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Abstract Reliable estimation of long-range dependence

parameters is vital in time series. For example, in environ-

mental and climate science such estimation is often key to

understanding climate dynamics, variability and often pre-

diction. The challenge of data collection in such disciplines

means that, in practice, the sampling pattern is either irregular

or blighted by missing observations. Unfortunately, virtually

all existing Hurst parameter estimation methods assume reg-

ularly sampled time series and require modification to cope

with irregularity or missing data. However, such interven-

tions come at the price of inducing higher estimator bias and

variation, often worryingly ignored. This article proposes

a new Hurst exponent estimation method which naturally

copes with data sampling irregularity. The new method is

based on a multiscale lifting transform exploiting its ability

to produce wavelet-like coefficients on irregular data and,

simultaneously, to effect a necessary powerful decorrelation

of those coefficients. Simulations show that our method is

accurate and effective, performing well against competitors
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even in regular data settings. Armed with this evidence our

method sheds new light on long-memory intensity results in

environmental and climate science applications, sometimes

suggesting that different scientific conclusions may need to

be drawn.

Keywords Hurst exponent · Irregular sampling ·

Long-range dependence · Wavelets

1 Introduction

Time series that arise in many fields, such as climatology

(e.g. ice core data, Fraedrich and Blender 2003, atmospheric

pollution, Toumi et al. 2001); finance, e.g. Jensen (1999) and

references therein; geophysical science, such as sea level data

analysis, Ventosa-Santaulària et al. (2014) and network traf-

fic (Willinger et al., 1997), to name just a few, often display

persistent (slow power-law decaying) autocorrelations even

over large lags. This phenomenon is known as long memory

or long-range dependence. Remarkably, the degree of per-

sistence can be quantified by means of a single parameter,

known in the literature as the Hurst parameter (Hurst 1951;

Mandelbrot and Ness 1968). Estimation of the Hurst parame-

ter leads, in turn, to the accurate assessment of the extent to

which such phenomena persist over long time scales. This

offers valuable insight into a multitude of modelling and

analysis tasks, such as model calibration, trend detection and

prediction (Beran et al. 2013; Vyushin et al. 2007; Rehman

and Siddiqi 2009).

Data in many areas, such as climate science, are often

difficult to acquire and hence will frequently suffer from

omissions or be irregularly sampled. On the other hand, even

data that is customarily recorded at regular intervals (such as

in finance or network monitoring) often exhibit missing val-
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ues which are due to a variety of reasons, such as equipment

malfunction.

We first describe two examples that are shown to bene-

fit from long-memory parameter estimation for irregularly

spaced time series or series subject to missing observations,

although our methods are, of course, more widely applica-

ble.

1.1 Long-memory phenomena in environmental and

climate science time series

In climatology, the Hurst parameter facilitates the under-

standing of historical and geographical climate patterns

or atmospheric pollution dynamics (Pelletier and Turcotte

1997; Fraedrich and Blender 2003), and consequent long-

term health implications, for example.

In the context of climate modelling and simulation, Varot-

sos and Kirk-Davidoff (2006) write

Models that hope to predict global temperature or total

ozone over long time scales should be able to duplicate

the long-range correlations of temperature and total

ozone …Successful simulation [of long range correla-

tions] would enhance confidence in model predictions

of climate and ozone levels.

In particular, more accurate Hurst parameter estimation can

also result in a better understanding of the origins of unex-

plained dependence behaviour from climate models (Tsonis

et al. 1999; Fraedrich and Blender 2003; Vyushin et al. 2007).

Isotopic cores Ice core series are characterized by uneven

time sampling due to variable geological pressure causing

depletion and warping of ice strata, see e.g. Witt and Schu-

mann (2005), Wolff (2005) or Vyushin et al. (2007) for

a discussion of long-range dependence in climate science.

We study an isotopic core series, where stable isotope lev-

els measured through the extent of a core, such as δ18O,

are used as proxies representing different climatic mech-

anisms, for example, the hydrological cycle (Petit et al.

1999). Such data can indicate atmospheric changes occur-

ring over the duration represented by the core (Meese et al.

1994). Here, long memory is indicative of internal ocean

dynamics, such as warming/cooling episodes (Fraedrich and

Blender 2003; Thomas et al. 2009). Such measures are

used in climate models to understand present day climate

variable predictability, including their possible response to

global climate change (Blender et al. 2006; Rogozhina et al.

2011). Figure 1 shows n = 1403 irregularly spaced oxy-

gen isotopic ratios from the Greenland Ice Sheet Project

2 (GISP2) core; the series also features missing observa-

tions, indicated on the plot. For more details on these data,

the reader is directed to e.g., Grootes et al. (1993); the data

were obtained from the World Data Center for Paleoclima-
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Fig. 1 The δ18O isotope record from the GISP2 ice core. Triangles

indicate missing data locations, about 1 % near to the end of the series

tology in Boulder, USA (http://www.ncdc.noaa.gov/paleo/

icecore/).

Atmospheric Pollutants Long-range dependence quantifica-

tion for air pollutants is widely considered in the literature,

due to its relationship to the global atmospheric circu-

lation and consequent climate system response, see e.g.

Toumi et al. (2001), Varotsos and Kirk-Davidoff (2006), Kiss

et al. (2007). Long-range dependence is also investigated

for atmospheric measurements in e.g. Tsonis et al. (1999)

and Tomsett and Toumi (2001). For atmospheric series in

particular, such as ozone, underestimation of the long-range

behaviour results in an underestimation of the frequency of

weather anomalies, such as droughts (Pelletier and Turcotte

1997; Tsonis et al. 1999).

Our data consist of average daily ozone concentrations

measured over several years at six monitoring stations at

Bristol Centre, Edinburgh Centre, Leeds Centre, London

Bloomsbury, Lough Navar and Rochester. These sites corre-

spond to an analysis of similar series in Windsor and Toumi

(2001). Figure 2 shows the Bristol Centre series along with

the locations of the missing concentration values. The per-

centage of missingness for the ozone series was in the range

of 4–6 %. The data were acquired from the UK Depart-

ment for Environment, Food and Rural Affairs UK-AIR Data

Archive (http://uk-air.defra.gov.uk/).

1.2 Aim and structure of the paper

A feature of many ice core series, such as that in Fig. 1, is

that their sampling structure is naturally irregular. On the

other hand, atmospheric series, such as the Ozone data in

Fig. 2, are often designed to be measured at regular intervals,
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Fig. 2 Ozone concentration (ppbv) at the Bristol Centre monitoring

site. Missing locations indicated by triangles

but can exhibit frequent dropout due to recording failures.

In practice, a common way of dealing with these complex

sampling structures is to aggregate (by temporal averaging)

the series prior to analysis so that the data become regularly

spaced (Clegg 2006). However, this has been shown to create

spurious correlation and thus methods will tend to overesti-

mate the memory persistence (Beran et al. 2013). Further

evidence for inaccuracies in traditional estimation methods

due to irregular or missing observations is given in Sect. 5.3.

Similar overestimation has been observed when imputation

or interpolation is used to mitigate for irregular or missing

observations, see e.g. Zhang et al. (2014). In the context of

climatic time series, this will consequently lead to misrep-

resenting feedback mechanisms in models of global climate

behaviour, hence induce significant inaccuracy in forecasting

weather variables or e.g. ozone depletion. Sections 6 and 7

discuss this in more detail.

Motivated by the lack of suitable long-memory estima-

tion methods that deal naturally with sampling irregularity

or missingness, which often occur in climate science data col-

lection and by the grave scientific consequences induced by

misestimation, we propose a novel method for Hurst parame-

ter estimation suitable for time series with regular or irregular

observations. Although the problems that spurred this work

pertained to the environmental and climate science fields,

our new method is general and flexible, and may be used

for long-memory estimation in a variety of fields where the

sampling data structure is complex, such as network traffic

modelling (Willinger et al. 1997).

Wavelet-based approaches have proved to be very success-

ful in the context of regularly sampled long-memory time

series (for details see Sect. 2) and are the ‘right domain’,

Flandrin (1998), in which to analyze them. For irregularly

sampled processes, or those featuring missingness, we pro-

pose the use of the lifting paradigm (Sweldens 1995) as the

version of the classical wavelet transform for such data. In

particular, we select the nondecimated lifting transform pro-

posed by Knight and Nason (2009) which has been recently

shown to perform well for other time series tasks, such as

spectral analysis, in Knight et al. (2012). Whilst dealing nat-

urally with the irregularity in the time domain, our method is

shown to also yield competitive results for regularly spaced

data, thus extending its applicability.

Section 2, next, reviews long-memory processes and pro-

vides an overview of lifting and the nondecimated wavelet

lifting transform. Section 3 explains how lifting decorre-

lates long-memory series and Sect. 4 shows how this can be

exploited to provide our new lifting-based Hurst exponent

estimation procedure. Section 5 provides a comprehensive

performance assessment of our new method via simulation.

Section 6 demonstrates our technique on the previously intro-

duced data sets and discusses the implication of its results for

each set. Section 7 concludes this work with discussion and

some ideas for future exploration.

2 Review of long-range dependence, its estimation,

wavelets and lifting

Long-range behaviour is often characterized by a parameter,

such as the Hurst exponent, H , introduced to the literature by

Hurst (1951) in hydrology. Similar concepts were discussed

by the pioneering work of Mandelbrot and Ness (1968) that

introduced self-similar and related processes with long mem-

ory, including statistical inference for long-range dependent

processes. A large body of statistical literature has since

grown dedicated to the estimation of H . Reviews of long

memory can be found in Palma (2007) or Beran et al. (2013).

Time domain H estimation methods include the R/S

statistic (Mandelbrot and Taqqu 1979; Bhattacharya et al.

1983); aggregate series variance estimators (Taqqu et al.

1995; Teverovsky and Taqqu 1997; Giraitis et al. 1999); least

squares regression using subsampling in Higuchi (1990);

variance of residuals estimators in Peng et al. (1994).

Frequency domain estimators of H include Whittle

estimators, see Fox and Taqqu (1986), Dahlhaus (1989),

and connections to Fourier spectrum decay are made in

e.g. Lobato and Robinson (1996). Long-memory time series

have wavelet periodograms exhibiting similar log-linear rela-

tionships to the Hurst exponent, see for example McCoy and

Walden (1996). Wavelet-based regression approaches such as

Percival and Guttorp (1994), Abry et al. (1995), Abry et al.

(2000) and Jensen (1999) have been shown to be successful.

Stoev et al. (2004) and Faÿ et al. (2009) provide complete

investigations of frequency-based estimators. Extensions of

wavelet estimators to other settings, for example the presence
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of observational noise, can be found in Stoev et al. (2006),

Gloter and Hoffmann (2007). Other recent works concerning

long-memory estimation including multiscale approaches

are Vidakovic et al. (2000), Shi et al. (2005), Hsu (2006), Jung

et al. (2010), Coeurjolly et al. (2014) and Jeon et al. (2014).

Reviews comparing several techniques for Hurst exponent

estimation can be found in e.g. Taqqu et al. (1995).

A shortcoming of the approaches above is that they

are inappropriate, and usually not robust, in the irregularly

spaced/missing observation situation. Treating such data

with the usual practical ‘preprocessing’ approach of imputa-

tion, interpolation and/or aggregation induces high estimator

bias and errors, as highlighted by Clegg (2006), Beran et al.

(2013) and Zhang et al. (2014), for example. The implicit

danger is that such preprocessing may inadvertently change

the conclusions of subsequent scientific modelling and pre-

diction, e.g. see Varotsos and Kirk-Davidoff (2006).

A possible solution might be to estimate the Hurst parame-

ter directly from a spectrum estimated on irregular data. For

example, the Lomb-Scargle periodogram, (Lomb 1976; Scar-

gle 1982), estimates the spectrum from irregularly spaced

data. In the context of stationary processes, the Lomb-Scargle

periodogram has been shown to correctly identify peaks but

to overestimate the spectrum at high frequencies (Broersen

2007), while Rehfeld et al. (2011) and Nilsen et al. (2016)

argue that irregularly sampled data cause various prob-

lems for all spectral techniques. In particular, they report

that severe bias arises in the Lomb-Scargle periodogram if

there are no periodic components underlying the true spectra

[e.g. turbulence data, Broersen et al. (2000)]. The weighted

wavelet Z -transform construction of Foster (1996) also rein-

forces this point, and is subsequently successfully used for

describing fractal scaling behaviour by Kirchner and Neal

(2013). A theoretical and detailed empirical study of Hurst

estimation via this route would be an interesting avenue for

further study, but not pursued further here.

2.1 Long-range dependence (LRD)

Long-memory processes X = {X (t), t ∈ R} are station-

ary finite variance processes whose spectral density satisfies

fX (ω) ∼ c f |ω|−α for frequencies ω → 0 and α ∈ (0, 1),

or, equivalently, whose autocovariance γX (τ ) ∼ cγ τ−β as

τ → ∞ and β = 1 − α ∈ (0, 1), where ∼ means asymp-

totic equality. The parameter α controls the intensity of the

long-range behaviour.

The Hurst exponent, H , naturally arises in the context

of self-similar processes with self-similarity parameter H ,

which satisfy X (at)
d
= aH X (t) for a > 0, H ∈ (0, 1) and

where
d
= means equal in distribution. Self-similar processes,

while obviously non-stationary, can have stationary incre-

ments and the variance of such processes is proportional to

|t |2H , with H ∈ (0, 1). The stationary increment process of

a self-similar process with parameter H has been shown to

have long memory when 0.5 < H < 1, and the two parame-

ters α and H are related through α = 2H − 1. In general, if

0.5 < H < 1 the process exhibits long memory, with higher

H values indicating longer memory, whilst if 0 < H < 0.5

the process has short memory. The case of H = 0.5 repre-

sents white noise.

Examples of such processes are fractional Brownian

motion, its (stationary) increment process, fractional

Gaussian noise, and fractionally integrated processes. Frac-

tionally integrated processes I (d), (Granger and Joyeux

1980), are characterized by a parameter d ∈ (−1/2, 1/2)

which dictates the order of decay in the process covariance

and has long memory when d > 0, with the relationship to

the Hurst exponent H given by H = d + 1/2. Abry et al.

(2000) and Jensen (1999) showed that H , d and the spectral

power decay parameter, α are linearly related.

2.2 Existing wavelet-based estimation of long memory

Much contemporary research on long-memory parameter

estimation relies on wavelet methods and produce robust,

reliable, computationally fast and practical estimators—

see, for example, McCoy and Walden (1996), Whitcher

and Jensen (2000) and Ramírez-Cobo et al. (2011). Long-

memory wavelet estimators (of H , d or α) base estimation

on the wavelet spectrum, the wavelet equivalent of the Fourier

spectral density, see Vidakovic (1999) or Abry et al. (2013)

for more details.

Specifically, suppose a discrete series {X t }
N−1
t=0 has long-

memory parameter α. Assuming regular time sampling, a

wavelet estimate of α can be obtained by:

1. Perform the discrete wavelet transform (DWT) of {X t }
N−1
t=0

to obtain wavelet coefficients, {d j,k} j,k , where j =

1, . . . , J is the coefficient scale and k = 1, . . . , n j = 2 j

its time location. It can be shown that, e.g. Stoev et al.

(2004), the wavelet energy

E(d2
j,k) ∼ const × 2 jα, ∀ k as j −→ ∞. (1)

2. Estimate the wavelet energy within each scale j by e j =

n−1
j

∑n j

k=1 d2
j,k .

3. The slope of the linear regression fitted to a subset of

{( j, log2e j )}
J
j=1 estimates α, see Beran et al. (2013) for

details.

Later, we show that methods designed for regularly spaced

data often fail to deliver a robust estimate if the time series is

subject to missing observations or has been sampled irregu-

larly. Much literature is silent on the issue of how to estimate
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Hurst when faced with irregular or missing data. One pos-

sible, and often quoted, solution is to aggregate data into

regularly spaced bins, but no warnings are usually provided

for its pitfalls, see Sect. 5.3 for further information. Our

solution to this problem is to build an estimator out of coef-

ficients obtained from a (lifting) wavelet transform designed

for irregularly sampled observations, as described next.

2.3 Wavelet lifting transforms for irregular data

The lifting algorithm was introduced by Sweldens (1995) to

provide ‘second-generation’ wavelets adapted for intervals,

domains, surfaces, weights and irregular samples. Lifting

has been used successfully for nonparametric regression

problems and spectral estimation with irregularly sampled

observations, see e.g., Trappe and Liu (2000), Nunes et al.

(2006), Knight and Nason (2009) and Knight et al. (2012).

Jansen and Oonincx (2005) give a recent review of lifting.

Our Hurst exponent estimation method makes use of a

recently developed lifting transform called the lifting one

coefficient at a time (LOCAAT) transform proposed by

Jansen et al. (2001, 2009) which works as follows.

Suppose a function f (·) is observed at a set of n, possi-

bly irregular, locations or time points, x = (x1, . . . , xn) and

represented by {(xi , f (xi ) = fi )}
n
i=1. LOCAAT starts with

the f = ( f1, . . . , fn) values which, in wavelet nomencla-

ture, are the initial so-called scaling function values. Further,

each location, xi , is associated with an interval which it intu-

itively ‘spans’. For our problem, the interval associated with

xi encompasses all continuous time locations that are closer

to xi than any other location—the Dirichlet cell. Areas of

densely sampled time locations are thus associated with sets

of shorter intervals. The LOCAAT algorithm, as designed

in Jansen et al. (2009), has both the initial and dual scal-

ing basis functions given by suitably scaled characteristic

functions over these intervals, but, in general, this is not a

requirement.

The aim of LOCAAT is to transform the initial f into a set

of, say, L coarser scaling coefficients and (n − L) wavelet-

like coefficients, where L is a desired ‘primary resolution’

scale.

Lifting works by repeating three steps: split, predict and

update. In LOCAAT, the split step consists in choosing a

point to be lifted. Once a point, jn , has been selected for

removal, denoted (x jn , f jn ), we identify its set of neighbour-

ing observations, In . The predict step estimates f jn by using

regression over the neighbouring locations In . The predic-

tion error (the difference between the true and predicted

function values), d jn or detail coefficient, is then computed

by

d jn = f jn −
∑

i∈In

an
i fi , (2)

where (an
i )i∈In

are the weights resulting from the regres-

sion procedure over In . For example, in the simplest single

neighbour case this reduces to d jn = f jn − fi .

In the update step, the f -values of the neighbours of jn are

updated by using a weighted proportion of the detail coeffi-

cient:

f
(updated)

i := fi + bn
i d jn , i ∈ In, (3)

where the weights (bn
i )i∈In

are obtained from the require-

ment that the algorithm preserves the signal mean value

(Jansen et al. 2001, 2009). The interval lengths associated

with the neighbouring points are also updated to account for

the decreasing number of unlifted coefficients that remain.

This redistributes the interval associated to the removed point

to its neighbours. The three steps are then repeated on the

updated signal, and after each repetition a new wavelet coef-

ficient is produced. Hence, after say (n − L) removals, the

original data is transformed into L scaling and (n − L)

wavelet coefficients. LOCAAT is similar in spirit to the clas-

sical DWT step which takes a signal vector of length 2ℓ and

through separate local averaging and differencing-like oper-

ations produces 2ℓ−1 scaling and 2ℓ−1 wavelet coefficients.

As LOCAAT progresses, scaling and wavelet functions

decomposing the frequency content of the signal are built

recursively according to the predict and update Eqs. (2)

and (3). Also, the (dual) scaling functions are defined recur-

sively as linear combinations of (dual) scaling functions at

the previous stage. To aid description of our Hurst exponent

estimation method in Sects. 3 and 4, we recall the recursion

formulas for the (dual) scaling and wavelet functions at lift-

ing stage r :

ϕ̃r−1,i (x) = ϕ̃r,i (x) + br
i ψ̃ jr (x), i ∈ Ir (4)

ϕ̃r−1,i (x) = ϕ̃r,i (x), i /∈ Ir (5)

ψ̃ jr (x) = ϕ̃r, jr (x) −
∑

i∈Ir

ar
i ϕ̃r,i (x). (6)

After (n − L) lifting steps, the signal f can be expressed as

the linear combination

f (x) =

n
∑

r=L+1

d jr ψ jr (x) +
∑

i∈{1,...,n}\

{ jn , jn−1,..., jL+1}

cL ,iϕL ,i (x), (7)

where ψ jr (x) is a wavelet function representing high fre-

quency components and ϕL ,i (x) is a scaling function rep-

resenting the low frequency content. Just as in the classical

wavelet case, the detail coefficients can be synthesized by

means of the (dual) wavelet basis, e.g. d jr = 〈 f, ψ̃ jr 〉, where

〈·, ·〉 denotes the L2-inner product.
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A feature of lifting, hence also of LOCAAT, is that the

forward transform can be inverted easily by reversing the

split, predict and update steps.

Artificial wavelet levels The notion of scale for second gen-

eration wavelets is continuous, which indirectly stems from

the fact that second generation wavelets are not dyadically

scaled versions of a single mother wavelet. To mimic the

dyadic levels of classical wavelets, Jansen et al. (2009)

group wavelet functions of similar (continuous) scales into

‘artificial’ levels. Similar results are also obtained by group-

ing the coefficients via their interval lengths into ranges

(2 j−1α0, 2 jα0], where j ≥ 1 and α0 is the minimum scale.

This construction is more evocative of the classical wavelet

dyadic scales.

Choice of removal order In the DWT the finest scale coef-

ficients are produced first and followed by progressively

coarser scales. Jansen et al. (2009) mimic this behaviour by

removing points in order from the finest continuous scale

to the coarsest. However, the LOCAAT scheme can accom-

modate any coefficient removal order. In particular, we can

choose to remove points following a predefined path (or

trajectory) T = (xo1 , . . . , xon ), where (o1, o2, . . . , on)

is a permutation of the set {1, . . . , n}. Knight and Nason

(2009) introduced the nondecimated lifting transform which

explores the space of n! possible trajectories via boot-

strapping. The nondecimated lifting transform resembles

the nondecimated wavelet transform (Coifman and Donoho

1995; Nason and Silverman 1995) in that both are designed

to mitigate the effect of poor performance caused by the rel-

ative location of signal features and wavelet position. Our

technique in Sect. 4 below also exploits the trajectory space

via bootstrapping, in order to improve the accuracy of our

Hurst exponent estimator.

3 Decorrelation properties of the LOCAAT

algorithm

Wavelet transforms are known to possess good compression

and decorrelation properties. For long-memory processes

this has been shown for the discrete wavelet transform by,

e.g., Vergassola and Frisch (1991) and Flandrin (1992) for

fractional Brownian motion, Abry et al. (2000) for fractional

Gaussian noise, Jensen (1999) for fractionally integrated

processes, Craigmile et al. (2001) for fractionally differ-

enced processes or, for a more general discussion, see e.g.

Vidakovic (1999, Chap. 9) or Craigmile and Percival (2005).

Whilst lifting has repeatedly shown good performance in

nonparametric regression and spectral estimation problems,

a rigorous theoretical treatment is often difficult due to the

irregularity and lack of the Fourier transform in this situa-

tion.Some lifting transforms have been shown to have good

decorrelation properties, see Trappe and Liu (2000) or Clay-

poole et al. (1998) for further details on their compression

abilities.

Decorrelation is important for long-memory parameter

estimation as taking the wavelet transform produces coef-

ficients that are “quasidecorrelated,” see Flandrin (1992) and

Veitch and Abry (1999), Property P2, page 880. The decor-

relation, and consequent removal of the long memory, then

permits the use of established methods for long-memory

parameter estimation using the lifting coefficients. Next, we

provide analogous mathematical evidence for the LOCAAT

decorrelation properties which benefit our Hurst parame-

ter estimation procedure presented later in Sect. 4. It is

important to realize that although the statement of Propo-

sition 1 is visually similar to earlier ones concerning regular

wavelets, such as Abry et al. (2000, p.51) for fractional

Gaussian noise, Jensen (1999, Theorem 2) for fraction-

ally integrated processes or Theorem 5.1 of Craigmile and

Percival (2005) for fractionally differenced processes, our

proposition establishes the result for the lifting transform,

which is considerably more challenging than for regular

wavelets involving new mathematics.

3.1 Theoretical decorrelation due to lifting for

stationary long-memory series

Proposition 1 Let X = {X ti }
N−1
i=0 denote a (zero-mean) sta-

tionary long-memory time series with Lipschitz continuous

spectral density fX . Assume the process is

observed at irregularly spaced times {ti }
N−1
i=0 and let

{{cL ,i }i∈{0,...,N−1}\{ jN−1,..., jL−1}, {d jr }
N−1
r=L−1}be the LOCAAT

transform of X. Then the detail coefficients {d jr }r have auto-

correlation with rate of decay faster than any process with

long memory with autocorrelation decay τ−β for β ∈ (0, 1).

The proof can be found in Appendix A. Proposition 1

assumes no specific lifting wavelet. We conjecture that if

smoother lifting wavelets were employed, it might be pos-

sible to obtain even better rates of decay for the lifting

coefficients’ autocorrelations along similar lines to the equiv-

alent result for classical wavelets shown by Abry et al. (2000).

To complement our mathematical result we next investigate

decorrelation of a nonstationary self-similar process with

long-memory increments via simulation.

3.2 Empirical decorrelation due to lifting for

nonstationary self-similar processes

We simulated K = 100 regularly sampled fractional Brown-

ian motion (FBM) series {X t }
(l) (l = 1, . . . , K ) of length

n = 2 j for six j ranging from 8 to 13 with true Hurst para-
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Fig. 3 Decorrelation properties of LOCAAT. Left simulated fractional Brownian motion autocorrelation with H = 0.9. Right the autocorrelation

after LOCAAT transformation

Table 1 Mean relative absolute autocorrelation (%) for simulated frac-

tional Brownian motion

H Series length, n

256 512 1024 2048 4096 8192

0.6 4.5 2.3 1.4 0.8 0.5 0.2

0.7 3.6 2.1 1.2 0.5 0.3 0.2

0.8 3.0 1.5 0.9 0.4 0.2 0.1

0.9 2.4 1.3 0.7 0.3 0.2 0.1

meters H ranging from 0.6 to 0.9. The series were generated

using the fArma R add-on package (Wuertz et al. 2013).

Figure 3 illustrates the powerful decorrelation effect of

LOCAAT when applied to a single fractional Brownian

motion realization of length n = 1024 with Hurst parameter

H = 0.9. The left-hand plot clearly shows the characteris-

tic slow decay of long memory whereas the right-hand plot

shows only small short term correlation after LOCAAT appli-

cation in the first six or seven lags. To assess the overall

decorrelation ability we compute the mean relative absolute

autocorrelation

RELac = 100K −1
K

∑

l=1

∑

r 
=k | Cov(d
(l)
jr

, d
(l)
jk

)|
∑

i 
= j | Cov(X
(l)
ti

, X
(l)
t j

)|
, (8)

where d(l) is the LOCAAT-transformed {X t }
(l); hence a

small percentage RELac value means that LOCAAT per-

formed highly effective decorrelation. Table 1 shows the

efficacious decorrelation results for the various fractional

Brownian processes. The mean relative absolute autocorre-

lation has been reduced by at least 95 % on the average for

all situations and by 99 % for n ≥ 2048.

4 Long-memory parameter estimation using

wavelet lifting (LoMPE)

We now show that the log2-variance of the lifting coefficients

is linearly related to the artificial scale level which parallels

the classical wavelet result in (1). This new result enables

direct construction of a simple Hurst parameter estimator for

irregularly sampled time series data. As with Proposition 1,

the statement of Proposition 2 is visually similar to that for

established results in the literature corresponding to regular

wavelets. However, again, the proof of our proposition relies

on new mathematics for the more difficult situation of lifting.

Proposition 2 Let X = {X ti }
N−1
i=0 denote a (zero-mean)

long-memory stationary time series with finite variance and

spectral density fX (ω) ∼ c f |ω|−α as ω → 0, for some

α ∈ (0, 1). Assume the series is observed at irregularly

spaced times {ti }
N−1
i=0 and transform the observed data X

into a collection of lifting coefficients, {d jr }r , via application

of LOCAAT from Sect. 2.3.

Let r denote the stage of LOCAAT at which we obtain the

wavelet coefficient d jr , and let its corresponding artificial

level be j⋆, then for some constant K

σ 2
j⋆ = Var(d jr ) ∼ 2 j⋆(α−1) × K . (9)

The proof can be found in Appendix A. We now use this result

to suggest a long-memory parameter estimation method from

an irregularly sampled time series.

Long- Memory Parameter Estimation Algorithm

(LoMPE)

Assume that {X ti }
N−1
i=0 is as in Proposition 2. We estimate

α as follows.
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Fig. 4 Log2 of estimated wavelet coefficient variances σ̂ 2
j versus scale,

computed on fractional Gaussian noise series of length N = 1024 with

Hurst parameter of α = 0.8 and 10 % missingness at random. Estimated

Hurst parameter from weighted regression slope is α̂ = 0.84

A-1 Apply LOCAAT to the observed process {X ti }
N−1
i=0

using a particular lifting trajectory to obtain lifting coef-

ficients {d jr }r . Then group the coefficients into a set of

artificial scales as described in Sect. 2.3.

A-2 Normalize the detail coefficients by dividing through

by the square root of the corresponding diagonal entry

of W̃ W̃ T , where W̃ is the lifting transform matrix. To

avoid notational clutter we continue to use d jr to denote

the normalized details, d jr (W̃ W̃ T )
−1/2
jr , jr

.

A-3 Estimate the wavelet coefficients’ variance within each

artificial level j⋆ by

σ̂ 2
j⋆ := (n j⋆ − 1)−1

n j⋆
∑

r=1

d2
jr
, (10)

where n j⋆ is the number of observations in artificial

level j⋆.

A-4 Fit a weighted linear regression to the points log2(σ̂
2
j⋆)

versus j⋆; use its slope to estimate α.

A-5 Repeat steps A-1 to A-4 for P bootstrapped trajectories,

obtaining an estimate α̂p for each trajectory p ∈ 1, P .

The final estimator is α̂ = P−1
∑P

p=1 α̂p.

As an example, Fig. 4 plots the log2-wavelet variances ver-

sus artificial scale resulting from the above algorithm being

applied to a simulated fractional Gaussian noise series. It is

clear from the plot that the log2-variances are well modelled

by a straight line even in this case where the noise series

suffers from dropout of 10 % missing-at-random.

Remark 1 The normalization in step A-2 corrects for the lack

of orthonormality inherent in the lifting transform (W̃ ).

Remark 2 We use the simple additive formula (10) in step A-

3 as the detail coefficients have zero mean and small

correlation due to the effective decorrelation properties of

the LOCAAT transform observed in Sect. 3.

Remark 3 As E{log(·)} 
= log{E(·)}, we correct for the bias

introduced by regressing log2 quantities in step A-4 using

the same weighting as proposed by Veitch and Abry (1999),

hence accounting for the different variability across artifi-

cial levels. The weights are obtained under the Gaussianity

assumption, though Veitch and Abry (1999) report insensi-

tivity to departures from this assumption.

Remark 4 The approach in step A-5 is similar to model aver-

aging over different possible wavelet bases (cycle-spinning)

as proposed by Coifman and Donoho (1995) and adapted

to the lifting context by Knight and Nason (2009). Averag-

ing over the different wavelet bases improves the variance

estimation and mitigates for ‘abnormal trajectories’. If an

estimate α̂ is obtained by means of regression without vari-

ance weighting, our approach yields a reasonable confidence

interval without relying on the Gaussianity assumption, as in

Abry et al. (2000). Trajectories are randomly drawn, where

each removal order is generated by sampling (N − L) loca-

tions without replacement from {ti }
N−1
i=0 .

5 Simulated performance of LoMPE

Our simulation study is intended to reflect many real-world

data scenarios. The simulated time series should be long

enough to be able to reasonably estimate what is, after all,

a low-frequency asymptotic quantity. For example, Clegg

(2006) uses 100000 observations, which is maybe somewhat

excessive, whereas Jensen (1999) examines the range 27–210.

We investigated processes of lengths of 256, 512 and 1024.

Although our method does not require a dyadic number of

observations, dyadic process lengths have been chosen to

ensure comparability with classical wavelet methods in reg-

ular settings.

To investigate the effect of missing observations on the

performance of our method, we simulated datasets with

an increasing level of random missingness (5–20 %). This

reflects real data scenarios, as documented by current litera-

ture that deals with time series analysis under the presence of

missingness, e.g. paleoclimatic data (Broersen 2007), such

as the isotopic cores, and air pollutant data (Junger and Ponce

de Leon 2015).

We compared results across the usual range of Hurst para-

meters H = 0.6, . . . , 0.9 for fractional Brownian motion,

fractional Gaussian noise and fractionally integrated series.

The processes were simulated via the fArma add-on pack-

age (Wuertz et al. 2013) for the R statistical programming

language (Core Team 2013). Each set of results is taken
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Table 2 Mean squared error

(×103) for regularly spaced

fractional Brownian motion

series for a range of Hurst

parameters for the estimation

procedures described in the text

H n = 256 n = 512 n = 1024

Peng Wavelet LoMPE Peng Wavelet LoMPE Peng Wavelet LoMPE

0.6 19 (30) 29 (48) 12 (21) 13 (22) 20 (37) 9 (15) 10 (14) 13 (20) 10 (11)

0.7 25 (35) 34 (57) 12 (15) 14 (16) 21 (34) 8 (11) 9 (12) 15 (24) 8 (9)

0.8 19 (23) 24 (45) 11 (13) 13 (18) 17 (28) 7 (10) 12 (16) 15 (22) 8 (10)

0.9 23 (39) 34 (69) 28 (39) 15 (23) 17 (31) 13 (20) 12 (16) 16 (26) 7 (9)

Numbers in brackets represent the standard deviation of estimation errors. Boxed numbers indicate best

result

Table 3 Mean squared error

(×103) for regularly spaced

fractional Gaussian noise for a

range of Hurst parameters for

the estimation procedures

described in the text

H n = 256 n = 512 n = 1024

Peng Wavelet LoMPE Peng Wavelet LoMPE Peng Wavelet LoMPE

0.6 8 (11) 31 (50) 2 (2) 4 (6) 11 (19) 1 (1) 2 (3) 8 (13) 1 (1)

0.7 7 (8) 27 (49) 2 (3) 3 (5) 12 (19) 1 (1) 3 (3) 9 (15) 1 (1)

0.8 7 (11) 29 (70) 2 (3) 5 (6) 16 (26) 2 (3) 4 (6) 10 (16) 3 (2)

0.9 10 (13) 28 (64) 3 (4) 4 (5) 11 (15) 2 (3) 3 (5) 10 (17) 4 (2)

Numbers in brackets represent the standard deviation of estimation errors. Boxed numbers indicate best

result

Table 4 Mean squared error

(×103) for regularly spaced

fractionally integrated series for

a range of Hurst parameters,

H = d + 1/2, for the estimation

procedures described in the text

H n = 256 n = 512 n = 1024

Peng Wavelet LoMPE Peng Wavelet LoMPE Peng Wavelet LoMPE

0.6 8 (9) 25 (39) 3 (4) 4 (6) 16 (39) 1 (2) 2 (2) 8 (13) 1 (1)

0.7 8 (11) 29 (39) 4 (5) 4 (5) 9 (15) 4 (4) 3 (3) 6 (10) 4 (3)

0.8 11 (16) 28 (39) 6 (8) 7 (8) 18 (34) 6 (5) 4 (5) 6 (11) 6 (4)

0.9 12 (15) 30 (53) 7 (8) 7 (10) 11 (18) 8 (7) 4 (6) 8 (14) 9 (5)

Numbers in brackets represent the standard deviation of estimation errors. Boxed numbers indicate best

result

over K = 100 realizations and P = 50 lifting trajectories

(denoted “LoMPE”), using modifications to the code from the

adlift package (Nunes and Knight 2012) and the nlt package

(Knight and Nunes 2012). The simulations were repeated

for two competitor methods: the wavelet-based regression

technique of McCoy and Walden (1996), Jensen (1999), opti-

mized for the choice of wavelet (denoted “wavelet”), as well

as the residual variance method (Peng et al. 1994), which

we denote “Peng”. Both methods are available in the fArma

package and were chosen as our empirical results indicated

that these techniques performed the best amongst traditional

methods over a range of simulation settings.

5.1 Performance for regularly sampled series

For the simulations described above, Tables 2, 3 and 4 report

the mean squared error (MSE) defined by

MSE = K −1
K

∑

k=1

(H − Ĥ k)2. (11)

Overall, our LoMPE method performs well when com-

pared to methods that were specifically designed for regularly

sampled series. LoMPE outperforms its competitors in over

75 % of cases and for three-quarters of those the improve-

ment is greater than 40 %. Our method is slightly worse

than Peng’s method for fractionally integrated series shown

in Table 4, but mostly still better than the wavelet method for

larger sample sizes.

These results are particularly pleasing since even though

our method is designed for irregularly spaced data, it per-

forms extremely well for regularly spaced time series.

5.2 Performance for irregularly sampled data

Tables 5, 6 and 7 report the mean squared error for our

LoMPE estimator on irregularly sampled time series for dif-

ferent degrees of missingness (up to 20 %). The tables show

that higher degrees of missingness result in a slightly worse

performance of the estimator; however, this decrease is small

considering the irregular nature of the series, and the results
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Table 5 Mean squared error

(×103) for irregularly spaced

fractional Brownian motion

series featuring different degrees

of missing observations for a

range of Hurst parameters for

the LoMPE estimation

procedure

H n = 256 n = 512 n = 1024

Missingness proportion, p Missingness proportion, p Missingness proportion, p

5 % 10 % 20 % 5 % 10 % 20 % 5 % 10 % 20 %

0.6 13 (22) 14 (23) 16 (25) 11 (16) 12 (17) 13 (19) 12 (12) 13 (13) 14 (13)

0.7 14 (17) 13 (17) 15 (20) 9 (12) 10 (13) 11 (14) 9 (11) 10 (11) 10 (12)

0.8 11 (13) 11 (12) 12 (14) 8 (11) 8 (12) 9 (13) 9 (12) 9 (12) 10 (13)

0.9 24 (35) 21 (34) 20 (30) 12 (19) 11 (16) 11 (17) 8 (10) 8 (11) 9 (12)

Numbers in brackets are the estimation errors’ standard deviation

Table 6 Mean squared error

(×103) for irregularly spaced

fractional Gaussian noise

featuring different degrees of

missing observations for a range

of Hurst parameters for the

LoMPE estimation procedure

H n = 256 n = 512 n = 1024

Missingness proportion, p Missingness proportion, p Missingness proportion, p

5 % 10 % 20 % 5 % 10 % 20 % 5 % 10 % 20 %

0.6 2 (2) 2 (2) 3 (4) 1 (1) 1 (1) 1 (2) 1 (1) 1 (1) 1 (1)

0.7 3 (3) 3 (3) 3 (4) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 3 (3)

0.8 3 (4) 3 (4) 4 (6) 3 (3) 3 (3) 4 (4) 3 (2) 4 (3) 5 (3)

0.9 3 (5) 4 (6) 4 (7) 3 (3) 4 (3) 4 (4) 4 (3) 5 (3) 6 (4)

Numbers in brackets are the estimation errors’ standard deviation

Table 7 Mean squared error

(×103) for irregularly spaced

fractionally integrated processes

featuring different degrees of

missing observations for a range

of Hurst parameters,

H = d + 1/2, for the LoMPE

estimation procedure

H n = 256 n = 512 n = 1024

Proportion of missingness, p Proportion of missingness, p Proportion of missingness, p

5 % 10 % 20 % 5 % 10 % 20 % 5 % 10 % 20 %

0.6 2 (3) 3 (4) 3 (5) 2 (2) 2 (2) 2 (2) 2 (1) 2 (1) 2 (1)

0.7 4 (5) 5 (6) 5 (5) 5 (4) 5 (4) 6 (4) 4 (3) 5 (3) 5 (4)

0.8 8 (9) 8 (9) 9 (9) 7 (6) 8 (6) 9 (7) 8 (5) 8 (5) 9 (6)

0.9 8 (8) 9 (10) 10 (10) 9 (7) 10 (8) 11 (10) 10 (6) 10 (6) 12 (7)

Numbers in brackets are the estimation errors’ standard deviation

are for the most part comparable with the results for the

regular series. The supplementary material exhibits similar

simulation results when we changed the missingness pattern

from ‘missing at random’ to contiguous missing stretches

in the manner of Junger and Ponce de Leon (2015). This

shows a degree of robustness to different patterns of miss-

ingness.

We also studied the empirical bias of our estimator.

For reasons of brevity we do not report these bias results

here, but the simulations can be found in Appendix C

in the supplementary material. The results show that our

method is competitive, achieving better results in over 65 %

of cases and only slightly worse in the rest. As for the

mean squared error results above, performance degrades for

increasing missingness but still the results are remarkably

good even when 20 % of observations are missing, and

our proposed method is robust even at a significant loss of

40 % missing information (as detailed in the supplemen-

tary material). Indeed, in some cases the results are still

competitive with those for the regular case in the previous

section.

5.3 Aggregation effects

We mentioned earlier that temporal aggregation is often used

to mitigate the lack of regularly spaced samples. Several

authors such as Granger and Joyeux (1980) and Beran et al.

(2013) point out that aggregation over multiple time series

can in itself induce long memory in the newly obtained

process, even when the original process only had short-

memory.

Motivated by this, we investigated the effect of tem-

poral aggregation on long-memory processes via simula-

tion. Specifically, we took regularly sampled long-memory

processes (again fractional Brownian motion, fractional

Gaussian noise and fractionally integrated classes) and

induced an irregular sampling structure by randomly remov-

ing a percentage of the observations. We then aggregated

(averaged) the observations in consecutive windows of length

δ to mimic aggregation of irregularly observed time series,

as usually done in practice. The long-memory intensity was

estimated using our LoMPE method on the irregular data

(no processing involved) and the Peng and wavelet methods
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Table 8 Empirical estimator bias (×100) after aggregating fractional Brownian motion series (n = 512) for a range of Hurst parameters featuring

different degrees of missing observations to sampling intervals of size δ = 2 for three estimation methods

H LoMPE Peng Wavelet

5 % 10 % 20 % 5 % 10 % 20 % 5 % 10 % 20 %

0.6 −8 (7) −8 (8) −8 (8) −10 (13) −19 (14) −37 (15) −11 (19) −26 (20) −39 (16)

0.7 −6 (7) −7 (7) −7 (7) −13 (13) −25 (15) −47 (17) −12 (22) −29 (25) −45 (19)

0.8 −3 (9) −3 (8) −4 (9) −17 (15) −32 (18) −61 (20) −21 (27) −41 (25) −50 (21)

0.9 2 (11) 1 (11) 1 (11) −18 (18) −42 (20) −75 (20) −22 (28) −52 (26) −58 (18)

Numbers in brackets are the estimation errors’ standard deviation
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Fig. 5 Left autocorrelation for the isotope series from Fig. 1 (treated as regularly spaced). Right autocorrelation for the LOCAAT-lifted

isotope series

on the aggregated sets. Table 8 shows the empirical bias for

each procedure for a range of generating Hurst exponents

and degree of missingness.

The results show that our direct LoMPE method pro-

duces dramatically better empirical bias results across most

combinations of experimental conditions. For example, even

for 5 % missingness, which shows the most conservative

improvements, the median reduction in bias is four times that

exhibited by the Peng and wavelet methods. The supplemen-

tary material shows similar results using fractional Gaussian

noise and fractionally integrated processes with different

degrees of aggregation, and also shows that the estimator

variability increases markedly with increased aggregation

span δ.

Estimation in the presence of a trend Just as for classical

wavelet methods, simulation experience has shown that our

lifting-based method is not adversely affected by smooth

trends, provided we use appropriately sized neighbourhoods

to tune the number of wavelet vanishing moments. This is in

contrast with other estimation methods, e.g. the local Whittle

estimator, which are heavily affected by trends, to the point

of becoming unusable (Abry et al. 2000).

6 LoMPE analysis of environmental and climate

science data

6.1 Isotope ice core data

The sample autocorrelation of the isotope time series

introduced in Sect. 1 is shown in the left panel of Fig. 5

and the autocorrelation of the LOCAAT-lifted series in the

right panel, in both cases treating them as regularly spaced.

The powerful decorrelation ability of lifting is clear.

Our LoMPE method estimates the Hurst parameter to be

Ĥ = 0.76 which indicates long memory, with an approx-

imate bootstrap confidence interval of [0.7, 0.82]. Blender

et al. (2006) reported a Hurst exponent of Ĥ = 0.84. In

view of the demonstrated accuracy of our methods above,

we would suggest that the literature is currently overestimat-

ing this parameter and hence the persistence of the isotope

over long periods of time. This in turn leads to model miscal-

ibration and inaccurate past reconstruction, e.g. greenhouse

gases, and overestimation of their long-term effect in coupled

ocean-atmosphere climate models (Fraedrich and Blender

2003; Wolff 2005; Blender et al. 2006).

Although the focus here has been Hurst estimation on ice-

volume stratigraphy, many of these series’ characteristics—
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Fig. 6 Left autocorrelation of the BristolOzone concentration series from Fig. 2 treated without missingness. Right autocorrelation after LOCAAT

transformation

Table 9 Hurst parameter estimates for Ozone irregularly spaced time series for six British locations for the Windsor and Toumi (2001) method

(W&T) and our proposed method (LoMPE)

Bristol Edinburgh Leeds London Lough Navar Rochester

W&T 0.700 0.760 0.755 0.780 0.755 0.778

LoMPE 0.847 0.804 0.827 0.832 0.837 0.851

such as irregular time sampling—are common to many other

paleoclimatic series. We have also applied our methodology

to electrical conductance ice core series and argue that our

estimation of the long-memory parameter for these series

is more reliable than that in the literature. For reasons of

brevity we do not include results here, but refer the reader to

Appendix D in the supplementary material.

Our technique could be naturally applied to other series

that might exhibit sampling irregularity and/or missingness.

6.2 Atmospheric pollutants data

The autocorrelation before and after LOCAAT-transformation

for the Bristol Ozone series is shown in Fig. 6 and again

the powerful decorrelation effect is clear. We were unable

to discern the precise method for Hurst parameters estima-

tion from irregular series in Windsor and Toumi (2001).

However, we report the values from their Fig. 8 and our esti-

mates in Table 9. On the basis of our LoMPE estimates, we

concur with the conclusion in Windsor and Toumi (2001)

that estimates are consistent across the six sites, indicat-

ing that pollution persistence is similar across rural and

urban geographical locations. However, our H estimates are,

in general, higher than those reported. This observation is

significant as it suggests that ozone is a secondary pollu-

tant which possesses a greater degree of persistence in the

atmosphere than previously recognized. Also note that in par-

ticular for ozone measurements, more persistent behaviour

results in more predictable series (Turcotte 1997; Rehman

and Siddiqi 2009) and easier detection of trends (Vyushin

et al. 2007).

7 Discussion and further work

Hurst exponent estimation is a recurrent topic in many

scientific applications, with significant implications for mod-

elling and data analysis. One important aspect of real-world

datasets is that their collection and monitoring are often not

straightforward, leading to missingness, or to the use of prox-

ies with naturally irregular sampling structures.

This article has (i) identified that naive adaption of exist-

ing long-memory parameter estimation methods gives rise

to inaccurate estimators and (ii) created a new estimator,

LoMPE, that works naturally in the irregular/missing domain

giving excellent and accurate results on a comprehensive

range of persistent processes as well as showing unexpected

excellent performance in the regularly spaced setting.

Backed up by the evidence of LoMPE’s performance,

our ice core analyses point towards an overestimation of the

isotope persistence over long periods of time and unrealis-

tically low reported errors for Hurst exponent estimates in

the literature. Our analysis of the atmospheric time series

underlines that long memory is present independent of geo-

graphic monitoring site. The results also indicate that ozone,

as a secondary pollutant, has a higher degree of persistence
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than has been previously recognized, and thus has potentially

greater long-term implications on population-level respira-

tory health. However, LoMPE is not just restricted to the

climate data applications that stimulated it, but can also be

used in other contexts where irregular sampling or missing

data are common.

For the estimator proposed in this paper, we restricted our

attention to LOCAAT algorithms using a small number of

neighbours and linear predict lifting steps. Future work might

investigate higher order prediction schemes and larger neigh-

bourhoods; also, the use of adaptive lifting schemes, such

as Nunes et al. (2006), might provide benefits arising from

improved decorrelation. They would also have the advan-

tage of removing the a priori choice of a wavelet basis for

our estimator. Finally, the estimation methods introduced in

this article could be naturally extended to higher dimensions

using the Voronoi polygon or tree-based lifting transforms

introduced in Jansen et al. (2009). In the climate science

context, a novel spatial Hurst dependence estimation would

allow for inclusion of the geographical location and be con-

ducive to dynamic spatial modelling.

An interesting avenue for future research would be to

consider the use of compressed sensing methods and the

non-uniform Fourier transform, (Marvasti 2001) or the

Lomb-Scargle method to estimate the spectrum and thence

the Hurst parameter.
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Proofs and theoretical results

This appendix gives the theoretical justification of the results

from Sects. 3.1 and 4, following the notation outlined in the

text.

Proof of Proposition 1

Let {X t } be a zero-mean stationary long-memory series with

autocovariance γX (τ ) ∼ cγ τ−β with β ∈ (0, 1).

The autocovariance of {X t } can be written as Cov(X ti , X t j
)

= γX (ti − t j ) = E(X ti X t j
), assuming E(X t ) = 0. Hence,

E(d j ) = 0 and

Cov(d jr , d jk ) = E(d jr d jk )

=

∫

R

ψ̃ jr (t)

{∫

R

ψ̃ jk (s)γX (t − s) ds

}

dt, (12)

where d jr =< X, ψ̃ jr > for distinct times jr and jk . Denote

the interval length (i.e. continuous scale) of detail d jr by Ir, jr .

Since from (6), the (dual) wavelet functions are linear

combinations of scaling functions, Eq. (12) can be re-written

as

E(d jr d jk ) =

∫

R

⎧

⎨

⎩

ϕ̃r, jr (t) −
∑

i∈Ir

ar
i ϕ̃r,i (t)

⎫

⎬

⎭

×

∫

R

⎧

⎨

⎩

ϕ̃k, jk (s) −
∑

j∈Ik

ak
j ϕ̃k, j (s)

⎫

⎬

⎭

γX (t − s) ds dt.

(13)

As LOCAAT progresses, the (dual) scaling functions are

defined recursively as linear combinations of (dual) scaling

functions at the previous stage, from Eqs. (4) and (5).

By recursion the scaling functions in the above equation

can be written as linear combinations of scaling functions at

the first stage (i.e. r = n). Due to the linearity of the integral

operator, (13) can be written as a linear combination of terms

like

Bn,i, j :=

∫

R

ϕ̃n,i (t)

{∫

R

ϕ̃n, j (s)γX (t − s) ds

}

dt

=

∫

R

ϕ̃n,i (t)
(

ϕ̃n, j ⋆ γX

)

(t) dt, (14)

where ⋆ is the convolution operator, and i and j refer to time

locations that were involved in obtaining d jr and d jk . Recall

from Sect. 2.3 that the (dual) scaling functions are initially

defined (at stage r = n) as scaled characteristic functions of

the intervals associated with the observed times, i.e. ϕ̃n,i (t) =

I −1
n,i χIn,i

(t) (Jansen et al. 2009). Using Parseval’s theorem in

Eq. (14) gives

Bn,i, j = (2π)−1

∫

R

ˆ̃ϕn,i (ω)

(

̂ϕ̃n, j ⋆ γX

)

(ω) dω

= (2π)−1

∫

R

ˆ̃ϕn,i (ω) ˆ̃ϕn, j (ω) fX (ω) dω, (15)

where f̂ is the Fourier transform of f . As the Fourier trans-

form of an initial (dual) scaling function (scaled characteristic

function on an interval, (b − a)−1χ[a,b]) is

̂
{

(b − a)−1χ[a,b]

}

(ω)

= sinc {ω(b − a)/2} exp {−i ω(b + a)/2} ,
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where sinc(x) = x−1 sin(x) for x 
= 0 and sinc(0) = 1 is

the (unnormalized) sinc function, we can write (15) as

∫

R

sinc
(

ωIn,i/2
)

sinc
(

ωIn, j/2
)

exp
{

−i ωδ(In,i , In, j )
}

fX (ω)dω, (16)

where δ(In,i , In, j ) is the distance between the midpoints of

intervals In,i and In, j at the initial stage n. Equation (16)

can be interpreted as the Fourier transform of u(x) =

fX (x) sinc
(

x In,i/2
)

sinc
(

x In, j/2
)

evaluated at δ(In,i , In, j ).

Since the sinc function is infinitely differentiable and

the spectrum is Lipschitz continuous, results on the decay

properties of Fourier transforms (Shibata and Shimizu 2001,

Theorem 2.2) imply that, for i 
= j , terms of the form Bn,i, j

decay as O
{

δ(In,i , In, j )
−1

}

. Hence the further away the time

points are, the less autocorrelation is present in the wavelet

domain and the rate of autocorrelation decay for the wavelet

coefficients is of reciprocal order, thus faster than that of the

original process.

Proof of Proposition 2

As Cov(X ti , X t j
) = γX (ti − t j ) and d jr =< X, ψ̃ jr >, it

follows that d jr has mean zero (as the original process is

zero-mean) and in a similar manner to (12) we have

Var(d jr )=E(d2
jr
)=

∫

R

ψ̃ jr (t)

{∫

R

ψ̃ jr (s)γX (t−s) ds

}

dt.

(17)

As before, we denote the associated interval length of the

detail d jr by Ir, jr .

Using the recursiveness in the dual wavelet construction

(Eq. 6), it follows that the (dual) wavelet functions are linear

combinations of scaling functions and Eq. (17) can be re-

written as

Var(d jr ) =

∫

R

⎧

⎨

⎩

ϕ̃r, jr (t) −
∑

i∈Ir

ar
i ϕ̃r,i (t)

⎫

⎬

⎭

×

∫

R

⎧

⎨

⎩

ϕ̃r, jr (s) −
∑

j∈Ir

ar
j ϕ̃r, j (s)

⎫

⎬

⎭

γX (t − s) ds dt.

(18)

As in Proposition 1, using Parseval’s theorem we obtain

Br,i, j =

∫

R

ϕ̃r,i (t)

{∫

R

ϕ̃r, j (s)γX (t − s)ds

}

dt

=

∫

R

sinc(ωIr,i/2) sinc(ωIr, j/2)e−i ωδ(Ir,i ,Ir, j ) fX (ω)dω,

(19)

where recall that the hat notation denotes the Fourier trans-

form of a function and δ(Ir,i , Ir, j ) denotes the distance

between the midpoints of intervals Ir,i and Ir, j .

Due to the artificial level construction, the sequence of lift-

ing integrals is approximately log-linear in the artificial level,

i.e. for those points jr in the j⋆th artificial level, we have

log2

(

Ir, jr

)

= j⋆ +� where � ∈ {−1+ log2(α0), log2(α0)}.

Hence Ir, jr = R2 j⋆ for some constant R > 0. This follows

from the fact that the artificial levels are defined as a dyadic

rescaling of the time range of the type (2 j⋆−1α0, 2 j⋆α0],

and the result follows as on a log2 scale, the artificial

scale intervals become ( j⋆ − 1 + log2(α0), j⋆ + log2(α0)].

For an alternative justification when using a quantile-based

approach for the artificial scale construction, the reader is

directed to Appendix B in the supplementary material. Now

suppose i = j and both points belong to the j⋆th artificial

level. In Eq. (19) we make a change of variable η = ωR2 j⋆

to obtain

Br,i,i =

∫

R

sinc2(η/2) fX (η/R2 j⋆)

(

R2 j⋆
)−1

dη

∼

∫

R

sinc2(η/2)c f |η|−α
(

R2 j⋆
)α−1

dη, ( j⋆ →∞)

= 2 j⋆(α−1)

∫

R

c f Rα−1 sinc2(η/2)|η|−αdη

= 2 j⋆(α−1) Rα−14c f Ŵ(−1 − α) sin(πα/2), (20)

where α ∈ (0, 1) and Ŵ is the Gamma function. If i 
= j are

points from the same neighbourhood Ir and both belong to

the same artificial level j⋆, then their artificial scale measure

will be the same. Performing the same change of variable as

above, we obtain

Br,i, j ∼

∫

R

sinc2(η/2)e−i η
(

R2 j⋆
)−1

c f |η|−α
(

R2 j⋆
)α

dη,

( j⋆ → ∞)

= 2 j⋆(α−1)c f Rα−1

∫

R

sinc2(η/2)e−i η|η|−αdη

= 2 j⋆(α−1) Rα−14c f (2
α − 1) sin(πα/2)Ŵ(1 − α).

(21)

All terms in (18) involve points from the same neighbourhood

Ir , and thus using (20) and (21) together with the linearity

of the integral operator, we have that

Var(d jr ) ∼ C 2 j⋆(α−1),

where C is a constant depending on c f , R and α. ⊓⊔
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Fig. 7 Three different interpoint distance samples (time sampling configurations) from Exp(1), χ2
3 and U[0,1] distributions, with associated log2

integrals. The (log2) integrals are approximately normally distributed

Establishing approximate log-linearity of the lifting

integral

This appendix demonstrates the log-linearity of the lifting

integral Ir, jr as a function of the artificial scale ( j⋆ in the

notation of Sect. 4), when the construction we follow is, by

defining the artificial levels as inter-quantile intervals of the

lifting integrals, segmenting at e.g. median, the 75 % per-

centile, the 87.5 % percentile and so on.

In what follows, we assume that the time locations (ti )
N−1
i=0

corresponding to the long-range dependent (LRD) process

{X ti }
N−1
i=0 are generated from a random sampling process.

Recall that initially, the lifting algorithm works by construct-

ing an initial set of ‘integrals’ associated to each observation

(ti , X i ). One way of doing this is to construct intervals having

the endpoints as the midpoints between the initial grid points

(ti )
N−1
i=0 , see Nunes et al. (2006) and Jansen et al. (2009)

for more details. We assume that log2

(

Ir, jr

)

follow a nor-

mal distribution with some mean μ and variance σ 2. This

assumption is realistic considering the additive nature of the

update stage for integrals, and is also backed up by numerical

simulations.

Lemma 1 For simplicity of notation, let I := Ir, jr be the ran-

dom variable defined by the integral associated to the rth

lifted observation, and assume that this was classified in the

j th artificial level based on its size. Then

E(log2(I ) | I ∈ j th artificial level) ≈ j ∗ a + k, (22)

i.e. the lifting integral associated with detail dr, jr is approx-

imately a log-linear function of its artificial level j .

Proof We start by noting that as the cumulative distribution

function of a standard normal distribution, �(·) and log2(·)
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Fig. 8 Three different interpoint distance samples (time sampling configurations) from an Exp(1), χ2
3 and U[0,1] distributions, with associated

log2 integrals, split into artificial levels, j⋆. There is a clear linear relationship between the log2 integrals and the artificial levels

are both non-decreasing functions, the integral classification

using quantiles is equivalent to a classification of log2(I )

using the quantiles of the normal distribution (or, in practice,

the sample quantiles).

Therefore, our problem is to compute the expectation of

a normal random variable, say Z = log2(I ), conditional on

it taking values on an inter-quantile interval of the N (μ, σ 2)

distribution, which we shall denote by (z j−1, z j ]. Here z j =

μ+σ�−1
(

1 − 2− j
)

, reflecting our construction of artificial

levels. Hence this random variable follows a truncated normal

distribution, whose mean is given by

E(Z | Z ∈ (z j−1, z j ])

= μ + σ

{

�

(

z j − μ

σ

)

− �

(

z j−1 − μ

σ

)}−1

×

{

φ

(

z j−1 − μ

σ

)

− φ

(

z j − μ

σ

)}

≈ μ +
σ 2

z j − z j−1

{

1 − φ

(

z j−1 − μ

σ

)−1

φ

(

z j − μ

σ

)

}

using a Taylor expansion of � and �′ = φ

≈ μ +
σ 2

z j − z j−1

(z j − z j−1)(z j + z j−1 − 2μ)

2σ 2

using the expression of φ and ex ≈ 1 + x

≈ 1
2
(z j + z j−1),

where φ(x) denotes, as usual, the standard normal density.

Using a simple interpolation argument along the cumu-

lative distribution function � and the definition z j = μ +

σ�−1
(

1 − 2− j
)

, we further express the above as

E(Z | Z ∈ (z j−1, z j ]) ≈ μ + σ�−1
{

1 − 3 · 2−( j+1)
}

= μ + σ�−1 { f ( j)} , where f ( j) = 1 − 3 · 2−( j+1),
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and we want to show that �−1 ◦ f (·) is a linear function (in

j). This is equivalent to showing that f −1 ◦ �(·) is a linear

function (in zα), where f −1(α) = − log2(3/2−α) for some

α ∈ (0, 1). Using a log(1 + x) ≈ x approximation, together

with the linearity of �(zα) (in zα) over most of its domain,

our result follows. ⊓⊔

We conjecture that a = 1 and back this claim by sim-

ulations, as shown in the following section. This is also in

agreement with the other way of constructing the artificial

levels, as explained under Sect. A.2 in Appendix A.

Empirical demonstration of the log-linearity of Ir, jr

In this section we demonstrate empirical evidence to demon-

strate the log-linearity of the lifting integral. To show breadth

of applicability, we simulate random vectors of length n =

1000 from a number of distributions to represent instances

of sampling interval processes (ti )
N−1
i=0 , for a fixed trajectory

and process {X ti }
N−1
i=1 . More specifically, we simulate a sam-

pling regime from each of (a) a Exp(1); (b) a χ2
3 and (c) a

U[0,1] distribution. We then perform the lifting algorithm

and examine the lifting integrals produced, on a log2 scale.

Figure 7 shows histograms of the LOCAAT integrals log2(I )

for the three different distributions; there is evidence of the

approximate normality of the log-transformed integrals.

Figure 8 shows the relationship between log2(I ) and its

corresponding artificial level j⋆ for the three different dis-

tributions. In all cases, the relationship is strikingly linear

as a function of the artificial level, j⋆; moreover, the rela-

tionships have approximate unit slopes, with the intercepts

varying across the initial distributions.
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