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Almost Global Attractivity of a Synchronous Generator Connected to an Infinite Bus

Nikita Barabanov, Johannes Schiffer, Romeo Ortega and Denis Efimov

Abstract— The problem of deriving verifiable conditions for
stability of the equilibria of a realistic model of a synchronous
generator with constant field current connected to an infinite
bus is studied in the paper. Necessary and sufficient conditions
for existence and uniqueness of equilibrium points are provided.
Furthermore, sufficient conditions for almost global attractivity
are given. To carry out this analysis a new Lyapunov–like
function is proposed to establish convergence of bounded
trajectories, while the latter is proven using the powerful
theoretical framework of cell structures pioneered by Leonov
and Noldus.

I. INTRODUCTION

Today’s electrical power systems are very large, complex

and highly nonlinear [1], [2]. They possess a huge variety of

actuators and operational constraints, while persistently being

subjected to disturbances. Guaranteeing a stable, reliable and

efficient operation of a power system is a daunting task,

while at the same time being one of the most important

problems for secure power system operation [3]. Hence, it is

not surprising that there exists an abundant literature on this

topic dating back, at least, to the 1920s [4], [5].

Yet, in spite of these efforts, due to the complexity of

the dynamics of a power system—even at the individual

component level—many basic questions remain open. There-

fore, typical stability analysis (and also control design) of

power systems is conducted subject to several assumptions

that simplify the mathematical task. Standard assumptions

comprise neglecting fast dynamics [2], [6], [7] and assuming

constant voltage amplitudes and small frequency variations

[1, Chapter 11]. With such assumptions, it is possible to

derive reduced-order synchronous generator (SG) models [1,

Chapter 11] and employ algebraic models for the transmis-

sion lines [1], [2], [6]–[8], simplifying the analysis.

Unfortunately, the employed assumptions are often not

physically justifiable in generic operation scenarios. In par-

ticular, the common representation of the motion of the ma-

chine rotor, i.e., the swing equation, in terms of mechanical

and electrical power, instead of their corresponding torques,

is an approximation which is only valid for small frequency

variations around the nominal frequency [1], [2], [8]–[11].
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Due to the steadily increasing penetration of fluctuating

renewable energy sources, power systems worldwide often

operate closer to their stability limits [12], [13]. Hence, the

necessity of a more rigorous power systems stability analysis

valid in large operating regions has become more compelling

in the past years. In particular, it is important to derive

easily and quickly verifiable analytic conditions for transient

stability. This is the topic addressed in the present work.

Stability analysis of power systems employing detailed

models, which are valid in a broader range of operating

conditions, is a long-standing problem in the power systems

literature. In this work, we consider a classical and very

well known scenario called the single generator infinite bus

(SGIB) model [2], [8]. Opposed to most other available anal-

ysis [1], [2], we consider a fourth-order nonlinear SG model

derived from first principles. The SGIB scenario with such a

model is adopted in [14], [15] where sufficient conditions

for almost global asymptotic stability (GAS) are derived.

The analysis in [14] proceeds along the classical lines of

constructing an integro–differential equation resembling the

forced pendulum equation and, subsequently, showing that

the SGIB system is almost GAS if and only if the same holds

for that equation. In [15] the same authors provide slightly

simpler conditions for stability resulting from verifying if

a real-valued nonlinear map defined on a finite interval is

a contraction. But, as stated in [15], these conditions are

hard to verify analytically. Furthermore, and perhaps more

importantly, the geometric tools employed to establish the

results in [14], [15], don’t seem to be applicable to a multi–

machine power system. In [10] a scenario similar to that of

the SGIB system is analyzed. However, the analysis in [10]

is conducted under very stringent assumptions on the specific

form of the infinite bus voltage, as well as the steady-state

values of the mechanical torque.

The present paper overcomes part of the limitations in the

literature by providing the following main contributions.

• Necessary and sufficient conditions for uniqueness and

existence of two equilibria (modulo 2π) are established.

• Sufficient conditions for almost global attractivity of one

of these equilibria are derived.

• The conservativeness of the conditions, both of them

given in terms of the SGIB system parameters, is

evaluated via a benchmark numerical example taken

from [15].

The remainder of the paper is structured as follows. The

SGIB model is introduced in Section II. The steady-state

solutions of this model are investigated in Section III. To

establish the attractivity result, we first construct in Sec-

tion IV a new Lyapunov–like function—i.e., a function that



is not positive definite but whose derivative is negative semi–

definite. LaSalle’s invariance principle [16] then establishes

some convergence properties of bounded trajectories. The

powerful, but little known, theoretical framework of cell

structures pioneered by Leonov and co–workers [17]–[19] as

well as Noldus [20] that ensures boundedness of solutions

is then recalled in Section V. Finally, in Section VI we

give conditions on the SGIB system parameters under which

the cell structure principle is satisfied, hence completing the

almost global attractivity analysis. Section VII presents a

benchmark numerical example. The paper is concluded in

Section VIII with a summary and an outlook on future work.

It is convenient to clarify at this point two important tech-

nical issues. First, the equilibrium of the SGIB model con-

sidered in the paper cannot be rendered GAS via continuous

feedback, hence the need for the qualifier “almost”1. Indeed,

the system is naturally defined on the torus, which is not

diffeomorphic to the Euclidean space, and GAS is hampered

by a well known topological obstruction [21]. Second, as

explained above the analysis carried out in the paper does not

rely on the construction of a bona fide Lyapunov function,

hence we do not prove that the equilibrium is almost GAS,

but only almost globally attractive.

II. MODEL OF A SYNCHRONOUS GENERATOR

CONNECTED TO AN INFINITE BUS

In this section the main equations and assumptions are

given for the considered SGIB system. We make some

standard assumptions on the SG [22], [23], which are also

used in [10], [14], [15]. First, the rotor is round, the machine

has one pole pair per phase, there are no damper windings

and no saturation effects as well as no Eddy currents. Second,

we assume that the rotor current if is a real constant. This

can be achieved by choosing the excitation voltage such that

if is kept constant, see [10]. Third, we assume balanced

three-phase signals throughout the paper [24]. For the SG this

is equivalent to assuming a ”perfectly build” SG connected

in star with no neutral connection, as in [14], [15].

We follow the notation and modeling in [22]. Hence, we

use a generator reference direction, i.e, current flowing out

of the SG terminals is counted positively. We denote the

electrical rotor angle of the SG by2 δ : R≥0 → R and

the electrical frequency by ω = δ̇. Here, δ is the angle

between the axis of coil a of the SG and the d-axis, see

[22, Figure 3.4]. For a constant rotor current if , the three-

phase electromotive force (EMF) eabc : R≥0 → R
3 is given

by [22], [23]

eabc = Mf ifω
[

sin(δ) sin(δ − 2π
3 ) sin(δ + 2π

3 )
]⊤

, (1)

where Mf ∈ R>0 is the peak mutual inductance. Likewise,

we denote the three-phase voltage at the infinite bus by

vabc :=
√
2V

[

sin(δg) sin(δg − 2π
3 ) sin(δg +

2π
3 )

]⊤
, (2)

1Almost GAS means that for all initial conditions, except a set of
Lebesgue measure zero, the trajectories will converge to the equilibrium.

2To establish an important result of this paper, namely convergence of
bounded solutions, it is more convenient to work with angles defined on the
real line rather than on the circle.

where V ∈ R>0 is the root-mean-square (RMS) value of the

constant voltage amplitude (line-to-neutral) and

δg = δg(0) + ωst ∈ R, (3)

with the grid frequency ωs being a positive real constant. We

denote the stator resistance by R ∈ R>0 and by L = Ls+Ms

the stator inductance composed of the self-inductance Ls ∈
R>0 and the mutual inductance Ms ∈ R<0. In practice,

Ls > −Ms and, hence, L > 0. Then the electrical equations

describing the dynamics of the three-phase stator current

iabc : R≥0 → R
3 are given by

L
diabc
dt

= −Riabc + eabc − vabc. (4)

The SGIB model is completed with the mechanical equations

describing the rotor dynamics, i.e.,

δ̇ = ω,

Jω̇ = −Dω + Tm − Te,
(5)

where J ∈ R>0 is the total moment of inertia of the rotor

masses, D ∈ R>0 is the damping coefficient and Tm ∈ R≥0

is the mechanical torque provided by the prime mover. Note

that we assume Tm constant throughout the paper. Also, the

electrical torque Te can be written as [23]

Te = ω−1i⊤abceabc. (6)

For our analysis, we represent all three-phase electrical

variables in dq-coordinates with respect to the angle

ϕ := ωst (7)

and employ the dq-transformation matrix Tdq(·) given in [1],

[2], [24]. The angle difference between the rotor angle δ and

the dq-transformation angle ϕ is denoted by θ := δ − ϕ.
In dq-coordinates, the grid voltage (2) is thus given by the

constant vector (see [24]),

vdq=

[

vd
vq

]

=
√
3V

[

sin(δg − ϕ)
cos(δg − ϕ)

]

=
√
3V

[

sin(δg(0))
cos(δg(0))

]

,

where the second equality follows from (3). By defining

b :=
√

3/2Mf if , the EMF in dq-coordinates is given by

edq =
[

ed eq
]⊤

=
[

bω sin(θ) bω cos(θ)
]⊤

. (8)

By replacing the rotor angle dynamics, i.e., δ̇, with the

relative rotor angle dynamics, i.e., θ̇, the SGIB model given

by (4), (5) and (6) becomes in dq-coordinates

θ̇ = ω − ωs,

Jω̇ = −Dω + Tm − b (iq cos(θ) + id sin(θ)) ,

Li̇d = −Rid − Lωsiq + bω sin(θ)− vd,

Li̇q = −Riq + Lωsid + bω cos(θ)− vq.

(9)

Here, we have used the facts that the electrical torque Te in

(6) is given in dq-coordinates by

Te=ω−1i⊤abceabc=ω−1i⊤dqedq=b(iq cos(θ)+id sin(θ)) (10)



and that, with ϕ given in (7),

dTdq(ϕ)

dt
iabc = ωs

[

−iq id
]⊤

,

see [24, equation (4.8)]. The model (9) is used for the

analysis in this paper.

Remark 1: The analysis reported in the paper can be

conducted in any coordinate frame. However, we favor the

one used here since it seems to be more suitable to extend

the results to the multi-machine case.

III. EXISTENCE AND UNIQUENESS OF EQUILIBRIA

In this section, we investigate existence and uniqueness

of equilibria of the system (9), which are denoted by

(θs, ωs, isd, i
s
q).To simplify the notation it is convenient to

introduce two important constants

c : = b
√

(v2d + v2q )((Lω
s)2 +R2),

P : =
1

c

[

−b2ωsR+ (Tm −Dωs)((Lωs)2 +R2)
]

.
(11)

Clearly, c is nonzero if the rotor current if is nonzero, which

is satisfied in any practical scenario.

Proposition 1: The system in (9) possesses two unique

steady-state solutions (modulo 2π) if and only if

|P| < 1. (12)

If and only if (12) is satisfied with equality, the system (9)

has exactly one steady-state solution (modulo 2π).

Proof: Obviously, the equilibria of the system (9) are

2π-periodic in θ. Furthermore, we have to solve the equations

ω − ωs = 0,

−Dω − bid sin(θ)− biq cos(θ) + Tm = 0,

−Rid − Lωsiq + bω sin(θ)− vd = 0,

Lωsid −Riq + bω cos(θ)− vq = 0.

(13)

Thus, equilibria (θs, ωs, isd, i
s
q) are given by

ωs = ωs,

isd =
bRωs sin(θs)− bL(ωs)2 cos(θs)− vdR+ vqLω

s

(Lωs)2 +R2
,

isq =
(ωs)2Lb sin(θs) + ωsbR cos(θs)− vdLω

s − vqR

(Lωs)2 +R2
,

b(Lωsvq −Rvd) sin(θ
s)− b(Lωsvd +Rvq) cos(θ

s)

= −b2ωsR+ (Tm −Dωs)((Lωs)2 +R2).
(14)

The last equation implies that such θs does exist if and only

if
∣

∣

∣

∣

∣

∣

−b2ωsR+ (Tm −Dωs)((Lωs)2 +R2)

b
√

(v2d + v2q )((Lω
s)2 +R2)

∣

∣

∣

∣

∣

∣

≤ 1. (15)

Thus, condition (15) is necessary and sufficient for system (9)

to have either one (equality) or exactly two (strict inequality)

equilibria (modulo 2π), completing the proof.

IV. CONVERGENCE OF Bounded SOLUTIONS

In this section, we derive a sufficient condition under

which all bounded solutions of the system (18) converge

to an equilibrium. The claim is established constructing a

Lyapunov–like function and invoking LaSalle’s invariance

principle [16]. Throughout the rest of the paper we make

the following natural assumption3.

Assumption 1: The parameters of the system (9) are such

that condition (12) of Proposition 1 is satisfied and if > 0.
Proposition 2: Consider the system (9) verifying Assump-

tion 1 and the inequality

4RD[(Lωs)2 +R2] > (Lbωs)2. (16)

Every bounded solution tends to an equilibrium point.

Proof: Assumption 1 ensures the existence of equilib-

ria. It is convenient to shift one of the equilibrium points to

the origin via the the change of coordinates

θ = θ̃ + θs, ω = ω̃ + ωs, id = ĩd + isd, iq = ĩq + isq.

In the variables (θ̃, ω̃, ĩd, ĩq) the system (9) has the form

˙̃
θ =ω̃,

J ˙̃ω =−D(ω̃ + ωs)− b(isd + ĩd) sin(θ
s + θ̃)

− b(isq + ĩq) cos(θ
s + θ̃) + Tm,

L˙̃id =−R(isd + ĩd)− Lωs(isq + ĩq)

+ b(ω̃ + ωs) sin(θs + θ̃)− vd,

L˙̃iq =−R(isq + ĩq) + Lωs(isd + ĩd)

+ b(ω̃ + ωs) cos(θs + θ̃)− vq.

(17)

Furthermore, taking into account equations (14), we get

˙̃
θ =ω̃,

J ˙̃ω =−Dω̃ − b̃id sin(θ
s + θ̃)−bisd(sin(θ

s + θ̃)− sin(θs))

− b̃iq cos(θ
s + θ̃)− bisq(cos(θ

s + θ̃)− cos(θs)),

L˙̃id =−Rĩd − Lωsĩq + bωs(sin(θs + θ̃)− sin(θs))

+ bω̃ sin(θs + θ̃),

L˙̃iq =−Rĩq + Lωsĩd + bωs(cos(θs + θ̃)− cos(θs))

+ bω̃ cos(θs + θ̃).
(18)

The second step is to construct the Lyapunov–like func-

tion. Note that the electrical dynamics takes the form

L˙̃idq =

[

u
w

]

+

[

bω̃ sin(θs + θ̃)

bω̃ cos(θs + θ̃)

]

, (19)

where we defined
[

u
w

]

:=

[

−R −Lωs

Lωs −R

]

ĩdq+

[

bωs(sin(θ̃ + θs)− sin(θs))

bωs(cos(θ̃ + θs)− cos(θs))

]

.

3The signs of c and, hence, P defined in (11) depend on that of the
constant rotor current if . For the subsequent analysis, it is important to
know the sign of c, as it determines which of the two equilibria of the system
(9) is stable. Yet, we remark that for if < 0 the analysis can be conducted
in an analogous manner, see the numerical example in Section VII.



The expression above suggests the following function

V (χ) =
L

2
(u2 + w2) +

Jω̃2

2

[

(Lωs)2 +R2
]

+ b2Rωs(θ̃ − sin θ̃) + L(bωs)2(1− cos θ̃)

+ b
[

(Lωs)2+R2
]

[

isd

(

cos θs−cos(θ̃+θs)−θ̃ sin θs
)

+ isq

(

sin(θ̃ + θs)− sin θs − θ̃ cos θs
) ]

,

(20)

where we defined the four–dimensional state vector

χ := (θ̃, ω̃, ĩd, ĩq). Some simple calculations show that

V̇ =−R[u2 + w2]−D((Lωs)2 +R2)ω̃2+

+ ω̃u Lbωs cos(θ̃ + θs)− ω̃w Lbωs sin(θ̃ + θs)

=
[

u w ω̃
]

M
[

u w ω̃
]⊤

,

(21)

where we defined

M :=







−R 0 Lbωs cos(θ̃+θs)
2

0 −R −Lbωs sin(θ̃+θs)
2

Lbωs cos(θ̃+θs)
2 −Lbωs sin(θ̃+θs)

2 −D((Lωs)2 +R2)






.

(22)

A Schur complement analysis yields that M < 0 if and only

if (16) holds. Now, by LaSalle’s invariance principle [16] all

bounded solutions of the system (18) converge to the largest

invariant set contained in the set of {χ ∈ R
4 : V̇ = 0}.

Clearly, V̇ = 0 ⇔ w = u = ω̃ = 0. Hence, θ̃ is

constant and, from (19), we have that ĩdq is also constant.

Consequently, the set {χ ∈ R
4 : V̇ = 0} is an equilibrium

set, completing the proof.

V. BOUNDEDNESS OF SOLUTIONS

We recall here that, to ensure continuity of the function

V , we are viewing the system evolving in R
4, therefore θ̃

is not a–priori bounded. To prove this fact we use the cell

structure principle of Leonov and co–workers [17]–[19] as

well as Noldus [20]. Although the proof of the proposition

is an immediate corollary of Theorem 16 in [25, Chapter 8],

(see also [19]), it is given here for the sake of completeness.

Proposition 3: Consider the function V defined in (20).

Assume there exist positive real numbers ǫ and λ such that

along the solutions of the system (18) the function

V̄ := V − ǫ

2
θ̃2 (23)

verifies
˙̄V ≤ −λV̄ . (24)

Then, all solutions χ = (θ̃, ω̃, ĩd, ĩq) of the system (18) are

bounded.

Proof: Note that from (20) and (21) we have that the

evolution of u, w and ω̃—along solutions of the system

(18)—is bounded. This implies that ĩdq is also bounded and

it only remains to show that θ̃ is bounded. To show the

latter, we begin by simplifying the function V defined in

(20). Denote by φ the unique number in [0, π) such that

cosφ =
b

c
(Lωsvq −Rvd), sinφ =

b

c
(Lωsvd +Rvq), (25)

where the constant c is defined in (11). Together with (14),

we have that

b2Rωs(θ̃ − sin θ̃) + L(bωs)2(1− cos θ̃)

+ b
[

(Lωs)2 +R2
]

[

isd

(

cos θs − cos(θ̃ + θs)− θ̃ sin θs
)

+ isq

(

sin(θ̃ + θs)− sin θs − θ̃ cos θs
) ]

=

c

∫ θ̃

0

[sin(θs − φ+ s)− sin(θs − φ)]ds.

Hence, V can be written compactly as

V (χ) =
L

2
(u2 + w2) +

Jω̃2

2
((Lωs)2 +R2)+

+ c

∫ θ̃

0

[sin(θs − φ+ s)− sin(θs − φ)]ds.

(26)

From the definition of V in (26) it follows that the function

V̄ is positive definite on the hyperplane θ̃ = 0. For every

integer k = 0,±1,±2, . . . consider the function

V̄k(χ)=
L

2
(u2+w2)+

Jω̃2

2
((Lωs)2+R2)− ǫ

2
(θ̃−2πk)2

+ c

∫ θ̃

2πk

[sin(θs − φ+ s)− sin(θs − φ)]ds.

(27)

It follows immediately that V̄k is positive definite on the

hyperplane θ̃ = 2πk. Observe that the function V̄k defined

in (27) differs from V̄ defined in (23), in that the integer k
appears as a scalar in the quadratic term −0.5ǫ(θ̃ − 2πk)2

and in the lower limit of the integral expression, which is

2π-periodic. Hence, the fact that by assumption ˙̄V ≤ −λV̄ ,
i.e., condition (23), implies that also for every integer k,
˙̄Vk ≤ −λV̄k. This and the 2π-periodicity of the system (18)

with respect to θ̃, imply that for every integer k the set

Zk = {χ ∈ R
4 : V̄k(χ) ≤ 0} (28)

is invariant with respect to solutions of the system (18).

Assume χ(·) is a solution of system (18) with initial

condition χ(0) = χ0. From the definition of the function

V̄k in (27) we see that V̄k(χ0) is decreasing with respect to

|k| quadratically. Hence, for any χ0 there exist integers k1
and k2, with k1 < k2, such that V̄k1

(χ0) ≤ 0, θ̃(0) ≥ 2πk1,

and V̄k2
(χ0) ≤ 0, θ̃(0) ≤ 2πk2. The function V̄k1

is positive

on the plane θ̃ = 2πk1, and the function V̄k2
is positive on

the plane θ̃ = 2πk2. Furthermore, the sets Zk1
and Zk2

are

invariant. Consequently, we have that 2πk1 ≤ θ̃(t) ≤ 2πk2
for all t ≥ 0. This completes the proof.

VI. MAIN RESULT: ALMOST GLOBAL ATTRACTIVITY

To streamline the presentation of our main result, we need

the following. Given the equilibrium values θs and ωs, define

the functions

q(θ̃) := c

∫ θ̃

0

[sin(θs − φ+ s)− sin(θs − φ)]ds,



g(λ) := 4(R− Lλ

2
)[((Lωs)2 +R2)(D − Jλ

2
)− 2ǫmin

λ
],

with c and φ defined in (11) and (25), respectively, and the

constant ǫmin given by

ǫmin := inf
ǫ∈R>0

{q(θ̃) ≤ ǫ

2
θ̃2, ∀θ̃ ∈ R}. (29)

Assumption 2: There exists λmax > 0—a point of local

maximum of the function g(λ)—such that

2R > λmaxL and g(λmax) > (Lbωs)2. (30)

The lemma below provides an explicit, though conservative,

estimate for ǫmin defined in (29).

Lemma 1: Consider the function

h(θ̃) = q(θ̃)− ǭ

2
θ̃2. (31)

Select ǭ > c. Then, h(θ̃) ≤ 0 for all θ̃ ∈ R.
Proof: Straight-forward calculations yield

q(θ̃) = c[− cos(θs − φ+ θ̃)− sin(θs − φ)θ̃ + cos(θs − φ)].

The critical points of h are attained at values of θ̃∗ satisfying

∂h

∂θ̃

∣

∣

∣

θ̃=θ̃∗

= c[sin(θs−φ+θ̃∗)−sin(θs−φ)]−ǭθ̃∗ = 0. (32)

It follows from the mean value theorem that

sin(θs − φ+ θ̃∗)− sin(θs − φ) ≤ |θ̃∗|.
Thus, for ǭ > c, the only solution of (32) is θ̃∗ = 0 and

∂2h

∂θ̃2

∣

∣

∣

θ̃=θ̃∗

= c cos(θs − φ+ θ̃∗)− ǭ,

which shows that for ǭ > c ≥ c cos(θs − φ), θ̃∗ = 0 is a

maximum of h, completing the proof.

We are now ready to state our main result.

Theorem 1: Consider the system (9) verifying Assump-

tions 1 and 2. The equilibrium point (θs, ωs, isd, i
s
q) satisfying

|θs − φ| < π
2 (modulo 2π) with φ defined in (25) is

locally asymptotically stable and almost globally attractive,

i.e., for all initial conditions, except a set of measure zero,

the solutions of the system (9) tend to that equilibrium point.

Proof: Assumption 1 ensures, via Proposition 1, that

an equilibrium exists. To establish the local stability claim

we note that from (14) and the definition of q(θ̃) above, it

follows that

q(0) = 0, q′(0) = 0, q′′(0) = c cos(θs − φ)

and

sin(θs − φ) = P, (33)

with P defined in (11). From Assumption 1 we have |P| < 1.
Therefore, the equation (33) has two roots θs in the interval

[φ, φ + 2π). If |θs − φ| < π
2 , then q′′(0) > 0. This implies

that the function V has a local minimum at the origin.

Furthermore, the parameters λ and ǫmin only enter with

negative sign in g(λ). Hence, Assumption 2 implies that (30)

is also satisfied for λ = ǫmin = 0 (with (ǫmin/λ)|(0,0) := 0)

which is exactly condition (16). Thus, V̇ ≤ 0 and the zero

solution of the system (18) is Lyapunov asymptotically stable

(see Proposition 2). If |θs−φ| > π
2 , then q′′(0) < 0, and the

zero solution of the system (18) is Lyapunov unstable.

To show almost global attractivity of the stable equilib-

rium, we assume in the following that the zero solution

of the system (18) is Lyapunov unstable (and therefore

|θs − φ| > π
2 ). Recall the sets Zk defined in (28) and note

that every intersection of sets Zk is also invariant. The set

Zk is equal to Z0 shifted in the coordinate θ̃ by 2πk to the

right since θsk = θs + 2πk. Now,

Z0 ={χ ∈ R
4 :

L

2
(u2 + w2) +

Jω̃2

2
((Lωs)2 +R2)

+ q(θ̃)− ǫ

2
θ̃2 ≤ 0}.

(34)

Recall that by Lemma 1, the number ǫmin defined in (29)

indeed exists. Now we check the condition of Proposition 3.

To this end, we evaluate dV̄
dt

+ λV̄ , which yields

dV̄

dt
+ λV̄ =−R[u2 + w2]−D((Lωs)2 +R2)ω̃2

+ ω̃u Lbωs cos(θ̃ + θs)−ω̃w Lbωs sin(θ̃ + θs)

− ǫθ̃ω̃ + λ[
L

2
(u2 + w2) +

Jω̃2

2
((Lωs)2 +R2)

+c

∫ θ̃

0

[sin(θs − φ+ s)− sin(θs − φ)]ds− ǫ

2
θ̃2]

≤(−R+
Lλ

2
)[u2 + w2]− ǫθ̃ω̃ − λ(ǫ− ǫmin)

2
θ̃2

− ((Lωs)2 +R2)(D − Jλ

2
)ω̃2

+ ω̃u Lbωs cos(θ̃ + θs)−ω̃w Lbωs sin(θ̃ + θs)

=
[

u w ω̃ θ̃
]

M1

[

u w ω̃ θ̃
]⊤

,

with M1 given in (37). The matrix M1 is negative definite

if and only if ǫ > ǫmin and the matrix M2 defined in (38) is

negative definite. Similarly to the matrix M defined in (22),

M2 is negative definite if and only if 2R > Lλ and

4(R−Lλ

2
)[(Lωs)2+R2)(D−Jλ

2
)− ǫ2

2λ(ǫ−ǫmin)
]>(Lbωs)2.

(35)

In (35) the positive parameters ǫ and λ have to be chosen.

The maximum of the left hand side with respect to ǫ is

attained at ǫ = 2ǫmin. For this choice, (35) takes the form

4(R− Lλ

2
)[((Lωs)2 +R2)(D− Jλ

2
)− 2ǫmin

λ
] > (Lbωs)2.

(36)

Consider the following polynomial

f(λ) := ((Lωs)2 +R2)(Dλ− Jλ2

2
)− 2ǫmin,

and denote by λ1 its smallest root, that is,

λ1 =
D −

√

D2 − 4Jǫmin

(Lωs)2+R2

J
.

If λ1 < 2R
L

, then on the interval [λ1,
2R
L
] there is a unique



M1 =











−R+ Lλ
2 0 Lbωs cos(θ̃+θs)

2 0

0 −R+ Lλ
2

−Lbωs sin(θ̃+θs)
2 0

Lbωs cos(θ̃+θs)
2

−Lbωs sin(θ̃+θs)
2 −((Lωs)2 +R2)(D − Jλ

2 ) − ǫ
2

0 0 − ǫ
2 −λ(ǫ−ǫmin)

2











(37)

M2 =







−R+ Lλ
2 0 Lbωs cos(θ̃+θs)

2

0 −R+ Lλ
2

−Lbωs sin(θ̃+θs)
2

Lbωs cos(θ̃+θs)
2

−Lbωs sin(θ̃+θs)
2 −((Lωs)2 +R2)(D − Jλ

2 ) + ǫ2

2λ(ǫ−ǫmin)






(38)

point λmax of local maximum of the left hand side in (36).

The derivations above, together with the definition of g(λ),
prove that the inequalities (30) of Assumption 2 ensure M1

is negative definite. Hence, the conditions of Proposition 3

are satisfied. Recall that Assumption 2 also implies that

condition (16) of Proposition 2 is satisfied. Consequently, all

solutions (θ, ω, id, iq) of the system (9) are bounded and tend

to an equilibrium point. Recall that one of the two equilibria

of the system (9) (modulo 2π) is stable and the other one

is unstable. Thus, for all initial conditions, except a set of

measure zero, the solutions of the system (9) tend to the

stable equilibrium point. This shows that the latter is almost

globally attractive and completes the proof.

Remark 2: Note that if P = 0 (and therefore |θs−φ| = π
2 )

then ǫmin = 0, and the inequality (36) is equivalent to (16).

Remark 3: The related analysis in [10] critically relies on

imposing a specific value for the mechanical torque Tm and

on the knowledge of the stationary rotor currents isdq. Such

restrictions do not apply in the present case.

VII. NUMERICAL EXAMPLE

We investigate the effectiveness of the inequalities (30)

of Assumption 2 via a numerical benchmark example taken

directly from [15]. Note that in the example of [15] the

rotor current if < 0. Thus, b < 0 and c < 0, see (11).

In our notation, this corresponds to the (potentially) stable

equilibrium being shifted by π. Indeed, conditions (11), (12)

and (16) are satisfied for this example. Hence, the system (9)

has two equilibria and the proof of Theorem 1 implies that

the equilibrium with |θs−φ| > π/2 is locally asymptotically

stable. In addition, inequalities (30) of Assumption 2 are

satisfied with ǫmin = 82.12 and λ = 23.81. Consequently,

by Theorem 1, the equilibrium with |θs−φ| > π/2 is also an

almost globally attractive equilibrium. This result coincides

with the conclusions in [15].

VIII. CONCLUSIONS

A complete stability analysis of a realistic SGIB model has

been presented. First, it is shown that (12)—with P defined

in (11)—is a necessary and sufficient condition for existence

of equilibria. Then, it is proven that if the inequalities (30)

of Assumption 2 hold then almost all trajectories converge

to a stable equilibrium point. The conservativeness of the

estimates have been assessed via a numerical benchmark

problem.

The main topic of future research is the extension of these

results to the multi-machine case. Given the “scalable” nature

of the analysis tools employed here this seems a feasible—

albeit difficult—task.
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