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Abstract 

 

The interaction between components during segregating fluidization of two-solid mixtures is shown 

to be  an intrinsic feature of their mechanism of suspension.  Separate force balances on either 

mixture component lead to assessing the individual contribution of the two solids to the total 

pressure drop. An analytical expression for the interaction force is thus obtained that explains why 

the complete fluidization of the mixture is possible at a velocity lower that the higher umf of the two 

components and how the roles of 'flotsam' and 'jetsam' are attributed to them during the process of 

segregation. 

The theoretical expressions for the initial and final fluidization velocity of a binary mixture provided 

by this more insightful method of analysis are identical to those discussed in previous works and 

validated by a wide variety of experimental results. 

 

1. Introduction and previous work 

 

Component segregation during fluidization of multi-solid beds is considered a practically 

unavoidable phenomenon that often has detrimental effects on the performance of many industrial 
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processes based on fluid-bed technology. Segregating fluidization in beds of two solids has 

therefore been extensively investigated in the last four decades, but in spite of this unceasing 

endeavor the comprehension of its mechanism and its theoretical representation are still 

unsatisfactory. The frequent recourse to empiricism, typical of most literature descriptions of 

segregation, is the obvious consequence of the absence of a convincing theory. Important aspects 

still poorly understood are the mechanism by which the presence of each of the two bed 

components modifies the action of the fluid on the other solid and the nature of the interaction 

between the two particulate species during the fluidization process. 

The existence of an interaction mechanism between the two solids is suggested by experiments, 

which show that the packed-to-fluidized bed transition of two-solid systems is not accomplished at 

a single velocity threshold but along a velocity interval. The characteristic boundaries of this 

interval, shown in Fig.1, are usually referred to as the initial and final fluidization velocity, uif and uff, 

respectively.  On the pressure drop versus gas velocity diagram, uif is located at the point p first 

deviates from the fixed bed trend, whereas uff is the velocity at which the ultimate value of p is 

attained. The pioneering studies of Chen and Keairns [1], Gelperin and Einstein [2] and Vaid and 

Sen Gupta [3] first revealed that fluidization of binary and ternary beds is a process that has place 

gradually. More recently, the dependence of both uif and uff on the main variables which determine 

the fluidization pattern (solid properties, mixture composition and bed geometry) has been 

investigated by Formisani et al. [4-6], who analyzed the behaviour of a large number of two-

component mixtures. These studies have provided experimental evidence that the values of uif and 

uff are located in between the minimum fluidization velocities of the system components. A 

rationale for this behaviour is related to the presence of a mutual interaction between the 

particulate species that constitute the bed: in any binary mixture one of the two solids begins to be 

fluidized at a velocity lower than its umf, so that it appears to benefit from the presence of the other 

component; on the contrary, the suspension process of the latter results hindered, as it ends at a 

velocity higher than its umf. 
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As discussed in this paper, clarifying the nature of this interaction requires undertaking a separate 

analysis of the forces that act on either mixture component. Such an approach is alternative to that 

traditionally followed by many authors [7-13]; in their investigations, the binary mixture subjected to 

fluidization is always regarded as the equivalent of a monosolid system whose particle density and 

size are defined by suitable averages of those of its components. These average parameters are 

then introduced into well-established equations devised for calculating the minimum fluidization 

velocity of monocomponent beds without any theoretical justification. Following this approach, 

quantifying the specific effect of each component on the fluidization behaviour of the mixture 

becomes unfeasible. 

Recently, Formisani et al. [5-6] have developed a unified model of the fluidization behaviour of all 

types of two-solid mixtures.  On showing how the existence of a fluidization velocity interval is 

associated to the progress of segregation, this model provides a fully theoretical equation for 

predicting the initial fluidization velocity of a mixture and uses only one parameter, endowed with 

physical meaning, to calculate its final fluidization velocity. Even if it gives a deeper insight into the 

nature of segregating fluidization, a limitation of the analysis conducted so far is that of being 

based on force balances referred to the binary bed as a whole. A necessary development, 

therefore, seems that presented in the present study, where separate force balances are written for 

either mixture component, a method that elucidates the interaction between the two solids and 

leads to its quantitative evaluation. 

 

2. Theory 

 

2.1. Single Component Force Balances  

 

To interpret the behaviour of the two components during the fluidization process of a 

homogeneous binary mixture, the “separated flow model” of Wallis [14], successfully applied by the 

author to monosolid fluidization, can be used. The essential feature of this approach is that of 
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adopting a quasi-continuum representation of the two-phase system, based on the assumption that 

the forces acting on the different phases are calculated in an element of volume larger than the 

particles. 

Separated force balances on each solid can thus be written as follows: 

  

Solid 1     1 1 1 2 0   s , f s ,sg f f      (1) 

Solid 2     2 2 2 1 0   s , f s ,sg f f      (2) 

 

In these relationships fsi,f represents the force exerted by the fluid on the unit volume of solid i; 

analogously, a term like fs1,s2 indicates the force transferred from solid 2 to the unit volume of 

solid 1. 

As regards the former type of interaction, the total force Fs,f that the fluid exerts on the solids can 

be divided into a pure drag force Fd and a lift force due to the pressure field surrounding the 

particles; Fs,f can therefore be expressed as: 

 

    
 

s, f s d f
dp

F V f V
dz

     (3) 

 

In eqn 3, fd is the pure drag force per unit volume of fluid, Vf, which does not include the pressure 

gradient while Vs is the total volume of the solids.   

The pressure drop in the fluid phase is the sum of two contributions: gravitational head loss and 

friction on the solid surfaces. Accordingly, with reference to the unit volume of fluid, the pressure 

gradient can be written as: 

 

  f d
dp

g f
dz

       (4) 
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Thus, in order to obtain the expression of the interaction force it is necessary to assess the 

contribution of the individual solid components to the “frictional pressure drop” fd. 

 

 

2.2. Drag force on single components 

 

As with other frictional phenomena, fd can be expressed by a relationship that expresses its 

dependence on the kinetic energy of the fluid as well as on system geometry by defining a suitable 

drag coefficient: 

  

21

2
 '

d D f
f

A
f C v

V
       (5) 

 

in it A and Vf are the external surface of the particles and the gas volume in the bed, respectively. 

This formulation has been shown by Wallis [14] to provide a theoretical basis to Carman-Kozeny's 

or Ergun's equation and  is here adapted to the case of a homogeneous bed of two solids; to do 

that, one has to distinguish the contribution of either component to the total pressure drop: 

 

2 1 21

2

 
   

 

'
d D f

f f

A A
f C v

V V
      (6) 

 

With the assumption that component concentrations and bed voidage are uniform throughout the 

bed, the external surface of the two solids can be expressed as follows: 

 

       


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ff











    (7) 
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Substitution of eqns (7) into (6) and definition of a new friction factor CD=3CD’/2  yield: 

 

2 1 2
3

1 2

1
2

 
  

 
d D f

x x
f C u

d d




     (8) 

 

In eqn (8) u is the superficial fluid velocity, related to the interstitial fluid velocity by the expression: 

 


u

v        (9) 

 

As regards the dependence of the friction coefficient CD on Reynolds number, Wallis theory of 

monosolid fluidization makes use of the following definition: 

 

f

ff A/vV
Re




      (10) 

 

It seems therefore appropriated, when dealing with a mixture of two solids, to change the 

geometric factor Vf/A into Vf/(A1+A2), so that neglecting the factor 6 (that only changes the 

numerical value of Re) allows writing 

 

   

1

2

2

1

1

21 1





















d

x

d

xu

AA

vV
Re

f

f

f

ff







  

    (11) 

  

The same author showed that the relationship 

 

Re
CD

90


      
(12) 
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converts eqn (6) into the classical form of Carman-Kozeny; thus, as far as it holds also for a two-

component bed, substitution of eqns (9) and (12) into eqn (8) leads to the following relationship: 

 

 2 1 2
3

1 2

1
180

  
  

 
d f

av

x x
f u

d dd




     

(13) 

 

In eqn (13) dav is the Sauter mean diameter of the particle assembly, defined by the relationship 

 

2

2

1

11

d

x

d

x

dav


     

(14)             

 

so that eqn (13) can also be written as 

 

 2
3 2

1
180


d f

av

f u
d





     (13’) 

 

The meaning of eqn (13) is that the pressure drop to which the gas phase is subjected while 

flowing across the two-component bed is the sum of the contributions of either solid, to be 

calculated separately as: 

 

ௗ݂ǡ௦ଵ ൌ ͳͺͲ ߤ௙ݑ ሺଵିఌሻమఌయ ௗೌೡ  ௫భௗభ
     

(15) 

ௗ݂ǡ௦ଶ ൌ ͳͺͲ ߤ௙ݑ ሺଵିఌሻమఌయ ௗೌೡ  ௫మௗమ
                  

(15’) 

 

Thus, the contribution of each mixture component to the total pressure drop turns up to be 

assessed by the two terms 
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1

1

avx d

d
  and     2

2

avx d

d
   , 

 

which coincide, respectively, with the surface fractions A1/(A1+A2) and A2/(A1+A2) and are therefore 

related to the relative abundance of either component in the binary mixture. 

An analogous result is obtained when Ergun’s equation (or any other relationship of the same kind) 

is used in place of Carman-Kozeny's, the only difference being that the dependence of the friction 

factor on Reynolds number, previously given by eqn (12), is now expressed by the relationship 

 

8750
75

.
Re

CD       (16) 

 

When the friction factor is that provided by eqn (16), the individual contribution of either mixture 

component to the total pressure drop per unit bed height becomes 

 

ௗ݂ǡ௦௜ ൌ ͳͷͲ ߤ௙ݑ ሺଵିఌሻమఌయ ௗೌೡ  ௫೔ௗ೔ ൅ ͳǤ͹ͷ ߩ௙ ݑଶ ሺଵିఌሻఌయ ௗೌೡ  ௫೔ௗ೔
        

(17) 

 

while the total pressure drop is accordingly calculated as 

 

   2
2

3 2 3

1 1
150 1 75

 
 d f f

av av

f u . u
d d

 
 

       

(18) 

 

3. Interaction forces between mixture components 

 

According to what illustrated in the previous section, assessing the contribution of either mixture 

component to the overall pressure drop requires assuming the two component surface fractions as 
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the right partition factors. Consistently, the force that the fluid exchanges with the single solid 

component can be calculated by adapting eqn (3) to the presence of the two mixture components: 

 

    
 

i av
si, f si d f

i

x ddp
F V f V

dz d
    (19) 

 

The force per unit volume of solid i, fsi,f , is: 

 

 1
       

si, f av
si, f d

si i

F ddp
f f

V dz d




   (20) 

 

Substitution of  eqns (4) and (13) into (20) then yields: 

 

   2 3

1
180 1

  
    

 

f av
si, f f

iav

u d
f g

dd

 
  


  (21) 

 

Eqn (21) is then introduced into eqns (1) and (2) to obtain: 

 

Solid 1   
   1 1 22 3

1

1
180 1 0

  
       

 

f av
f s ,s

av

u d
g g f

dd

 
   


  (22) 

Solid 2   
    1

2 1 22 3
2 2

1
180 1 0

  
       

 

f av
f s ,s

av

u d x
g g f

d xd

 
   


  (23) 

 

where the mutual force exchange between the two solids has also been considered: 

 

212121 xfxf s,ss,s        (24) 

Eqns (22) and (23) can be solved to obtain the expressions of the two unknowns u and fs1,s2: 
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  

 







1180

32
2211

f

avf gd
u

xx
    (25) 

          









1
2211121 1

d

d
ggf av

ffs,s xx      (26) 

 

Finally, the total pressure drop per unit bed height can be calculated from eqns (4), (13) and (25) 

as: 

   xxfg
p

dz

dp
22111 




    (27) 

In the previous analysis, the interaction force expressed by eqn (26) has been derived under the 

assumption of viscous regime. However, an identical result can be obtained in the inertial regime. 

To this purpose, eqn (18) is used instead of eqn (13) in the component force balances, yielding: 

 

Solid 1  
   

2

1 1 22 3 3
1

1
150 1 75 1 0f f av

f s ,s
av av

u u d
g g . f

dd d

 
   

 

                
 (28) 

Solid 2  
   

2
1

2 1 22 3 3
2 2

1
150 1 75 1 0f f av

f s ,s
av av

u u d x
g g . f

d xd d

 
   

 

                
 (29) 

 

Multiplying eqns (28) and (29) by x1 and x2, respectively, and adding them together gives an 

equation for the calculation of the equilibrium velocity u at high Reynolds numbers: 

  
   

2

1 21 22 3 3

1
150 1 75f f

f
av av

u u
. gx x

d d

 
  

 

           (30) 

Combination of eqn (30) with eqn (28) gives the same result for the interaction force as in the case 

of the viscous regime, i.e.: 
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          









1
2211121 1

d

d
ggf av

ffs,s xx      (31) 

 

4. Results and discussion 

 

Equations (25)-(27) constitute the basis of a fundamental model of binary fluidization developed as 

a modified version of that in use for monosolid systems. Their analytical form illustrates how the 

force equilibrium typical of the incipient fluidized state is influenced by mixture composition and bed 

voidage. However, as these two variables cease to be uniform throughout the bed as soon as 

particle fluidization begins, the velocity calculated by eqn (25) is but the "initial fluidization velocity" 

uif of the homogeneous two-solid mixture. 

Right after the commencement of the phenomenon, segregation begins to alter the axial 

distribution of the two components as well as the local voidage and the mutual interaction force. 

This leads to the formation of stratified layers in which the volume fraction of one of the two solids 

grows higher than its average value in the whole system while that of the other becomes lower. 

With the variation of İ and fs1,s2, the typical issue is that at uif the formation of a bubbling layer 

occurs together with that of a defluidized stratum. A velocity increase is then needed to restore the 

fluidization equilibrium in a larger portion of the bed until, at uff, all the mixture is suspended. 

However, although eqns (21)-(23) should hold all over the velocity interval of fluidization, 

calculation of uff is impeded by the fact that x1, x2,  and other parameters, whose local values are 

determined by the extent of segregation past uif, are no more uniform along the bed height. 

In spite of these limitations, imposed by the persisting difficulty of relating the progress of 

segregation to that of fluidization, the theoretical results obtained apparently give a deeper insight 

into several aspects of the dynamics of multicomponent fluidization. 

 

4.1 Effects of the interaction between components on the mechanism of binary fluidization  
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The method of analysis adopted in this work, which consists of writing separate force balances on 

the individual mixture components, has been shown to lead to the theoretical expression of the 

initial fluidization velocity embodied by eqn (25). This relationship is formally identical to that 

obtained by a different approach and validated by experimental results relevant to a large number 

of two-solid systems [4-6], so that no further check of its accuracy (easily recognizable in the 

figures of this section) is here required. More interesting is that the present investigation provides a 

better understanding of the mechanism by which in any mixture of two solids one of the two 

components enters the suspended state at a velocity higher than its umf, whereas the other 

achieves fluidization at uff, a velocity however lower than its umf. These circumstances, first 

highlighted by Chen and Keairns [1] and Vaid and Sen-Gupta [3], find now a convincing 

explanation, so as to allow a quantitative interpretation. 

According to what sketched in Fig.2, where component 1 is assumed to be that having the lower 

umf (sometimes indicated as the "fluidized" component), the force fs2,s1 arises when the gas drag 

and the action of the pressure field acting on solid 1 exceed its weight, so that the unbalanced 

excess of force is transferred to the other component. In opposition to that, component 2 (i.e. the 

"packed" one), whose weight is not yet balanced by the combined action of the fluid drag and the 

pressure field, transfers to solid 1 an additional force directed downwards, which hinders the 

suspension of this component. Given the expression of the interaction force provided by eqn (26), 

fs1,s2 (i.e. the force exerted by solid 2 on solid 1) results positive when directed upwards. 

Comparing the variation of the interaction force between components with that of the initial 

fluidization velocity of the binary mixture demonstrates the key-role played by this force on the 

overall system behaviour. To illustrate  the properties of more and more complicated systems, 

several couples of diagrams will thus be considered; in each of them the experimental trend of 

uif-umf,1 versus x1 as well as the theoretical curve drawn from eqn (25) are compared with that of 

-fs1,s2. The velocity difference taken into account represents the amount by which fluidization of 

component 1 (i.e. that having the lower umf) is delayed when it finds itself uniformly mixed with the 

solid 2 in a given proportion. On the other hand, fs1,s2 represents the force exerted on solid 1 by 
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solid 2; this force is in almost all cases directed downwards so that changing its sign is just a way 

of highlighting the similarity between the variables under consideration. 

The properties of the experimental solids which form the systems relevant to Figs 2-6 are reported 

in Table 1. The dependence of the voidage of the homogeneous mixtures on composition is 

provided elsewhere [5-6, 15]. Fig.3 reports the case of a mixture whose components differ only in 

density, their average diameter being the same. For systems of this kind, substitution of the 

condition dav=d1 into eqn (26) yields 

 

  gxf s,s 22121           (32) 

 

so that the curve of fs1,s2 reverts to the simple form of a straight line, just like that of uif-umf,1. 

The other simple case is that of a binary bed made of two cuts of the same solid, so that 1=2=. 

If so, eqn (26) becomes after some algebraic manipulations: 

  gx
dd

df avfss 2

12

2,1

11








      (33) 

 

The variation of fs1,s2 with x1 is compared with that of uif-umf,1 in Fig.4. In order to clarify the effect of 

the voidage variation occurring in the bed at varying composition, two curves have been reported 

together with the experimental data of the velocity difference: the solid one is the plot of eqn (25), 

which fully accounts for the dependence of  on x1 and therefore fits the results rather accurately; 

the dashed curve, instead, is fictitious in that at all values of x1 bed voidage is taken equal to 1 (i.e. 

to that of component 1 alone). Keeping  unchanged while x1 varies causes the trend of uif-umf,1 

versus x1 to be very similar to that of -fs1,s2. The reason is that the dependence of the initial 

fluidization velocity of the mixture on composition, expressed by eqn (25), embeds two distinct 

phenomena: one is the force associated to component interaction, which delays the beginning of 

bed suspension, while the other is the increase of the interstitial gas velocity that corresponds to 

the voidage reduction typical of the presence of two solids of different size in the same bed. For 
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this reason, even in the absence of any interaction between the two solids, any voidage reduction 

ends up with increasing the interstitial gas velocity, lowering by this way the superficial velocity at 

which the fluidization process begins. So, disregarding the dependence of  on mixture 

composition is the way of highlighting the link between the component interaction force and the 

velocity at which the fluidization process would start without the added effect of the drag increase 

due to the variation of the interstitial gas velocity. 

Once that the effects of density and size diversity between mixture components have been 

addressed, the same analysis can be extended to more complicated cases. To this regard, Figs 5 

and 6 illustrate the behaviour of two mixtures constituted by solids differing both in density and 

size. The two beds have in common one of the two components (CE376) but the choice of the 

other solid is aimed to induce a substantial difference in system behaviour. In the GB271-CE376 

mixture the denser solid is also the coarser, so that the difference of density between components 

adds itself to the difference of size in determining the tendency to segregation. On the contrary,  in 

SS170-CE376 the denser species is the smaller, in a way that the difference of density acts in 

opposition to the difference of size. 

As already done for the mixture GB172-GB499, two prediction curves are reported in the velocity 

diagrams, to isolate the effect of voidage variation on the component interaction force. It can be 

observed, however, that in the case of the mixture GB271-CE376, whose size ratio of 1.39 is not 

too high, the variation of the internal gas velocity is not too significant, so that the two trends are 

rather close to each other. As regards instead the fluidization properties of the binary bed 

SS170-CE376, the main issue is that this mixture enters the suspended state through the 

mechanism of "bottom fluidization", as the components with the lower umf achieves fluidization in 

the lower region of the column. The difference between "top" and "bottom fluidization", discussed 

in detail in a previous work [6], is here just sketched in Fig.7: in the former case, the 

commencement of fluidization occurs in the upper region of the bed, with the formation on top of it 

of a fluidized layer of the solid whose umf is lower; in the latter, suspension and bubbling of the 
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"fluidized" component are first observed in the bottom region of the bed while a packed layer of the 

other solid forms on top. 

Consistently with this experimental finding, the curve of -fs1,s2 results inverted with respect of that of 

uif-umf,1, a circumstance that reveals how the force exerted on solid 1 by solid 2 is in this case 

directed upwards. 

For both the types of mixture taken into consideration, the close similarity between the curves of 

uif-umf,1 and those of -fs1,s2 is evident and the role played by the component interaction force in 

determining the incipient suspension of the binary bed finds a new confirmation. 

Even more significant is the case of a mixture like GB250-OP1544, referred to in Fig.8. This 

system exemplifies the behaviour of mixtures for which the mechanism of fluidization may change 

along with mixture composition, skipping from "top" to "bottom fluidization". In Fig.6 this change of 

phenomenology is signalled by the intersection of the curve of -fs1,s2 with the x1 axis. Olive pits are 

the only non-spherical particles used in this work, so that application of model equations to this 

mixture requires calculating its Sauter mean diameter from the following modified form of eqn (14): 
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Once more, the peculiar dependence on bed composition of the interaction force at work between 

the two components within the particulate bulk provides the explanation for a rather surprising 

property of the binary bed, whose fluidization process begins at its free surface as far as the value 

of x1 is lower than about 0.3, or at its bottom when the volume fraction of the same component 

exceeds this limit. 

Altogether, what observed with the various categories of mixtures investigated in this work allows 

stating that the mechanism by which the start of the fluidization process occurs is apparently 

regulated by the force exerted on the "fluidized" component by the "packed" one.  

 

4.2 A criterion for attributing the roles of flotsam and jetsam during component segregation 
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Equation (26) allows also deriving a criterion to establish the segregation direction of the two 

components of the mixture. If the right-hand side of the relationship is positive, component 2 will 

exert an upward thrust on component 1, a force that will contribute to balance out its weight. This 

also means that component 1 will tend to sink, while component 2 will segregate in the upper 

region of the bed. According to the notation first introduced by Rowe et al. [16], the first component 

is called "jetsam", while the other is referred to as "flotsam". Thus, Eqn (26) provides a criterion to 

identify the flotsam as the component which satisfies the inequality: 

 

 
   

d
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f 







1      (35) 

 

Equation (35) was first obtained by Di Maio et al. [17-18] who followed a different approach and 

validated  this criterion by comparing its predictions with a large number of experimental data taken 

from the literature.  

 

Conclusions 

 

The theoretical analysis proposed in this work has shown that writing separate force balances for 

the fluid and solid constituents of a binary-solid system allows the interaction force between the 

two solids to emerge. Although referred to the case of well-mixed binary beds, this interaction is 

also present when the component concentration profile within the bed is not homogeneous. The 

model proposed, validated by results relevant to a wide variety of mixtures, is consistent with 

previous achievements and explains why the initial and the final fluidization velocities of a two-solid 

bed fall within the interval bounded by the minimum fluidization velocities of mixture components. 

Quantification of the solid-solid interaction requires specifying the drag force exerted by the 

fluidizing gas on the individual components of the binary bed; to this purpose, a theoretical method 
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is provided to evaluate the contribution of each solid to the overall pressure drop. The model also 

indicates the initial direction of segregation, in that it proves capable to attribute the roles of 

"flotsam" and "jetsam" to the components of the mixture. 

 

Nomenclature 

A     particle surface, cm2 

d   particle diameter, cm 

dav   Sauter mean diameter, cm 

dv   volume particle diameter (in table 1), m 

CD, C'D  friction factor, - 

fd  drag force per unit volume of fluid, dyne/cm3 

ff,s1, ff,s2 force per unit volume exerted on the fluid by solid 1, by solid 2, dyne/cm3  

fs1,f, fs1,s2 force per unit volume exerted on solid 1 by the fluid, by solid 2, dyne/cm3  

fs2,f, fs2,s1 force per unit volume exerted on solid 2 by the fluid, by solid 1, dyne/cm3  

Fd  total drag force, dyne 

Fs,f  total force exerted on the solids by the fluid, dyne 

g  gravity acceleration, cm/s2  

H   bed height, cm 

p, p  pressure, pressure drop, dyne/cm2 

Re  Reynolds number= f u dav/[f (1-)] , - 

uif, uff   initial, final fluidization velocity, cm/s 

umf   minimum fluidization velocity, cm/s 

v  interstitial velocity, cm/s 

Vf, Vs  volume of the fluid, of the solid phase, cm3 

x   volume fraction of the solid component, - 

z  vertical height, cm 
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Greek symbols 

  voidage, - 

  particle sphericity, - 

f    fluid viscosity, g/cm s 

   solid density, g/cm3 

av   average density of the solid mixture (= 1x1+2x2), g/cm3 

f   fluid density, g/cm3 

 

Subscripts 

1  of solid 1, of the component with the lower umf 

2  of solid 2, of the component with the higher umf 
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Figure 1. Boundaries of the fluidization velocity interval. 
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Figure 2. The interaction between the two solids of a well-mixed binary bed. 
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Figure 3. The relationship between onset of fluidization and interaction force between components at 

varying mixture composition. Solids of different density: GB593-CE605. 
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Figure 4.  The relationship between onset of fluidization and interaction force between components at 

varying mixture composition. Solids of different size: GB172-GB499. 
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Figure 5.  The relationship between onset of fluidization and interaction force between components at 

varying mixture composition. DŝƐƐŝŵŝůĂƌ ƐŽůŝĚƐ ƵŶĚĞƌŐŽŝŶŐ ͞ƚŽƉ ĨůƵŝĚŝǌĂƚŝŽŶ͗͟ GBϮϳϭ-CE376. 
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Figure 6.  The relationship between onset of fluidization and interaction force between components at 

varying mixture composition. DŝƐƐŝŵŝůĂƌ ƐŽůŝĚƐ ƵŶĚĞƌŐŽŝŶŐ ͞ďŽƚƚŽŵ ĨůƵŝĚŝǌĂƚŝŽŶ͗͟ ““ϭϳϬ-CE376. 
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Figure 7. Solid layers ĨŽƌŵĞĚ ďǇ ƚŚĞ ͞ƚŽƉ͟ ĂŶĚ ƚŚĞ ͞ďŽƚƚŽŵ ĨůƵŝĚŝǌĂƚŝŽŶ͟ ŵĞĐŚĂŶŝƐŵƐ͘ 
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Figure 8. The relationship between onset of fluidization and interaction force between components at 

varying mixture composition. DŝƐƐŝŵŝůĂƌ ƐŽůŝĚƐ ƐǁŝƚĐŚŝŶŐ ĨƌŽŵ ͞ƚŽƉ͟ ƚŽ ͞ďŽƚƚŽŵ ĨůƵŝĚŝǌĂƚŝŽŶ͗͟ 
GB250-OP1544. 
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Table 1: Properties of the experimental solids. 

Solid 
Density 

[g/cm3] 

Sieve size   

΀ʅŵ΁ 

Sauter 

diameter 

΀ʅŵ΁ 

GĞůĚĂƌƚ͛Ɛ 
group 

Minimum 

fluidization 

velocity    

[cm/s] 

Remf 

[-] 

Glass beads (GB) 2.48 150-180 172 B 2.80 0.32 

  200-300 250 B 6.20 1.04 

  200-300 271 B 6.50 1.18 

  400-600 499 B 20.2 6.78 

  500-710 593 B 30.8 12.8 

Ceramic spheres (CE) 3.76 300-400 376 B 16.7 4.22 

  500-710 605 B 43.3 17.6 

Steel shots (SS) 7.60 150-200 170 B 6.90 0.79 

Olive pits (OP) 1.38 1400-2000 1540* D 66.1 68.4 

    

 * (=0.80; dv=1930 m) 

 
 


