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Abstract Train unit scheduling concerns the assignment of train unit vehicles to

cover all the journeys in a fixed timetable. Coupling and decoupling activities are

allowed in order to achieve optimal utilization while satisfying passenger demands.

While the scheduling methods usually assume unique and well-defined train

capacity requirements, in practice most UK train operators consider different levels

of capacity provisions. Those capacity provisions are normally influenced by

information such as passenger count surveys, historic provisions and absolute

minimums required by the authorities. In this paper, we study the problem of train

unit scheduling with bi-level capacity requirements and propose a new integer

multicommodity flow model based on previous research. Computational experi-

ments on real-world data show the effectiveness of our proposed methodology.

Keywords Train unit scheduling � Required train capacities � Multicommodity

network flow

1 Introduction

A train unit is a self-propelled, relatively small fixed set of rolling stock carriages

(or cars) that can move in either track direction on their own, in contrast to a

traditional configurable combination of locomotive(s) and cars with the locomotive

as the only power source. This is the most commonly used passenger rolling stock in
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the UK and many other European countries. A timetable is a set of train services/

trips, conventionally called trains, during one working day, each of which has

attributes mainly consisting of departure and arrival stations and times, seat demand,

coupling and decoupling constraints and allowed types of train units. Given a fixed

timetable on one operational day and a fleet of train units of multiple types, the train

unit scheduling problem (TUSP) (Lin and Kwan 2013, 2014) aims at deriving an

optimized plan such that all the trains are covered with the required seat capacity

provisions. From the perspective of a train unit, the problem assigns a sequence of

trains to it as its daily workload. A notable feature of the TUSP is the activity of unit

coupling/decoupling in response to different passenger demands. Generally, a train

with a high demand may require coupled units. In addition, coupling can also be

used as a way of redistributing unit resources across the rail network regardless of

the demand en route. Similar or relevant problems with respect to the TUSP include

train unit circulation (Schrijver 1993; Alfieri et al. 2006; Fioole et al. 2006; Peeters

and Kroon 2008) and train unit assignment (Cacchiani et al. 2010, 2012, 2013b).

Common objectives in the TUSP include minimizing the number of units used,

carriage-mileage and number of empty-running trains. Constraints regarding the

number of coupled units are also required. While coupled units may be needed to

provide sufficient seat capacity, the number of coupled cars must not exceed a limit

that can depend on routes and/or unit types. Other constraints include aspects such

as unit coupling compatibility relations among traction types, locations banned for

coupling/decoupling, and unit blockage prevention.

Most of the relevant research in passenger rolling stock scheduling in the

literature considers a single level of capacity provision requirements. Those

requirements may not only depend on a single aspect such as passenger demands,

but are also influenced by other factors such as historic capacity provisions and

robustness. Solely relying on passenger count surveys may not be appropriate since,

for example, fluctuations on passenger demand may lead to low robustness in the

resulting schedules. On the other hand, it may not be correct to infer capacity

requirements solely from historic schedule because excessive or insufficient

provisions might have resulted from scheduling logistics in the past that are no

longer relevant. When an ‘‘optimized’’ schedule has some train units with very little

work assigned, it may be appropriate to utilize such train units to provide extra

capacity on some targeted trains. It is therefore insufficient to include a single level

of capacity requirements in the scheduling model.

In this paper, we propose to incorporate two levels of capacity requirements,

namely a target (lower) level that has to be satisfied strictly and a desirable (higher)

level that is to be achieved as much as possible. In doing so, we guarantee the

capacity provision at the target level and minimize deviation from the desirable

level, while using the minimum fleet size and mileage. An integer multicommodity

flow model for train unit scheduling based on previous work in Lin and Kwan

(2013, (2014) is proposed such that the bi-level capacity requirements will be

considered. The model strictly satisfies the target capacity requirement as integer

linear programming (ILP) constraints while it tries to achieve the desirable capacity

requirement through the objective function.
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The remainder of this paper is organized as follows. In Sect. 2 we survey the

relevant research in train unit resource planning in the literature. In Sect. 3 we

describe the specific problem under consideration, as well as the reason why there is

a need for a bi-level capacity model. Section 4 describes the model formulation and

solution algorithm. Finally, in Sect. 5, we present some computational experiments

based on real datasets from First ScotRail.

2 Literature review

The TUSP, particularly for the problem scenarios in the UK, has been studied in Lin

and Kwan (2013, (2014). A branch-and-price ILP solver has been designed to solve

the problem exactly for up to 500 train instances. Many real-world objectives and

constraints that were ignored in previous studies are considered, e.g. unit type

coupling compatibility, locations banned for coupling/decoupling, time consump-

tion due to coupling/decoupling, and elimination of unnecessary coupling/decou-

pling. Moreover, in Lin and Kwan (2014), a two-phase approach is proposed where

the first phase as an integer fixed-charge multicommodity flow model assigns and

sequences train trips to the fleet temporarily ignoring some station infrastructure

details, and the second phase performs post-processing to satisfy any remaining

detailed requirements at each station. Although in Lin and Kwan (2014) the post-

processing is modeled as a multidimensional matching problem, currently TRACS-

RS (Tracsis PLC 2015), a software package that aims at facilitating human

schedulers’ manual process by visualizing and resolving blockage and shunting

plans at individual stations, is used to perform the second phase interactively.

The train unit assignment problem (TUAP) (Cacchiani et al. 2010) shares very

similar definitions and settings with the TUSP, in particular no trains/trips are pre-

sequenced in advance. The TUSP considers additional aspects such as location

banned for coupling/decoupling, unit type compatibility and combination specific

coupling upper bounds. Cacchiani et al. (2010) present an integer multicommodity

flow model for the TUAP which is based on a directed acyclic graph similar to the

one to be used in Sect. 4 and a path formulation ILP based on the graph is used.

Noting that tested instances have a feature that no more than two units can be

coupled, relevant knapsack constraints are strengthened by describing their

dominants explicitly. An LP-based diving heuristic is designed for finding the

integer solutions. This heuristic can solve problem instances of up to 600 trains. In

addition, Cacchiani et al. (2013a) give proofs on explicit convex hull descriptions

for the knapsack polytopes to strengthen the weak LP relaxation, which have been

implemented into the models in Cacchiani et al. (2010). A similar approach in

describing convex hulls is used in the model in this work as well.

The train unit circulation problem (Schrijver 1993; Maróti 2006) simultaneously

plans over multiple days. There have been extensive studies in this area and they are

applied to real-world instances mainly at NSR, a Dutch passenger train operator.

Each train may be identified with one predecessor and one successor in advance,

where cyclic timetables are practised. Schrijver (1993) proposes early work on this

problem with two types of train units. Alfieri et al. (2006) further extended the
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above work with two models where the first one uses a normal multicommodity

flow framework without considering unit permutations while the second one makes

use of transition graphs to handle unit permutations. Peeters and Kroon (2008)

further developed a branch-and-price solver for similar problems as in Alfieri et al.

(2006) to give exact solutions for real-world instances. Fioole et al. (2006) consider

a special scenario of combining and splitting trains.

Other relevant research on train unit planning/scheduling include the following.

Cadarso and Marı́n (2011) consider passenger rolling stock scheduling with

stochastic passenger demands; Fuchsberger and Lüthi (2007) solve the train

scheduling problem in a main station area using a resource-constrained space-time

integer multi-commodity flow model; Kroon et al. (2008) deal with train units

shunting in a large station with complex track layouts; Jiang et al. (2014) discuss

scheduling additional train unit services on Shanghai rail transit line 16.

All the above-mentioned researches consider a single level of capacity require-

ments. In fact, to the best of our knowledge, none of the existing works in the literature

deal with two-level capacity requirements, which is the main focus of this paper.

3 Problem description

3.1 Train capacity requirement information

Each train in a timetable should be covered by a unit or coupled units whose total

capacity satisfies the passenger demand expected for the train, which is usually

measured in number of seats. For the TUSP, train capacity requirements are very

important, due to its significant impact on objectives such as fleet size and unit

resource distribution pattern over the rail network. On the other hand, in the UK rail

industry capacity requirement information is usually patchy and lacking documen-

tation, making it difficult to be determined precisely.

Let N be the set of train trips. At First ScotRail, the major train operator in

Scotland, passenger capacity requirement information for each train service j 2 N in

a new timetable can be mainly inferred from three sources, which will be referred to

as ‘‘raw data’’:

(i) Mandatory minimum capacity qMj : The mandatory minimum capacity is

required by the authorities or franchise agreements. In principle, it must be

satisfied as a bare minimum level of capacity provision.

(ii) Historic capacity provisions qHj : Capacity provisions given by operator’s

schedules operated in the past are available for reference. Since a large

proportion of trains will remain unchanged in a half-yearly new

timetable release, their historic capacity provisions would still be largely

relevant.

(iii) Passenger count surveys (PAX) qPj : Every year, a subset of trains will have

their actual on-board passenger numbers counted, which is referred to as

‘‘PAX’’.

Z. Lin et al.

123



For each train, its PAX can be compared with historic capacity. We say that a train

is over-provided (OP) if its historic capacity exceeds its PAX in the sense that this

PAX could be satisfied with a train unit combination of smaller capacity than the

historic one. For example, if there is only one type of train unit, OP would mean that

its historic capacity exceeds its PAX in terms of unit numbers (i.e. x unit(s) would

be sufficient for its PAX but the historic schedule uses at least xþ 1 units). OP trains

may be caused by, e.g., a lack of available place for decoupling. Another reason is

that excessive capacity provision may be a by-product of relocating unit resources to

satisfy trains later elsewhere. Finally OP trains may be merely a result of an under-

optimized unit schedule. On the other hand, a train is under-provided (UP) if its

historic provision fails in satisfying its PAX. Such under-provision is more likely to

occur during peak hours when demands are much higher in many locations across

the network while the fleet size and the maximum numbers of coupled units are both

limited.

The raw data from the above three sources may not be complete or accurately

reflecting the ‘‘ideal’’ capacity provision level a rail network requires. The

mandatory minimum level is generally too low for practical schedules and thus can

only be used as a basic lower bound. The other two sources are discussed in the

following.

3.1.1 Historic capacity provisions

Historic capacity provisions often contain useful information on the basic pattern of

unit resource distribution over a network, such as the unit capacity provision per

train service and how different services are connected. as well as implicit

agreements or understanding with transport authorities. Nevertheless, simply

applying them to a new timetable will not be reliable and sufficient, even assuming

most trains remain unchanged.

In historic capacity records, many of the strengthened capacities achieved by

coupling are in fact used to redistribute unit resources over the network rather than

satisfying real demands on the trains concerned. Thus they may be unnecessary in

an updated timetable and train unit schedule. Moreover, even excluding the unit

redistribution factor, historic records still may not be flawless in reflecting true

capacity requirements. The manual process in train unit scheduling is basically

modifying previous schedules, subject to changed parts in a new timetable in a

station-by-station manner, leaving the backbone of a new schedule heavily similar

to previous ones. Therefore, if there were unreasonable patterns in previous

schedules, they are likely to be passed down to a new schedule year after year

without being challenged or reconsidered.

3.1.2 PAX surveys

Although PAX surveys reflect the real passenger numbers, directly using them as

capacity requirements may not be realistic, not only because merely a subset of

trains is surveyed, but also due to issues like robustness and limited fleet size that

cannot satisfy all UP trains.
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For some instances, the overall PAX level can be much lower compared with

historic capacities yielding many OP trains. Simply reducing the capacity provision

of all OP trains from historic records to PAX may affect the robustness of services.

Moreover, resulting schedules may include underused units, e.g. units only serving

one or two trains as their daily workload because of the minimization of carriage-

mileage. By appropriately keeping the capacity requirements for some OP trains at

their (higher) historic schedule level, the underused train unit resources may be

assigned to cover more trains, which makes the overall schedule more balanced.

Therefore it is reasonable to adjust the capacity requirements to have some of the

OP trains to set their capacity requirements as historic and the others as PAX.

However which subset of trains should be so adjusted is unclear.

On the other hand, for some instances the PAX levels for peak hour trains are too

high such that the appearance of many UP trains is inevitable given a limited fleet

size. Nevertheless, a subset SP of the UP trains can be identified to increase their

capacity requirements from historic to PAX without violating the fleet size bound.

However, it is also unclear how to decide which subset of the UP trains to

strengthen.

Finally, it is possible that both OP and UP trains are present in manual schedules,

making the problem more complicated as the two can be conflicting with each other

with limited unit resources.

4 Model and formulation

This paper proposes a novel TUSP integer multicommodity flow model that can

achieve appropriate capacity provisions considering two levels of capacity

requirements derived from raw capacity information such as capacity provisions

in past operated schedules and PAX.

The proposed bi-level capacity requirement model is derived from the models in

Lin and Kwan (2013, (2014). It is based on a directed acyclic graph (DAG)

G ¼ ðN ;AÞ, where A ¼ A0 [ A denotes the arc set and N ¼ fs; tg [ N denotes the

node set, with s and t being the source and sink respectively and N being the set of

all timetabled trains. A0 ¼ fðs; jÞ : j 2 Ng [ fðj; tÞ : j 2 Ng is the set of sign-on/-off

arcs, where a sign-on arc links the source to a train node and a sign-off arc links a

train node to the sink. Every train node has a sign-on arc and a sign-off arc assigned.

A denotes the set of connection-arcs where a connection-arc a ¼ ði; jÞ 2 A links two

train nodes i and j if it is feasible for i and j to be served consecutively by the same

train unit. P is used to denote the set of all s-t paths in G such that each p 2 P

represents a sequence of trains as a workload plan for a unit. Moreover, Pj is used to

denote the set of paths passing through node j.

As for the fleet, let K be the set of unit types, corresponding to the commodities in

a multicommodity flow model. Type-graphs Gk ¼ ðN k
;AkÞ as sub-graphs of G are

constructed with respect to each type k 2 K generally based on the principle that a

type-graph Gk will only contain train nodes N k
(apart from s, t as mandatory) that

are compatible with units of type k (and arcs Ak to be constructed accordingly). The

Z. Lin et al.

123



components of Gk will also be denoted in a similar way, e.g. Pk represents the set of

paths in Gk.

The model can be formulated as an arc-based or path-based problem. In order to

use column generation procedure to solve this problem, the path-based formulation

is required. Moreover, according to Cacchiani et al. (2010), much shorter time is

needed to solve the problem using path variables than arc variables. Based on this,

we only have tested the path formulation in our experiments. We therefore present

the following two kinds of decision variables:

• xp 2 Zþ; 8p 2 Pk; 8k 2 K represent the number of type-k units used for a path p

in Gk.

• yj 2 Rþ; 8j 2 N represent the capacity provision for train j.

The first level of capacity requirements is a target capacity rj; 8j 2 N, that must be

satisfied. The second level of capacity requirements is a desirable capacity

r0j; 8j 2 N, that will be satisfied as much as possible but which is not mandatory.

How to convert raw data to the two levels of capacity requirements will be problem-

specific. A basic rule would be to ensure that rj � r0j . For example, rj ¼ minðqHj ; qPj Þ
and r0j ¼ maxðqHj ; qPj Þ. In this paper, all train capacities are measured in number of

seats.

Figure 1 illustrates how different capacities are processed within the model. The

raw data such as historic capacity provision and PAX will be converted into two

levels of capacity requirements—a lower target capacity and a higher desirable

capacity.

To satisfy target capacity requirements rj;8j 2 N, and the requirement on the

maximum number of units when coupled (see Sect. 1), an enumeration on all

possible unit combinations is made for each train service (Lin and Kwan 2014). Let

Kj be the set of permitted types for train j, and let wj ¼ ðwj
1;w

j
2; � � � ;w

j
jKjjÞ

T 2 Z
Kj

þ be

a unit combination at j where w
j
k stands for the number of units of type k used for j.

A unit combination set Wj; 8j 2 N is defined as:

Wj :¼ wj 2 Z
Kj

þ

�
�
�wj is a feasible unit combination for train j

n o

; ð1Þ

where the feasibility of unit combinations is given by:

Historic
capacity

PAX

...

Targeted
capacity

Desirable
capacity

Model Scheduled
capacity

Raw data Input data Output data

Fig. 1 Flow-chart of capacity requirements treatment in our model
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(i)
P

k2Kj

P

p2Pk
j
qkxp � rj, i.e. the target capacity requirement rj is strictly

satisfied for each train j 2 N, where qk is the unit capacity of type k in

number of seats.

(ii) A unit combination assigned to j is within its coupling upper bound.

(iii) The used unit types for j are compatible.

Then the corresponding train convex hulls are computed based on unit combination

sets as

convðWjÞ ¼ wj 2 R
Kj

þ

�
�
�Hjwj � hj

n o

; 8j 2 N; ð2Þ

which is described by non-zero facets f 2 Fj such that Hj 2 RFj�Kj and hj 2 RFj .

Via variable conversion w
j
k ¼

P

p2Pk
j
xp, the passenger demand and coupling upper

bound requirements at train j can be satisfied by the following train convex hull

constraints

X

k2Kj

X

p2Pk
j

H
j
f ;kxp � h

j
f ; 8f 2 Fj; 8j 2 N: ð3Þ

Incorporating the above train convex hull constraints, we propose the ILP formu-

lation (P) on the integer multicommodity flow model for the TUSP with two levels

of capacity requirements as

ðPÞ min C1

X

k2K

X

p2Pk

cpxp þ C2

X

j2N
yj � r0j

�
�
�

�
�
� ð4Þ

s.t.ð3Þ and
X

p2Pk

xp � bk; 8k 2 K; ð5Þ

X

k2Kj

X

p2Pk
j

qkxp ¼ yj; 8j 2 N; ð6Þ

xp 2 Zþ; 8p 2 Pk; 8k 2 K: ð7Þ

The first term in the objective function (4) is the sum of all the used paths’ costs

where cp is the weighted cost for path p with sub-weights on different components.

An overall weight C1 is set for it. Typically, cp includes sub-terms with respect to

fleet size, carriage-mileage, empty-running movements, and preferences. Specifi-

cally, in this work we set cp ¼ CFScFSp þ CCM
P

a2Ap
cCMa þ CER

P

a2Ep
cERa , where

cFSp is the fleet size cost for using one unit; CFS is the sub-weight on fleet size; cCMa is

the carriage-mileage cost implied by arc a formulated with preferences regarding

type-route, maintenance gap and so on; Ap is the set of arcs in path p; CCM is the

sub-weight on carriage-mileage; cERa is the cost of an empty-running movement

when arc a implies such a movement; Ep is the set of empty-running arcs in path p

and CER is the empty-running sub-weight. In our experiments, we use a simplified
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setting of cCMa ¼ 1 for all arcs’ carriage-mileage costs. Therefore, regarding car-

riage-mileage, we will simply report the number of used arcs in the experiment

section. The second term in (4) is the sum of deviations between the desirable

capacity and the solution’s real provision with a weight C2. In what follows, we call

the first term the ‘‘path cost term’’ and the second term the ‘‘OP deviation term’’.

Besides Constraints (3) as aforementioned, Constraints (5) ensure that the

deployed unit number per type k will not exceed its fleet size limit bk.

Constraints (6) define the solver’s capacity provision for each train. Finally,

Constraints (7) give the variable domains.

To overcome the non-linearity caused by the absolute value expression in the

objective function and to convert (P) into an ILP, a conventional remedy is used.

We create a pair of variables yþj ; y
�
j ; 8j 2 N and take the replacement jyj � r0jj ¼

yþj þ y�j and yj � r0j ¼ yþj � y�j , 8j 2 N in the original model. Therefore, in the

actual formulation, the OP deviation term in the objective function (4) becomes

C2

P

j2Nðyþj þ y�j Þ and Constraints (6) become
P

k2Kj

P

p2Pk
j
qkxp ¼ yþj � y�j

þr0j; 8j 2 N.

Compared with the models in Lin and Kwan (2013, (2014), (P) has removed the

‘‘fixed-charge’’ components (i.e. the binary variables based on arcs indicating

whether an arc is used or not), making it a standard integer multicommodity flow

problem. This significantly improves the efficiency of the solution process.

Furthermore, the remaining tasks to be achieved by the fixed-charge components

in eliminating excessive coupling/decoupling and ensuring connection time

allowance involving coupling/decoupling can be handled by post-processing as

mentioned in Sect. 2 after solving the main ILP model. TRACS-RS (Tracsis PLC

2015), a visualization tool for rolling stock scheduling, is currently used for post-

processing. At each station, the connection relations between arrival and departure

trains can be manually adjusted as indicated by the graphical visualization to satisfy

the aforementioned requirements and to avoid any violation on operational rules. As

the focus of this paper is on the bi-level capacity requirements, we choose to not

include the fixed-charge terms in (P). Similar strategies in achieving the bi-level

requirements can be applied to the full version with fixed-charge components by

analogy.

To solve (P) exactly, a similar branch-and-price method as in Lin and Kwan

(2013, (2014) is used. The paths are dynamically generated by shortest path

subproblems per unit type. Since the ‘‘fixed-charge’’ terms are no longer used in (P),

the model only considers the path variable xp. As for BB tree node traversing, an

adaptive strategy combining best-first and depth-first was used for all runs. Two

customized branching methods named banned location branching and train-family

branching are embedded into the relevant branch-and-bound (BB) tree. Banned

location branching will identify LP-relaxation solutions at BB tree nodes with

coupling/decoupling operations at locations banned for these activities and form

branches to gradually remove them. Train-family branching will identify LP-

relaxation solutions at BB tree nodes with coupling-incompatible unit types

covering the same train and form branches to allow only compatible types at each
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child node. Appropriate post-processing on a station-by-station basis is used to

eliminate excessive coupling/decoupling and remove unit blockage, yielding a

finalized operable solution for train operating companies.

5 Computational experiments

Our work is based on real-world data provided by First ScotRail. Two groups of

experiments were conducted. The first group is on a 2011 timetable instance in

which all PAX is satisfied with a large proportion of over-provided trains. The focus

for this instance is to find a relation between the capacity provision level and fleet

size such that the operator is able to find a trade-off point based on its own needs.

The second group of experiments was conducted on a 2013 timetable instance in

which not all PAX is satisfied, that is, there exist under-provided trains. The focus

here is to minimize the number of under-provided trains found in the manual

schedule while maintaining the same fleet size.

5.1 Rail network and historic schedule

We have performed experiments based on the datasets of the Central Scotland

railway network (see Fig. 2). First ScotRail normally divides the Central Scotland

network management into two areas: North and South. For the North area, we will

consider the December 2011 operated schedule and for the South area the December

2013 operated schedule. We focus on the capacity provision and need a fast

execution solver for experiments. For this reason and simplicity, we have

considered just one type of train unit in each of the following experiments. From
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Fig. 2 Central Scotland railway network (with the North area routes in blue and the South area routes in
red) (Color figure online)
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now on, we will call OP and UP the set of over-provided and under-provided train

services, respectively, by comparing the historic schedule and the PAX. Table 1

gives a summary of the problem instances extracted for each train unit type, as well

as the OP and UP trains in the schedules operated by First ScotRail. So, for

example, in the operated schedule provided, all the demand of each of the 156 trains

in the North area served by train units of Class 334 was satisfied by means of 33

train units, which results in 64 over-provided train services. However, there are 12

under-provided trains in the south area served by train units of Class 314, that is, not

all demand was satisfied for those trains.

The experiments were conducted using a 64 bit Xpress-MP 7.7 package on a

workstation with Intel Core i7-4790 CPU.

5.2 Experiments on north area c334 instance

Observe that the terms in the objective function (4) are competing. Minimizing the

OP deviation term implies augmenting the fleet size and/or the current carriage-

mileage (simplified to the number of used arcs in the experiments), which are part of

the path cost term. The weights of the terms in the objective function will then have

a great impact on the resulting schedules and its calibration becomes an important

issue.

First, in Sect. 5.2.1 we show the results by varying the weights of the objective

function terms dealing them with the bi-objective problem by means of the

weighted sum method. We observe that the same fleet size may over-provide a

different number of trains. Second, in order to obtain the maximum number of OP

trains that can be achieved within a certain fleet size, in Sect. 5.2.2, we make the use

of the e-constraint method. Specifically, we fix parametrically an upper bound for

the fleet size and aim to minimize the deviation w.r.t. OP trains in the existing

schedule.

Table 1 Summary of problem instances and OP and UP trains in the December 2011 and 2013 operated

schedule

North area South area

Train unit type Class 334 Class 314

Number of origin/destination stations (among which coupling/

decoupling is banned)

11 (6) 7 (2)

Operational period One working

day

One working

day

Fleet size 33 14

Number of train services 156 278

Number of OP trains 64 9

Number of UP trains 0 12
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5.2.1 Calibrating objective function weights

(i) Single-type case

In this set of experiments, we vary the weights C1 and C2 in (4), where

C1 þ C2 ¼ 1, and observe the impact of them in the resulting train unit schedules.

For that purpose, we gradually increase C2 and therefore C1 will decrease

accordingly, thus yielding a higher number of OP trains. Results are presented in

Table 2 and graphically depicted in Fig. 3. In Table 2, ECS# gives the number of

empty-running trains produced by the model.

It can be observed that, as expected, the fleet size tends to increase in order to

reduce the OP deviation (measured in numbers of trains in the table). On the other

hand, the same fleet size may yield different number of OP, e.g. rows 1–4 in

Table 2, the same fleet size of 29 train units leads to different OP deviation in the

interval from 26 to 51. In the fourth column it can be seen that the number of used

arcs also increases when one aims to over-provide more trains within the same fleet

size. This is affected by the fact that the same fleet size incur higher mileage in order

to over-provide more trains.

Comparisons are made between the results of our model and those of the historic

schedule in which 33 train units are required to satisfy the demand of all train

services with 64 over-provided trains against the PAX (which is equivalent to the

case when C2 ¼ 1 in our experiments). The most important issue for the train

operator is to minimize the fleet size while meeting all passenger demands and

having as little deviation as possible from historic capacity provisions. According to

these interests and the model results, the train operator is likely to select the option

with the minimum fleet size achieving the maximum possible number of OP trains,

that is, 29 train units and 38 OP trains corresponding to 26 OP deviation (fourth row

in Table 2). The fleet size in our best result is considerably reduced by 4 units w.r.t.

Table 2 Varying weights in the objective function

C2 LP gap Fleet size Arcs# OP deviation ECS# Time (s) BBNode#

0 0.03 29 222 51 1 62 98

0.02 0.3 29 244 29 1 49 54

0.05 0.8 29 244 29 1 37 69

0.1 0.63 29 248 26 1 1977 1562

0.13 1.55 30 255 20 1 51 71

0.14 0.56 31 263 10 1 392 613

0.15 0.39 31 263 10 1 124 167

0.16 0.22 31 263 10 1 60 63

0.17 0 32 270 4 1 60 38

0.18 0 32 270 4 1 53 31

0.5 1.48 33 277 1 2 38 28

1 0 33 276 0 2 37 27
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the historic schedule and more than half of the trains in OP can still remain over-

provided.

(ii) Multi-type case

Experiments on problem instances with two unit types were also conducted. The

same 156 trains in the North Area that are served by 33 Class 334 units are used for

these tests. According to the operational rules, 24 of the 156 trains can be served by

both Class 334 and Class 318, which cannot be coupled with each other. The other

132 trains can only be served by Class 334. Class 334 has a capacity of 183 seats

while Class 318 has a capacity of 219 seats. The fleet size of Class 334 is limited to

30 units and for Class 318 is 3 units. A stopping criteria of 1 % relative gap in the

BB tree and a maximum number of 5000 total BB tree nodes were set.

Similar patterns as for the single-type scenario can be observed in Table 3, such

as that the fleet size tends to increase in order to reduce the OP deviation. The

computational times were significantly larger for the multi-type scenario compared

with the single-type scenario. Figure 4 graphically depicts the major results as

shown in Table 3, in which it can be observed that the tendencies of the single-type

case remain and are even more remarkable for the multi-type case.

5.2.2 Fixed fleet size

In order to obtain direct results on the maximum number of OP trains that can be

achieved with a certain fleet size, we also performed experiments in which the

1 2 3 4 5 6 7 8 9 10 11 12
fleet size 29 29 29 29 30 31 31 31 32 32 33 33
OP devia�on 51 29 29 26 20 10 10 10 4 4 1 0
arcs# 222 244 244 248 255 263 263 263 270 270 277 275
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deviation with respect to the OP trains is minimized while establishing an upper

bound on the fleet size. From the historic schedules, it is known that one can over-

provide the complete OP set with 33 train units. From the previous results, it is

known that 29 train units are sufficient to meet all the target (lower level) capacity

requirements. We conducted experiments within these fleet size bounds.

Table 3 Varying weights in the objective function with multiple types

C2 Fleet size (318/334) Arcs# OP deviation ECS# BBNode# Time (s)

0.01 29 (1/28) 248 31 1 482 181,299

0.02 29 (2/27) 246 30 1 51 4576

0.05 29 (1/28) 246 28 1 558 134,729

0.1 31 (1/30) 254 23 1 278 67,516

0.13 32 (2/30) 255 22 1 150 16,858

0.14 31 (2/29) 259 15 1 238 29,789

0.15 32 (3/29) 268 6 1 48 4097

0.16 32 (3/29) 268 6 2 31 2206

0.17 33 (3/30) 275 0 2 42 3478

0.18 33 (3/30) 275 0 2 46 3621

0.9 33 (3/30) 278 0 2 3166 6208

1 2 3 4 5 6 7 8 9 10 11
fleet size 29 29 29 31 32 31 32 32 33 33 33
OP devia�on 31 30 28 23 22 15 6 6 0 0 0
arcs# 248 246 246 254 255 259 268 268 275 275 278
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Results are presented in Table 4. As expected, the used fleet size equals the upper

bound. For each value of the fleet size fixed, we obtain the best possible OP from

the previous experiment.

Observe that the computation time tends to increase as the fleet size decreases.

The reason is that the smaller the number of train units, the higher the difficulty of

over-providing train capacity. For most of the fleet size values (from 31–33), the

stopping criterion was that the gap is less than one OP train, thus yielding a strict

optimal solution. However, when the fleet size is equal to 29 or 30, no optimal

solution could be obtained by this stopping criterion. We have created other

stopping criteria for these cases, by setting a maximum number of BB nodes of 2000

for the fleet size of 29, and 12000 for the fleet size of 30. In both cases, the resulting

BB gap (the difference between the incumbent integer solution’s objective value

and the best BB tree lower bound) is equal to 2 OP trains.

5.3 Experiments on South area c314 instance

This group of experiments was conducted on the trains served by type c314 in the

South area routes (see Fig. 2; Table 1). In the manual schedule, there are 9 OP trains

and 12 UP trains compared with the PAX survey. Those UP trains mainly occur

during peak hours. Due to the limited fleet size, some of these unsatisfied demand

cannot be avoided. This is also apparent when the solver tries to solve the instance

with the target (hard) capacity requirement as the PAX, it fails to give any feasible

solution with the given fleet size upper bounds.

Let UP be the set of all UP trains in the c314 instance. Despite the fact that UP

trains are unavoidable due to the limited unit resources (jUPj � 1), improvements

can still be achieved. A proper subset of UP trains SP � UP can be found where its

member trains can have their capacity strengthened without violating the fleet size

bound. Ideally, the operator would like to have |SP| as large as possible since under-

provision is a critical drawback for the solution quality. By using the bi-level

capacity model (P), an optimal set SP can be determined.

This gives the principle of the experiments to be reported here. For the OP trains,

rj ¼ qPj \r0j ¼ qHj ; 8j 2 OP was set. For the UP trains, r0j ¼ qPj [ rj ¼ qHj ; 8j 2 UP

was set. For the rest of the trains, where qHj is equivalent to qPj in terms of the

number of units, only a target capacity requirement was set. Considering that even

the default fleet size of 14 cannot meet all the PAX requirement, the fleet size is then

fixed at 14, since either increasing or decreasing it would be meaningless. As

Table 4 Fixing scheduled fleet

size from 29 to 33 train units

Resulting number of elements in

OP

Fleet size OP# OP dev. BB gap Arcs # ECS# Time (s)

29 38 26 2 248 1 5916

30 46 18 2 255 1 146,997

31 54 10 0 263 1 40

32 60 4 0 270 1 37

33 64 0 0 276 2 35
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minimizing the number of UP trains is the most critical task here and the fleet size as

the most important part of the operational cost is already fixed, we solely minimized

the deviation from the desirable level over the OP and UP trains in the objective,

i.e., it was set as
P

j2OP[UP jyj � r0jj and was labeled as ‘‘solver1’’. In addition, as

here decreasing the number of UP trains in UP is more important than increasing the

number of OP trains in OP, a second experiment was also carried out by only

minimizing the deviation over UP, i.e. the objective was set as
P

j2UP jyj � r0jj
(labeled as ‘‘solver2’’).

The results on the two groups of experiments on the South area c314 routes are

given in Table 5. The third column gives the number of OP trains within set OP

while the fourth column gives the total number of OP trains. The former only shows

the over-provided trains in the 64 OP trains (denoted as OP) in the original manual

schedule; the latter gives the over-provided trains in all the 156 train services.

However, UP trains can only appear within the set UP since the target level capacity

requirements prevents the appearance of new UP trains. Both the two experiments

were solved to optimality by branch-and-price. Compared with the operated

schedule, the solution of solver1 maintains all the 9 OP trains in OP and adds four

extra OP trains. In addition, it reduces the number of UP trains from 12 to 10,

making a 16.7 % improvement without increasing the fleet size. As for solver2,

since only the UP trains were considered, it can only maintain 3 OP trains out of the

9 in OP while it also adds 8 extra OP trains. So, its performance w.r.t. OP trains is

worse than solver1’s. On the other hand, solver2 succeeds in reducing the number of

UP trains from 12 to 8, giving a 33 % improvement without increasing the fleet size.

The above results illustrate the advantage of the bi-level capacity model in better

satisfying passenger demands, as well as keeping the pattern given by historic

schedules.

6 Conclusions

We have introduced the train unit scheduling problem with bi-level, target and

desirable, capacity requirements. For cases in which all the demand is satisfied, the

first level concerns strict passenger capacity requirements, which should be strictly

satisfied, and the second level concerns historic capacity provisions that will be

satisfied as much as possible. For cases in which there exists unsatisfied demand,

there exists some trains for which the target level corresponds to the historic

Table 5 Experiments on the south area c314 instance, fixed fleet size of 14

Objective OP# (OP) OP# (all) UP# Time (s)

Manual – 9 – 12 –

Solver1
P

j2OP[UP jyj � r0j j 9 13 10 10,862

Solver2
P

j2UP jyj � r0jj 3 11 8 6070
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provision and others for which this corresponds to the PAX. In the railway context it

is often required to maintain the historic pattern of unit resource distribution for OP

trains wherever possible since this often contains implicit knowledge on agreements

or expectations of transport authorities. Moreover, this helps to reinforce the

robustness of the schedule with respect to changes in passenger demands.

We propose different strategies to deal with these two levels within the train unit

scheduling optimization. Our methodology has been applied to real-world data

provided by First ScotRail. It is shown that applying these strategies yields a set of

efficient solutions, which in every case improves the existing schedule. With the

proposed method, all the demand is satisfied with a 12 % smaller fleet size and

nearly the 60 % most loaded train services within the over-provided ones in which

the historic capacity provisions are maintained. In cases in which there exists

unsatisfied demand, that is, under-provided trains, the proposed method reduces the

under-provided trains by more than 33 % maintaining the same fleet size, thus

reducing significantly the unsatisfied demand.

A byproduct considering different levels of capacity requirements is that future

expected demand growth may also be considered. This is especially relevant in the

context of franchise bidding, where future growth in passenger demands should be

taken into consideration. In this context, multi-level capacity requirements would be

useful for scheduling considerations. Further work is to develop a multi-level

capacity requirements model taking all the relevant aspects of franchise bidding into

account. In doing so, multicriteria optimization may also be considered at the

desirable level.
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