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a  b  s  t  r a  c t

Levodopa  is  a drug  that  is  commonly  used  to  treat movement  disorders associated  with  Parkinson’s

disease.  Its dosage  requires  careful  monitoring,  since the required amount changes  over time,  and  excess

dosage  can lead to muscle spasms  known as levodopa-induced  dyskinesia.  In this  work, we investigate

the  potential  for  using epiNet, a novel artificial  gene regulatory network,  as a classifier for  monitoring

accelerometry  time  series  data  collected  from  patients undergoing levodopa  therapy. We  also  consider

how  dynamical analysis  of epiNet  classifiers and  their transitions  between different states  can highlight

clinically useful information which  is  not available through  more conventional  data  mining techniques.

The results show  that epiNet  is  capable of  discriminating  between  different movement patterns  which

are  indicative of either  insufficient  or  excessive  levodopa.

© 2016  The Author(s).  Published by  Elsevier  Ireland Ltd.  This  is an open  access article under  the  CC  BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Since the beginnings of computer science, there have been

many successful attempts at capturing biological models within

a computational framework. This field, known as bio-inspired

computation, has given rise to  algorithms which have been shown

to out-perform humans on real world tasks, for instance in object

recognition (He et al., 2015). Indeed, many of the computational

algorithms that are now state of the art are built upon bio-inspired

principles (Oquab et al., 2014; Hinton et al., 2012; Yang et al.,

2013; Zhou et al., 2011). The design of bio-inspired algorithms

falls on a spectrum. At one end of this spectrum are attempts to

capture as much detail from the biological system as possible,

to best promote the possibility of emergent behaviour. At  the

other are intentionally minimalist approaches, using pared-back

models that capture only an abstract representation of the bio-

logical system. Each of these approaches has advantages, but

often the simpler models are  functionally complex and capable of
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capturing real-world biological dynamics (Bull, 2013; Wang et al.,

2012).

In  this work we use a novel bio-inspired architecture, termed

epiNet, which is modelled upon the interactions between genetic

and epigenetic processes within biological cells (Turner et al.,

2015). Computational modelling of genetic processes, in  the form of

artificial gene regulatory networks, is nothing new (Lones, 2016).

However, the inclusion of epigenetic elements allows for a con-

nectionist architecture with a  dynamical topological morphology

– that is, the ability for a  computational network to  autonomously

partition itself and select partitions based upon environmental or

internal state. This serves two primary advantages. First, it sup-

ports task specialisation, where a partition assigned to a specific

environmental or internal context is  only used in  that scenario. Sec-

ondly, with minimal analysis it provides a method of characterising

a network’s behaviour from the ground up, by mapping the func-

tionality of the individual partitions and building up an image of the

system’s transitions between these partitions. This helps automate

the process of model validation. Because of this, we propose that

the properties of epiNet lend themselves well to  the classification

and analysis of real world time series data, where the underlying

generative model is often poorly understood.

We describe the application of epiNet to  the particular problem

of understanding and classifying the movements associated with

the neurodegenerative disorder Parkinson’s disease when a patient

is undergoing treatment with the dopamine replacement drug

http://dx.doi.org/10.1016/j.biosystems.2016.05.005
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DNA
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Fig. 1. DNA being wound around histone octamers over 1.67 turns, forming a chromatin fiber.

levodopa. Incorrect dosage of levodopa can have severe manifesta-

tions, notably the involuntary and violent muscle spasms known as

levodopa-induced dyskinesia (LID). Correct dosage involves finding

a balancing point between the removal of Parkinsonian symp-

toms and the onset of side-effects, providing a  challenge to both

patients and clinicians alike. In this work, we demonstrate the

potential of epiNet by  analysing the topological changes and transi-

tions between dynamical states within the model when classifying

movement data collected during levodopa therapy. We  show that it

is possible to provide clinically relevant information about LID, the

underlying data and the processes underpinning why at any given

point epiNet has made a  certain decision.

2.  Background

2.1. Epigenetics

Epigenetics refers to  mechanisms which result in changes in

gene expression without altering the underlying DNA (Bird, 2007;

Turner, 2001). In Fig. 1, a  general eukaryotic arrangement of DNA is

illustrated. Within the cell nucleus, DNA is wrapped around a his-

tone octamer over 1.67 turns. This combination of DNA and histones

is  referred to as chromatin, one of the major epigenetic structures.

Chromatin has two prominent biological roles: compressing the

size of a DNA strand, and controlling physical access to the DNA. The

dynamically varying structure of chromatin allows DNA to  move

relative to it, allowing the cellular machinery (e.g. polymerase, tran-

scription factors) to access it. Controlling this movement means

controlling which genes are  actively being transcribed at any given

moment. This idea is central to the model used within this paper,

where there exists a  ‘bank’ of genes (the genome) which is inac-

tive by default. Then, chromatin reorganises itself relative to the

DNA in order to change which genes are accessible to the cellular

machinery at any given time.

Additionally, there are other epigenetic marks. One of the most

pervasive is DNA methylation, where a  methyl group is added to

either the cytosine and adenine nucleotides within DNA. In a simi-

lar vein to chromatin modifications, methylations typically prevent

transcription by physically inhibiting the cellular machinery’s abil-

ity to straddle the DNA, preventing processes such as transcription

(Bird, 2007; Turner, 2001). There are also other epigenetic mecha-

nisms, such as micro RNAs, prions and SRNAs.

2.2. Epigenetic networks

The model used in  this work (previously described in Turner

et al. (2015)), builds upon a  range of previous work from more stat-

ically derived genetic and epigenetic functionality (representing

genetic networks and static epigenetic marks such as DNA methyl-

ation) (Lones et al., 2013; Turner et al., 2014; Reil, 1999; Bull, 2014)

to  more dynamic models which take inspiration from chromatin

modifications (Turner et al., 2013, 2015, 2016). Indeed, the low-

level element of epiNet, the artificial gene model, is derived from

(Lones et al., 2010), and remains unchanged. This artificial gene is a

computational element that takes inputs and processes them using

a  function, producing a single transformed output. In this paper, we

use a  sigmoid function, meaning that these low-level elements are

similar to perceptrons in artificial neural networks. This function

can be  parameterised during evolution, allowing the gradient of  the

function and offset to change for each individual gene, allowing for

functions ranging from the typical sigmoid to an approximate step

function (Fig. 2). Many of these genes are linked together to  form

an artificial gene regulatory network, in  which certain genes are

mapped to external inputs and outputs (Lones et al., 2010).

We have  explored several approaches to building epigenetic

structures into, or on top of, existing artificial gene regulatory

networks (Turner et al., 2013, 2014, 2015). In these models, genes

are generally always active unless made inactive by an epigenetic

analogue. Additionally, the epigenetic analogues are static and fixed

in  place and control a  small part of the network. With epiNet, by

comparison, genes are inactive until turned on by an epigenetic

analogue. The epigenetic analogues are then regulated by genes,

causing them to move around the genome, switching on and off

different parts of the network over the course of time.

The main structure in this model is  a  genetic structure, consist-

ing  of a number of genes (30–100) which exist on a  1-dimensional

linear scale (Fig. 3) between [0,1]. These genes are static and are not

directly executed. Execution of the genes occurs when genes are

copied from the genetic structure to  the protein network. The pro-

tein network functions in  a similar way to the networks in  (Lones

et al., 2010), where it is the structure which directly interacts with

an external environment (task) and is  executable. However, which

Fig. 2. The changes in the output of the sigmoid function according to different slope

parameters, which are optimised for each gene within the  network. With a  slope of

1,  the output can  be seen to  be a sigmoid with a shallow gradient. With a slope of

20, the sigmoid gradient is steep enough to approximate a step function.

dx.doi.org/10.1016/j.biosystems.2016.05.005
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Fig. 3. The components of epiNet. Genes that are covered by an epigenetic ana-

logue  become expressed, forming a  structure akin to  a protein network. The protein

network then takes inputs from a task and is executed to produce output(s). The

epigenetic analogue is regulated by the protein network; following execution, it

reads expression levels in the protein network and passes them through a sigmoid

function. The result then becomes the next position of the epigenetic analogue.

genes are copied from the genetic structure to the protein network

is controlled by the epigenetic molecule.

The epigenetic molecule(s) within epiNet straddles the genome,

existing in the same 1-dimensional space. Each epigenetic molecule

has a position in this 1-dimensional space and a  size  (Fig. 1). The size

is fixed, but the position is a  variable. At  each time  step, whichever

genes exist within the space occupied by the epigenetic molecule

are then copied from the genome to the protein network. At each

time step, the epigenetic molecule takes selected inputs from the

protein network, and processes them using a  sigmoid function

(identical to the genes) and this output then becomes the epige-

netic molecules new position. Hence, the position of the epigenetic

molecule on the genome is  the product of the structure and state

of the protein network. Upon initialisation, epiNet will contain 3

epigenetic molecules, however multiple epigenetic molecules can

be incorporated to the network throughout the optimisation pro-

cess. After each execution the protein networks expression values

are mapped back to the genome. This serves to give the protein net-

work and genome a  relative memory of its previous state. Following

execution, all the proteins within the protein network are removed

and will become repopulated according to  the position of the epi-

genetic molecule on the next step. An external task can interface

with epiNet by  modifying protein expression within the protein

network. In this work, epiNets are initialised with 40 genes and 3

epigenetic molecules; however, new components may  be gener-

ated and removed allowing the modification of their parameters

throughout the course of evolution.

2.3. Parkinson’s disease

Parkinson’s disease (PD) is a chronic neurodegenerative disor-

der which is characterised by  progressively impaired motor control

due to loss of dopaminergic neurons in the brain (Nalls et al.,

2014). Although the underlying cause of Parkinson’s is unknown,

it has been linked to various genetic and environmental factors

(Impellizzeri et al., 2015; Lolekha et al., 2010).

Currently approximately 1% of people over 60 suffer from PD;

however, with a  globally ageing population, it is  estimated that

this will increase significantly (Lill et al., 2012). Clinical diagnostic

accuracy for PD is relatively low and research studies have shown

that approximately 8–25% of cases are misdiagnosed (Schrag et al.,

2002; Hughes et al., 1992). This is  in part  due to the overlap of

symptoms associated with a  range of other diseases including pro-

gressive supranuclear palsy, multiple system atrophy, corticobasal

syndrome, and vascular Parkinsonism. One of the most successful

treatments for the motor symptoms of Parkinson’s is  a  dopamine-

replacement drug, levodopa. When using levodopa, there is an

issue of fine tuning a  patient’s medication to  their exact require-

ments: insufficient dosage results in ineffective treatment, excess

dosage can lead to levodopa-induced dyskinesia (LID), which may

manifest as violent muscle spasms. Clinicians fine-tune a  patient’s

medication regimens based on their own  ratings of the patient’s

symptoms and on patient-rated treatment response. These metrics

may  be insensitive to  small but  important effects and additionally,

these metrics correlate only weakly with each other (Fahn et al.,

2004). Moreover, it is  often difficult to  separate the symptoms of

Parkinson’s from LID. Hence, a  more personalised computational

approach is  desirable, where dosage guidance can be  inferred from

models trained using real patient data.

3. Methodology

The objectives of this work are:

• To understand the properties of epiNet as a  predictive modelling

tool for the analysis of levodopa-induced dyskinesia
• To understand how the analysis of epiNet’s topological mor-

phology when classifying the data can provide useful clinically

relevant information about levodopa-induced dyskinesia

To achieve these objectives, we applied epiNet to the classifica-

tion of real world medical data derived from accelerometers worn

by Parkinson’s patients undergoing a  levodopa based medication

regime.

3.1. Clinical study data

The data was acquired from 25 patients who had confirmed

symptomatic Parkinson’s disease and were being treated with lev-

odopa therapy. The patients wore small lightweight sensing devices

with integrated accelerometers and gyroscopes to  monitor their

movements at a sample rate of 100 Hz. These devices each stored 6

channels of information, corresponding to acceleration in  the three

translational and three rotational axes. The patients were uncon-

strained yet asked to complete various movement tests throughout

a  2 h window at non-specific intervals. Whilst doing this, the

patients were recorded using an infrared video camera. Trained

clinicians then used these recordings to  grade the data, using the

Unified Dyskinesia Rating Scale (UDysRS) to mark up  periods of  LID.

The data was  cross-correlated between clinicians to ensure accu-

racy over the grading of the patients. The patients were rated on

a  scale of 0–4, where 0 corresponds to the patient displaying no

signs of dyskinesia, and 4 corresponds to severe dyskinesia. Table 1

summarises the number of instances of each grade of dyskinesia

within the data set.

3.2. Evolutionary algorithms

Evolutionary algorithms (EAs) are population-based meta-

heuristics which carry out optimisation procedures motivated by

biological evolution. Evolution is  the process of adapting an indi-

vidual or population to  environmental dynamics over successive

Table 1

Instances of each grade of dyskinesia.

Dyskinesia

UDysRS Count

0 4264

1  2004

2 2151

3  829

4 424

dx.doi.org/10.1016/j.biosystems.2016.05.005
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generations via the stochastic breeding of population members.

Evolutionary algorithms model this principle by using the data of a

system or model as a genome, and by  crossing over and mutating

solutions within a  population according to an objective measure

of their ability to solve a problem (known as their fitness).  Over

successive generations, the individuals’ fitness will improve as the

population learns to  solve a  particular task.

EAs are relatively flexible in  how they represent and evaluate

solutions. Their appropriateness for optimising epiNets is  also sug-

gested by the role of biological evolution in  designing biological

genetic regulatory systems. For these reasons, we used them to

optimise both the architecture and parameters of the epiNet model

in order to solve the problem of predicting the degree of dyskinesia

in segments of accelerometry time series data. We  used the multi-

objective evolutionary algorithm NSGA-II (Deb et al., 2002) with a

population size of 400 and an optimisation period of 250 genera-

tions. We  used tournament selection of size 4. Point mutation was

used for all components of the genome and epigenome with a  prob-

ability of 0.05. The crossover operator exchanged 30% of the data

between individuals, and the crossover rate is 0.5. These param-

eters were selected as previous exploratory experimentation has

shown that these allow for the evolution of complex behaviours

which were not able to be learned by  other algorithms within iden-

tical time frames (Turner, 2013; Turner et al., 2015).

We  use a multi-objective fitness function in this work. The first

objective is to correctly classify each time step within a data seg-

ment, with one point awarded for each correct classification. The

second aggregates the points awarded for a  data segment; if over

50% of the time points are  correct, that data segment is  considered

to be correctly classified and a point is awarded. This allows the

system to handle variable-sized data segments (204–16,001 time

steps) without biasing search towards classifiers that perform well

on only the shorter or  longer samples, which tends to happen when

only one of these objectives is used.

3.3. Data handling

The complete data set contained 9672 labelled sequences. To

make the optimisation process computationally tractable, we uni-

formly sub-sampled (without replacement) 1000 instances for use

as a training set. The remaining samples were used for testing,

allowing a fairly robust estimate of a classifier’s generality.

The data was split into 2 classes of dyskinesia severity: high and

low. High indicates an LID rating of either 2, 3 or 4. These correspond

to clinically significant levels of dyskinesia that require a change in

levadopa dosage. Low indicates an LID rating of 0 or 1, i.e. no, or

very mild, dyskinesia. The training data was split accordingly; the

low class comprising 500 data segments, with 250 rated 0 and 250

rated 1, the high class comprising 500 data segments with 166 rated

2, 167 rated 3, and 167 rated 4.

Each data segment comprises 6 times series, corresponding to

changes of acceleration over time in  the three translational and

rotational axes. At  each time step, this multivariate data is  fed into

an epiNet classifier as a  group of 6 values, each copied into the

activation levels of input genes. After the epiNet has processed the

input, a single output is read from the expression level of an out-

put gene. An output value below 0.5 is  interpreted as indicating

low dyskinesia; a value equal to or greater than 0.5 indicates high

dyskinesia.

4. Results

We  carried out 20 independent runs, during which each epiNet

classifier was evaluated on its ability to correctly predict the labels

of each time step and each data segment within the training set.

Fig. 4.  Objective values for epiNet classifiers from the  final generations of 20 evo-

lutionary runs, showing performance on both the training and test sets. The x-axis

shows the proportion of time steps which were correctly classified and the y-axis

shows the proportion of data segments which were correctly classified (i.e. where

at  least 50% of the time steps within each segment were classified correctly).

Following these 20 runs, all the final generation classifiers were

re-evaluated on the test set. Fig. 4 shows the performance of these

controllers on both the training and test sets, with each point show-

ing  the per-step and per-segment accuracy of a single controller.

On the training set, classifiers were found with accuracies of ∼80%.

When re-evaluated on the test set, accuracies dropped to around

∼70%; however, most showed an ability to  generalise.

Fig.  5 summarises the distributions for both objectives. It  is

notable that test set accuracies were significantly higher for whole

data segments (more important from a  clinical viewpoint) rather

Fig. 5. Distributions of objectives values amongst the final generation epiNet clas-

sifiers,  showing per-step and per-segment classification accuracies for both the

training  and test sets. This is  a transformation of the data shown in Fig. 4.

dx.doi.org/10.1016/j.biosystems.2016.05.005
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than individual time steps. This is unsurprising, given the larger

amount of historical time series data present in an entire data seg-

ment, and the relative stochasticity of movements at a  single time

step. However, it is also evident from Fig. 4 that  the majority of the

classifiers are fairly balanced in their responses at the per-step and

per-segment level, with most clustered along the diagonal.

4.1. Analysis of network dynamics

The results show that trained instances of the epiNet model

are capable of classifying movements associated with levodopa

therapy. We  next carried out post-hoc analysis of the dynamical

behaviour of the epiNet classifiers, in  order to gain some insight

into how they achieve this.

Figs. 6  and 7 show the dynamical response of a  single evolved

epiNet classifier whilst processing two different acceleration time

series data segments. First of all, it is evident that the dynamics of

the network are adaptive, with the activation levels of the genes

and the positions of the epigenetic analogues undergoing signif-

icant changes during the course of classification. This change in

dynamics is caused by the autonomous topological changes of the

network as a result of changing dynamics in the environmental

input data. Analysis of a sample of the evolved classifiers sug-

gests that this behaviour is typical, with <5% of the instances not

undergoing topological change whilst processing the input data,

and these topologically-invariant solutions having generally lower

fitness values. This suggests that  topological change is  a  useful

mechanism, and it seems likely that topological changes are driven

by, and hence are a  signal of, dynamical changes in the patient’s

movements.

For the network analysed in  Figs. 6 and 7, some genes are almost

always active (approximately 3–5), some genes are never active,

and others are intermittently active. Additionally, the size of the

expressed network varies significantly over time; sometimes no

genes are active, sometimes upwards of 15 are active. It  can also

be noticed (particularly in Fig. 7)  that some changes in the activity

of the genes do not lead to changes in the overall dynamics of the

network. For example, at time steps 220–800, gene 31 is constantly

being activated and deactivated, yet this causes no discernible dif-

ference in the network’s output.

The evolutionary algorithm was given the freedom to evolve

the architecture of the epiNets within bounds. The initial param-

eters for the network were 40 genes and 3 epigenetic molecules

and most networks maintained a  similar architecture throughout

optimisation. The number of genes varied little, with the largest

solutions containing 52 genes, the smallest containing 30. There

appeared to be no discernible difference between the performance

of networks based on the number of genes alone. Most functional

solutions contained 3 epigenetic molecules. However, a  significant

number contained only 2,  but these otherwise functioned similarly

to the networks containing 3: suggesting that useful behaviour can

be achieved with less molecules, but with some impairment to evol-

vability. Networks which contained 1 or 4 epigenetic molecules had

poor functionality, with neither of them resulting is a solution in

the top 20% of the population. A possibility, as seen is  previous work

is that too many epigenetic molecules leads to a greater likelihood

of interference between regulatory regions.

4.2. Knowledge extraction

The data used to train the networks contains 6 input channels

and a single output. EpiNet allows these inputs to  be mapped onto

genes multiple times (i.e. one input gets mapped onto multiple

genes); it also allows particular inputs to be ignored by the net-

work (Fig. 8). To understand the way in which epiNet classifiers

use the inputs, we analysed the best evolved solutions.

Fig. 6. An  epiNet’s dynamics at each time step when classifying a  single data seg-

ment, showing the activity of each gene, the  positions of the epigenetic molecules

and the output from the network. This network classified 53% of the time steps

correctly, leading to  a  correct classification for the segment. The network shows

somewhat disordered dynamics and appears not to remain in a  dynamical regime

for  more than around 200 time steps. This is  the same network as in Fig. 7.

A pervasive trend was for 3 of the 6 inputs to be used signif-

icantly more than the others, although none of the high fitness

networks used a permanently static mapping. Inputs 2,  3  and 6

were a common choice; however, 4 and 5 were also used widely

in  other networks. It  was also common for input 1 (acceleration in

the x-plane) to  be completely ignored by the networks. In many

solutions, single inputs were mapped onto multiple genes (mostly

2, sometimes 3 or 4), which were then excited in  tandem. Hence,

a particular input could drive multiple regulatory circuits. This can

be interpreted as an indication of the relative importance of the

input variable. However, over the course of execution, not all inputs

remained in  use. This can be seen as a  context sensitive switch, with

input signals driving topological change that causes the network to
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Fig. 7.  An epiNet’s dynamics at each time step when classifying a single data seg-

ment, showing the activity of each gene, the positions of the epigenetic molecules

and  the output from the  network. This  network classified 91% of the time steps cor-

rectly, leading to a correct classification for the segment. After the first 200 steps a

stable regime is maintained with only minor changes in the dynamics thereafter.

This  is the same network as in Fig. 6.

focus on movement in  particular axes. For instance, for over 75% of

the networks’ execution, half of the inputs are not used.

For further analysis, we  looked at creating a  minimum work-

ing example (MWE)  of an evolved solution, assuming that evolved

epiNets would be architecturally more complex than they needed

to be in order to  solve the problem. This was  done by itera-

tively removing a  gene from the network and then re-evaluating

it. If the performance worsened, the gene was replaced; if  not, it

was removed permanently. The epiNet architecture is  particularly

robust to deleterious mutations as its genes are not all intercon-

nected during execution, and it is therefore unlikely that all of the

dynamical regimes of the network would be  affected by a  single

G
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accelerometer 

inputs 

Fig. 8. A typical evolved mapping of the accelerometer inputs to  genes. Certain

inputs are mapped onto different genes which are close in proximity. These genes

are  often executed together. In addition, each solution tends to ignore one of the six

inputs permanently.

gene deletion. We found that removing genes had a  less damag-

ing  effect to  the networks’ performance then removing epigenetic

molecules, which almost always adversely affected performance.

The networks we considered initially started with 40 genes, and in

general could be reduced to  around 5  genes (Fig. 9). Although this

had no effect on functionality, the networks in this state were more

sensitive to perturbations; because of this increased sensitivity, it

is probable that they lacked the ability to move through the search

space in as timely a manner as the original networks, as small per-

turbations would be likely to  dramatically alter behaviour. Because

these networks were artificially created by removing genes, it is

difficult to fully assert what the networks structure would be if

they were evolved to be as small as possible. However, in  previous

work (Turner et al., 2015) it was shown that doing such, removed

the robustness of the networks during execution, but the networks

were still able to find solutions to complex tasks. Hence it is likely

that artificially altering network structure has different effects than

evolving the networks to do  so.

The functioning of an MWE  version of the network analysed in

Fig.  9 is depicted in  Fig. 10,  showing the activity of each gene over

a  transitional period. This network was capable of classifying both

time steps and data segments with over 69% accuracy. It can be seen

that genes 1 and 5 initially oscillate. Whilst in  this dynamical phase,

the network is  completely inactive for 50% of the time. Once the

transition occurs, genes 3 and 4 become permanently active. This

switching behaviour was common in the MWEs, and in  general the

networks appeared to have two  stable attractors corresponding to

movements in the high and low dyskinetic classes. The transition

between attractors was  also, in most cases, permanent, suggesting

that once a significant dyskinetic signal was  detected, the network

remained in the high dyskinesia state, increasing the likelihood of

classifying the whole segment as exhibiting dyskinesia. For  most

MWEs, it was  also evident that the transition between attractors

was governed by a single input. Although other inputs might be

mapped to  genes after this transition, the permanent change in

attractor meant that they were not being used.

This suggests that it is  possible to  train effective classifiers using

only a  single channel of the accelerometry data. This is  significant,

as it could considerably reduce the training time  of the networks. It

G
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e
s
 

accelerometer 

inputs 

Fig. 9. Mapping of the accelerometer inputs to  genes in the smallest network created

by  iteratively removing genes and re-evaluating. This network contained only 5

genes and 2 epigenetic molecules.
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Fig. 10. The activity of each gene in the minimum working example depicted in

Fig. 9.  Initially genes 1 and 5 are oscillating, where at one time step they are both

active, and at the next, neither are active. At these points the entire network is com-

pletely inactive. At time step ∼1475, the network changes and starts continuously

executing genes 3 and 4 after a  single execution of genes 2, 3  and 4. The transition

between gene activity shown is the only transition during the 3500 steps in this data

instance.

also  means that patients could be  fitted with simpler sensors that

consume less energy and are therefore less bulky. Furthermore, the

MWE  equivalents of the evolved classifiers are quite small. In  prin-

ciple, this means they could be implemented in a  relatively small

digital (or potentially analogue) circuit deployed within a  sensor

platform. This could provide a single-device solution to monitoring

dyskinesia in Parkinson’s patients.

4.3. Conclusion

In this paper we  have shown that epiNet is  able to  clas-

sify levodopa-induced dyskinesia within patients suffering from

Parkinson’s disease. We have also shown how analysis of an

epiNet’s structure can give us insight into both how and why clas-

sification decisions have been made. In particular we  showed that

post-processing of the networks could often reduce the number of

genes in the network from 40 to  around 5 without altering func-

tionality. This also showed that the networks could make decisions

based on a single accelerometer input, significantly increasing the

efficiency of execution. This opens up the opportunity for small,

wearable diagnostic tools to  be implemented using a  hardware

model of the MWEs.

The results are promising, however, there were specific caveats

associated with the work in  this paper. The first is  that the com-

bination of population based evolutionary algorithms and epiNet

meant that run times were relatively high. This limited the scope

of the networks ability to learn, but conversely, also allowed for a

comprehensive method of testing because a large amount of data

was not used in training. It would have also been beneficial to

allow for a larger population size and more generations to gather

a better understanding of epiNet’s potential. A further possibility

to improve this is to migrate the software to  a  GPU implementa-

tion as a significant part of the processing within the networks is

floating point arithmetic, hence, the performance increase should

be substantial. Within this work there has not been a direct focus

on objective performance, but a  focus on the underlying dynam-

ics of the networks when classifying high frequency movement

data. Because of the novel dynamical properties of the network,

we feel that direct comparison with other techniques with differ-

ing dynamical functionality would at present be of limited value

as variations in performance could be attributed to the parameters

of the respective techniques. The work in  this paper is to  be used

as an underpinning of future research in  which a robust analysis

of  epiNets performance will be carried out in  reference to other

models, such as those in Lones et al. (2014b).

Within this work we had to reclassify the data into either a high

or low levodopa-induced dyskinesia rating. In  addition, there was  a

class imbalance where there was an order of magnitude more data

available data sets with no levodopa-induced dyskinesia, compared

to  those who  had the most pronounced symptoms. Hence, it might

be  possible to look at a  class weighting which is dependent on clas-

sification outcomes (and how incorrect classifications may  effect

patients) and the relative performance of the networks. Indeed, it

may also be  beneficial to  look at re-balancing the classes by omit-

ting certain classifications within the data (to only focus on the

most severe symptoms) as seen in Lones et al. (2014a).

Overall, the results in this paper have shown that epiNet has

significant potential as a  classification tool, and that the analysis

of the network structure and dynamics can provide clinically rel-

evant information about the decisions made by epiNet which are

important both for patient outcome and model validation.

Acknowledgements

The authors acknowledge the support of the EPSRC through the

platform grant EP/K040820/1. Data created during this research

is available at the following DOI: 10.15124/7ebe2b24-89b6-4a8d-

b7cb-621861e347b8.

We  thank the patients with Parkinson’s who  participated in  this

study. Without their support, this research would not have been

possible.

References

Bird, A., 2007. Perceptions of epigenetics. Nature 447 (7143), 396.

Bull, L., 2013. Consideration of mobile DNA: new forms of artificial genetic

regulatory networks. Nat. Comput. 12 (4), 443–452.

Bull, L., 2014. Evolving Boolean regulatory networks with epigenetic control.

Biosystems 116, 36–42.

Deb, K.,  Pratap, A., Agarwal, S.,  Meyarivan, T., 2002. A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6  (2),

182–197.
Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., Olanow, C.,

Tanner, C., Marek, K., 2004. Levodopa and the progression of Parkinson’s

disease. N. Engl. J. Med. 351 (24), 2498–2508.

He, K.,  Zhang, X., Ren, S.,  Sun, J., 2015. Delving Deep Into Rectifiers: Surpassing
Human-Level Performance on Imagenet Classification.,

pp. 1026–1034.

Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.-r., Jaitly, N., Senior, A.,

Vanhoucke, V., Nguyen, P., Sainath, T.N., et  al.,  2012. Deep neural networks for
acoustic modeling in speech recognition: the shared views of four research

groups. IEEE Signal Process. Mag.  29  (6), 82–97.

Hughes, A.J.,  Daniel, S.E., Kilford, L., Lees, A.J., 1992. Accuracy of clinical diagnosis of
idiopathic Parkinson’s disease: a  clinico-pathological study of 100 cases. J.
Neurol.  Neurosurg. Psychiatry 55  (3), 181–184.

Impellizzeri, D.,  Bruschetta, G., Cordaro, M.,  Crupi, R.,  Cuzzocrea, S., Esposito, E.,
2015.  Traumatic brain injury leads to  later development of Parkinson’s disease

in  mice. FASEB J. 29 (1 Suppl.), 771–781.
Lill, C.M., Roehr, J.T.,  McQueen, M.B., Kavvoura, F.K., Bagade, S., Schjeide, B.-M.,

Schjeide, L.M., Meissner, E.,  Zauft, U., Allen, N.C., et  al., 2012. Comprehensive
research synopsis and systematic meta-analyses in Parkinsons disease
genetics: the PDGENE database. PLoS Genet. 8 (3), e1002548.

Lolekha, P., Phanthumchinda, K.,  Bhidayasiri, R., 2010. Prevalence and risk factors

of Parkinson’s disease in retired Thai traditional boxers. Mov. Disord. 25 (12),
1895–1901.

Lones, M.A., 2016. Computing with artificial gene regulatory networks. In: Iba, H.,
Noman, N. (Eds.), Evolutionary Algorithms in Gene Regulatory Network

Research. Wiley.

Lones, M.A., Alty, J.E., Duggan-Carter, P., Turner, A.J., Jamieson, D.,  Smith, S.L.,

2014a. Classification and characterisation of movement patterns during

levodopa therapy for Parkinson’s disease. In: Proceedings of the  2014

Conference Companion on  Genetic and Evolutionary Computation Companion,

ACM,  pp. 1321–1328.
Lones, M.A., Fuente, L.A., Turner, A.P., Caves, L.S.D., Stepney, S.,  Smith, S.L., Tyrrell,

A.M.,  2013. Artificial biochemical networks: evolving dynamical systems to
control dynamical systems. IEEE Trans. Evolut. Comput. 18, 145–166.

Lones, M.A., Smith, S.L., Alty, J.E., Lacy, S.E., Possin, K.L., Jamieson, D.,  Tyrrell, A.M.,

2014b. Evolving classifiers to  recognize the movement characteristics of
Parkinson’s disease patients. IEEE Trans. Evolut. Comput. 18 (4), 559–576.

dx.doi.org/10.1016/j.biosystems.2016.05.005


Please cite this article in  press as: Turner, A.P., et al., Using epigenetic networks for the analysis of movement associated with levodopa

therapy for Parkinson’s disease. BioSystems (2016), http://dx.doi.org/10.1016/j.biosystems.2016.05.005

ARTICLE IN PRESS
G Model

BIO-3664; No. of Pages 8

8 A.P. Turner et al. / BioSystems xxx (2016) xxx–xxx

Lones, M.A., Tyrrell, A.M., Stepney, S., Caves, L.S., 2010. Controlling complex

dynamics with artificial biochemical networks. In: Genetic Programming.
Springer, pp. 159–170.

Nalls, M.A., Pankratz, N., Lill, C.M., Do, C.B., Hernandez, D.G.,  Saad, M., DeStefano,

A.L.,  Kara, E., Bras, J., Sharma, M.,  et al.,  2014. Large-scale meta-analysis of

genome-wide association data identifies six  new risk loci for Parkinson’s
disease. Nat. Genet. 46 (9), 989–993.

Oquab, M.,  Bottou, L., Laptev, I., Sivic, J., 2014. Learning and transferring mid-level

image representations using  convolutional neural networks. In: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp.

1717–1724.
Reil, T., 1999. Dynamics of gene expression in an artificial genome-implications for

biological and artificial ontogeny. In: Advances in Artificial Life. Springer, pp.

457–466.

Schrag, A., Ben-Shlomo, Y., Quinn, N., 2002. How valid is  the clinical diagnosis of
Parkinson’s disease in the community? J. Neurol. Neurosurg. Psychiatry 73  (5),
529–534.

Turner, A.P., (Ph. D. thesis) 2013. The artificial epigenetic network. University of

York.
Turner, A.P., Caves, L.S., Stepney, S.,  Tyrrell, A.M., Lones, M.A., 2016. Artificial

epigenetic networks: automatic decomposition of dynamical control tasks
using topological self-modification. In: IEEE Transactions on Neural Networks

and  Learning Systems, http://dx.doi.org/10.1109/TNNLS.2015.2497142.

Turner, A.P., Lones, M.A., Fuente, L.A., Stepney, S.,  Caves, L.S.D., Tyrrell, A.M., 2013.

The  artificial epigenetic network. In: 10th  International Conference on
Evolvable Systems, Singapore. IEEE Press, pp. 66–72.

Turner, A.P., Lones, M.A., Fuente, L.A., Tyrrell, A.M., Stepney, S., Caves, L.S.D., 2014.

Controlling complex tasks using artificial epigenetic regulatory networks.

BioSystems 112 (2), 56–62.

Turner, A.P., Trefzer, M., Tyrrell, A.M., 2015. Evolving efficient solutions to  complex

problems using the artificial epigenetic network. In: 10th  International

Conference on  Information Processing in Cells and Tissues, Vol. 6021, IEEE

Press, San Diego, pp. 133–165.
Turner, A.P., Trefzer, M.A., Tyrrell, A.M.,2015. Modelling epigenetic mechanisms to

capture dynamical topological morphology: applications in edge detection. In:

12th International Conference on Evolvable Systems. IEEE Press, Singapore, pp.

66–72.

Turner, B., 2001. Chromatin and Gene Regulation: Mechanisms in Epigenetics.
Blackwell Science.

Wang, R.-S., Saadatpour, A., Albert, R.,  2012. Boolean modeling in systems biology:
an  overview of methodology and applications. Phys. Biol. 9 (5), 055001.

Yang, X.-S., Cui, Z., Xiao, R.,  Gandomi, A.H., Karamanoglu, M., 2013. Swarm
Intelligence and Bio-Inspired Computation: Theory and Applications. Newnes.

Zhou, A., Qu, B.-Y., Li,  H., Zhao, S.-Z., Suganthan, P.N.,  Zhang, Q., 2011.

Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm

Evolut. Comput. 1 (1), 32–49.

dx.doi.org/10.1016/j.biosystems.2016.05.005

	Using epigenetic networks for the analysis of movement associated with levodopa therapy for Parkinson's disease
	1 Introduction
	2 Background
	2.1 Epigenetics
	2.2 Epigenetic networks
	2.3 Parkinson's disease

	3 Methodology
	3.1 Clinical study data
	3.2 Evolutionary algorithms
	3.3 Data handling

	4 Results
	4.1 Analysis of network dynamics
	4.2 Knowledge extraction
	4.3 Conclusion

	Acknowledgements
	References


