However, as Re increases, the eddy centre moves upstream, as the left-hand end

of its separatrix rises up the upstream flank of the valley.

Clearly inertial effects introduce substantial modifications to the generation and develop-

ment of eddies, and mapping out the entire parameter space would be a huge undertaking.

Rather than attempt to do this, Fig. 14 presents a final observation in the form of the in-

fluence of Re on the critical gap Hcrit for the appearance of an eddy at large wavelengths.

Recall that for Stokes flow, Fig. 8 showed that for H < Hcrit ≈ 3.3A an eddy is always present

even for very small waviness. Taking the case a = π/25 (i.e. Λ/A = 50) as representative

of the long wavelength limit, Fig. 14 shows that Hcrit increases only slightly for Re � 80, but

increases substantially with Re beyond that range.

4 Conclusions

It has been shown via a systematic theoretical investigation, based on accurate numerical

solutions supported by analysis in the Stokes flow regime, that the flow structure associated

with plane laminar shear flow over a corrugated plate is influenced by both the geometry (that

is, changes to the mean plate separation, in particular the clearance between the moving

upper uniform plate and the tops of the corrugations forming the lower one, or the amplitude

and wavelength of the corrugations) and the presence of inertia. Revealed also is the subtle

interplay that exists between kinematically and inertially induced eddies.

In analysing the effects of geometry on eddy formation, one can separate these into the
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influence of the waviness of the lower plate and the influence of the mean plate separation.

For a large and fixed plate separation, it has been shown under Stokes flow conditions that a

sequence of eddies is created as the waviness (i.e. the ratio of amplitude to wavelength) in-

creases. The critical values of waviness at which eddies appear are in very close agreement

with those seen in the flow of a correspondingly thick free-surface film over a sinusoidal sub-

strate — as one might expect, assuming that the flow local to the corrugated surface should

be insensitive to the exact form of the distant upper boundary.

However, exploration of the influence of the clearance between the plates (and the equiv-

alent Nusselt film thickness for the free-surface case) reveals substantial differences. Start-

ing from a geometry which produces a fully attached flow (i.e. one featuring no eddies), in

the free-surface flow it is possible to induce a substantial eddy by increasing the Nusselt

film thickness. In the rigid-plate case the opposite is true: an eddy will only be created by

sufficiently decreasing the plate clearance. This difference in behaviour is a consequence

of the different driving forces involved in the two flows. For the shear-driven rigid-plate flow,

the speed of the upper plate is independent of the clearance, while for the gravity-driven

free-surface flow, the fluid speed at the free surface is proportional to the square of the film

thickness. Hence, velocity profiles along a vertical centreline within the clearance show that

the plate-driven system exhibits the expected linearity while the gravity-driven profile for an

equivalent Nusselt film thickness is roughly quadratic. If the clearance (film thickness) is

doubled the speed of the upper plate (free-surface) is unchanged (quadrupled). Thus, an

increase in clearance (Nusselt film thickness) tends to decrease (increase) the shear rate in

the upper half of the corrugation, thus retarding (promoting) eddy formation.

As the clearance between the rigid plates tends to zero, the flow approaches that of a

lid-driven cavity, in which one would expect to see an eddy. In fact there is a non-zero critical

clearance below which a kinematically induced eddy will always be present, even as the

waviness of the lower plate tends to zero. As the inertia of the fluid increases, the critical

clearance also increases — very slowly for Re � 80, but then much more rapidly. This larger

critical clearance marks the onset of an inertially induced eddy.

For inertial flows with a large plate clearance, a local Reynolds number based on the

topography wavelength is useful in understanding how, as the wavelength of the lower plate

decreases, the flow within the shelter of the corrugations becomes essentially decoupled
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from the inertia-dominated overlying flow. It is found, in the parameter range considered,

that for a fixed large global Reynolds number but small local Reynolds number (correspond-

ing to a small corrugation wavelength), the clearance has very little influence on the position

and symmetry of an existing eddy; indicating that the flow within the valley region is essen-

tially Stokes-like and isolated from the overlying inertial flow. For larger values of the local

Reynolds number an existing eddy becomes markedly more asymmetrical and the clearance

has a significant influence with regard to the position of its centre. In such cases the flow

within a corrugation and above become fully coupled. Note that since the size of an eddy is

influenced by the waviness in both Stokes and non-Stokes flow, there is no corresponding

change in behaviour in relation to eddy depth.

Having observed the differences that exist between the rigid-plate and free-surface flows

for small clearances and film thicknesses in the context of kinematically induced eddies and

Stokes conditions, it is interesting to discover what further differences exist when inertia be-

comes significant, since in the case of free-surface flow it is difficult to increase the Reynolds

number substantially when the film is thin. A key result of the proximity of the driving plate,

when the Reynolds number is sufficiently large, is the appearance of an inertially induced

secondary eddy at a value of waviness well below the critical value for the appearance of a

kinematically induced secondary eddy.

The strength of the inertia present in the laminar shear flow under investigation together

with the subtle interplay that exists between kinematically and inertially induced behaviour

has a profound influence on the genesis and development of eddies within the flow. To

attempt to map out the entire associated parameter space would involve a considerable

effort. Nevertheless, the differences in flow structure that can result as described above

provide a very useful insight in to the richness of the problem.
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A Application of Ritz’ direct method for Stokes flow

Transforming the variational principle (10) into the new coordinate system (15) and integrating

with respect to R gives

I = 2π

∫ 1

0


 dQ (18)

where


 = m (iξnum − 2hnunum − hnvnvm) I1,m+n

+
hα(Q− 1)

2

(
4nunu

′
m + 2nvnv

′
m − i

h
ξnu

′
m

)
I2,m+n

+
1

h

(
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2
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)
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′
m

+
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h

(
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u′nu

′
m

−i
hα

h
(Q− 1)J2,m+nu

′
nv

′
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′
−n +

1

h
ξnv

′
−n (19)

with the following abbreviations

I1,m = δ0
m +

α

2
δ−1
m +

α

2
δ1
m

I2,m = δ−1
m − δ1

m

J1,m =

(−1 +
√

1 − α2
)|n|

α|n|
√

1 − α2

J2,m = J1,m+1 − J1,m−1

J3,m = J1,m+2 − 2J1,m + J1,m+2 .

Next, Ritz’s direct method is applied by approximating the coefficient functions in (16) as

finite linear combinations of M ∈ N independent basis functions

uk(Q) = u0,k(Q) +
M∑
l=1

ul,k ϕl(Q) (20)

vk(Q) = v0,k(Q) +
M∑
l=1

vl,k ϕl(Q) (21)

ξk(Q) =
M∑
l=1

ξl,k φl(Q) (22)
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with ϕl(0) = ϕl(1) = 0 and arbitrary functions u0,k and v0,k fulfilling the tangential components

of the no–slip conditions (7, 8). In the present case the Dirichlet type boundary conditions

(7) and (8) results in

u0,k(Q) = Qδk
0 v0,k(Q) = 0 . (23)

As the pressure variation at the boundary is explicit there exists no restriction in the choice

of the base functions φl(Q).

For the base functions ϕl(Q) use is made of linear combinations of shifted Chebyshev

polynomials fulfilling the requirement that ϕk(0) = ϕk(1) = 0, whereas for φl(Q) standard

Chebyshev polynomials are used. These allow for fast calculation when computer algebra

MAPLE is employeded. Proceeding in this way results in a quadratic expression for the

coefficients ul,k, vl,k and pl,k. Finally, variation with respect to ul,k, vl,k and pl,k produces a

linear algebraic set of equations for the coefficients which is solved within MATLAB.
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Figure 2: Sketch of the four measurables used to quantify resulting flow behaviour. The solid stream-

line and open circle mark the separatrix and eddy centre positions under general flow conditions,

while the dashed streamline and cross give their corresponding positions for Stokes flow. The quan-

tities ∆X and ∆D therefore refer to the difference in the position of the eddy centre and the eddy

depth between the general and Stokes flow cases.
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Figure 3: Calculations of the height, CY , of the eddy centre above the bottom of the topography, as

a function of the gap under Stokes flow conditions. The discrete points give corresponding semi-

analytical results with N = 4.
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Figure 4: Velocity profiles along the vertical centreline. The curves illustrate the effect of doubling

the mean gap (film thickness) on the velocity profiles in the case of rigid plate laminar shear (free-

surface film) flow. Lengths are scaled by A. The thick solid line indicates the lower plate surface,

and the dotted lines indicate the positions of the upper boundary when Hf/A = 7 (H/A = 7.68) and

Hf/A = 14 (H/A = 14.698).
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Figure 5: Comparison of the shape and position of the separatrix for different gaps and two different

lower plate geometries. In (a) a = 2π/5, and in (b) a = 4.5. Lengths are scaled by A, and the dotted

line in each plot shows the position of the upper boundary when H/A = 1.2. Graph (c) gives the

variation in eddy depth with the clearance.
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Figure 6: Map of parameter space showing critical combinations of the waviness, a, and clearance,

h − a, at which the first and subsequent eddies appear. The row of streamline plots (a–e) all have

h−a = 5, and values of a equal to 0.4, 1.5, 3, 4.5, and 6. Streamline plot (f ) corresponds to h−a = 5

and a = 0.4. For free surface film flow the corresponding critical combinations of the waviness, a,

and Nusselt film thickness, h0, at which the first and the second eddy appear are indicated by the

grey–shaded lines.
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Figure 7: Critical values of waviness, acrit, at which a new eddy appears. The solid circles represent

critical values extracted from Fig. 6 at h − a = 10. For comparison, the open circles indicate corre-

sponding free-surface film results for a Nusselt film thickness h0 = 10. The solid lines are linear fits

to the data.
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Figure 8: Critical curves of Fig. 6 replotted using the amplitude, A, of the lower plate as the length

scale. The streamline plots show the flow structure for the parameter values at the indicated locations.
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Figure 9: Effect of increasing inertia on the horizontal shift of the eddy centre, |∆X|/Λ (lower graph),

and corresponding change in eddy depth, ∆D/Λ (upper graph), for H/A = 14.2 and a = 2π/5. The

overlaid plots A to F show the separatrix and eddy centre position at the values of Re indicated by

the corresponding black circles on the graphs. In plots B to F, the separatrix is shown as a solid line,

and the eddy centre as an open circle. The Stokes flow separatrix and eddy centre position from A are

included in each case as a dashed line and ‘×’ symbol, respectively.
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Figure 10: Effect of ReΛ on the horizontal shift of the eddy centre, |∆X|/Λ, (lower graph) and on

eddy depth, D/Λ, (upper graph) for large gaps and Re = 228. The streamline plot inserts illustrate

the flow structure for parameter values corresponding to the points shown as the black circles. The

open circles mark the transition from a kinematically to inertially induced eddy.
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Figure 11: Effect of increasing inertia on eddy shape for H/A = 4 (a-d) and H/A = 2 (e-h), with

the waviness of the lower plate a = 2π/5 ≈ 1.257. In (a, e) Re = 0; in (b, f ) Re = 50; in (c, g)

Re = 170; and in (d, h) Re = 300.
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Figure 12: Effect of inertia on the horizontal shift of the eddy centre, ∆X/Λ, for a = 2π/5 ≈ 1.257

and a number of different gaps. The solid curve which begins near the centre of the plot corresponds

to an inertially induced secondary eddy.
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Figure 13: Streamline plots illustrating the generation and development of an inertially induced sec-

ondary eddy as Re increases: (a) Re = 0; (b) Re = 200; (c) Re = 260; (d) Re = 330; (e) Re = 450;

(f ) Re = 500. The geometry is given by a = 2π/5 and h = 12π/25, or, equivalently, H/A = 1.2 and

Λ/A = 5.
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Figure 14: Effect of Reynolds number on the critical gap for the appearance of an eddy at long

wavelengths. Here Λ/A = 50, corresponding to a = π/25 ≈ 0.1257. The streamline plots correspond

to the conditions at the indicated black circles.


