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ABSTRACT  

The prediction of the minimum fluidization velocity of beds of Geldart’s group B particles confined 

in a packed bed of coarse spheres can be achieved by extending to this peculiar type of systems 

the theory developed for modelling the behaviour of segregating beds of simultaneously fluidized 

solids. 

The approach is based on separate force balances on the fluid and the fine solids, capable to 

account for the peculiar nature of solid-solid interaction in a confined fluidized bed. Its validation is  

fulfilled by an extended investigation conducted in two columns (5 and 10 cm OD) packed with a 

fixed bed of 4.1 mm lead shots or 11 mm  glass beads. The effect of particle size on the fluidization 

regime is investigated by comparing the results provided by experiments in which various cuts of 

glass ballotini, ranging from 100 to nearly 600 µm, are fluidized in two packings of fixed spheres; 

possible differences of behaviour due to particle density are analysed by series of experiments 

employing particles of ceramics, zirconium oxide, steel and bronze of the same diameter. 

The results obtained confirm the effectiveness of the approach followed, in which an important role 

is played by the indirect interaction between the two solid phases. 
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1. INTRODUCTION  

Fluidization of multicomponent beds has been employed in a large number of processes. In most 

cases the different solid species are brought into the fluidized state simultaneously, such as in 

combustion or gasification processes. A distinctive feature of these systems is the often 

unavoidable tendency of the solid components to segregate, giving rise to a non-homogeneous 

internal composition of the bed [1-5]. It has recently been shown that a key-role is played by 

solid-solid interactions in the mechanisms of binary fluidization [6]. In that work, assessing the 

component contribution to the total pressure drop allowed writing separate force balances on each 

component of the multiphase system. By this way, the authors derived an expression for the 

interaction force and confirmed a criterion, available from the literature [7], capable of providing the 

initial segregation direction of each solid in a well-mixed bed upon incipient fluidization. The 

authors also argued that the presence of solid-solid interactions explains the gradual nature of 

binary fluidization, which is accomplished along a fluidization velocity interval [8, 9].  

In other cases only one solid is to be fluidized, while the other component remains packed during 

the whole process. This system, often referred to as “packed-fluidized bed” or “confined fluidized 

bed” [10], has been raising an increasing interest as its fluid-solid contact mode is particularly 

suitable for operations in which maximization of the conversion of a gaseous reactant is crucial                    

[11-13]. That is due to the ability of these fluidized systems to prevent the formation of bubbles, a 

route by which part of the gas feed by-passes the contact with the solid phase, whether it is 

another reactant or a catalyst. 

A confined fluidized bed can be considered as a particular type of two-component mixture of solids, 

in which the interstitial network provided by the packed solid constitutes the confining environment 

in which the finer component achieves the suspended state and then expands without the 

formation of bubbles (Fig. 1). This fluidization technique seems likely to provide a very efficient 



fluid-solid contact mode, suitable for high conversion of gaseous reactants, nearly complete 

adsorption of specific components of the fluidizing stream, filtration or heat recovery from 

dust-laden gases [14-22]. Contact efficiency of operations of this kind improves over a broad 

velocity range without the handling problems orderly associated to the use of fine powders. That is 

even more true for applications in which  the solid of interest (for instance a sorbent or a catalyst) is 

a powder obtained from a synthesis, then granulated in nearly spherical pellets of larger size.  

In a recent work [23], equations were derived and validated to predict the relationship between the 

degree of expansion of the fine solid and the operating fluidization velocity, namely the key-feature 

of the technique. However, the authors did not address the prediction of the minimum fluidization 

velocity of solids under confined conditions. Modelling the transition to the fluidized state of these 

systems will therefore be the objective of the present analysis, now made possible by the 

availability of a general theoretical model of the fluidization behaviour of two-solid systems. To this 

regard, the theory developed for segregating beds of simultaneously fluidized solids, that makes 

use of separate force balances for each of the phases of interest, will be extended to the 

homogeneous fluidization of Geldart’s group B particles in a packed bed of coarse spheres. 

 

2. THEORY 

2.1 Separate force balances 

Following what suggested by Wallis [24], separate force balances can be written for each 

component of the multiphase system. In the case of one-dimensional steady-state flow, for a binary 

solid bed the form of these equations is: 

0 ii fb
dz

dP
                                (1) 

where bi’s are the body forces per unit volume on the ith component and fi’s are the average 

surface forces per unit volume not contained in the pressure gradient.  In a previous work [6], the 

term fi  in Eq. (1), written for the two solid species, comprised the pure drag force exerted by the 

fluid as well as the interaction forces between the two solids. For a bed of two 

simultaneously-fluidized solids, the force exerted by the packed component on the fluidized one 

(i.e. that with lower umf) delays its suspension. In other words,  this force is responsible for the fact 



that the initial fluidization velocity of a well-mixed two-solid bed is generally larger than umf of its 

“fluidized” component. However, the presence of this interaction requires that both solids can be 

suspended at the same time, i.e. that they have comparable minimum fluidization velocities; this 

happens when none of the two species forms an independent structure, i.e. a structure in which 

any pair of particles of either component is virtually connected by a path through the contact points 

between particles of the same kind. 

In a packed-fluidized bed the coarse particles form an independent structure and their weight is 

therefore directly discharged on the distributor rather than being exerted on the other solid. As far 

as the particle size ratio dp/df  is not lower than about 10 [20], the interstitial voids of this structure 

provide the space in which the fine particles can move freely. Thus, in this case the interaction 

force in Eq. (1) is null. In light of these considerations, Eq. (1) can be particularized for the fluid 

phase and the two solid components; once that the finer particles are fluidized and homogeneously 

suspended such relationships are written as: 
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where dav is the Sauter mean diameter [8, 9], defined as: 
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so that  
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In Eq (4) fd is the unbalanced weight of the coarse particles (the packing) which is discharged on 

the distributor. In the force balances for the two solids, the drag force on each of them has been  

obtained from the Carman-Kozeny equation and partitioned according to their respective surface 

fractions [6]. 

  

2.2 Minimum fluidization velocity in confined conditions 

As a result of having disregarded the interaction term between the two solids, the system of 

Eqs (2) and (3) can be solved separately. However, indirectly the two solids do interact in that each 

of them modifies the fluid flow field in which the other one is immersed. Solution of Eqs (2) and (3) 

gives the expressions of the gas velocity and pressure gradient: 
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where u can be regarded as the minimum fluidization velocity in confined conditions, i.e. u=umfc. 

Substitution of Eqs (10) and (11) into Eq. (4) provides fd which is, however, of limited interest.  At 

large Reynolds numbers, employing the Ergun’s relationship [25] for the frictional pressure drop 

leads to the following equation for the fluidization velocity: 
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Eqs (10) and (12) reduce to the conventional equation for the minimum fluidization velocity when 

dav=df. Also, when dp >>df  and considering that 

  pfx  1              (13) 

by combination of Eq. (6), Eq. (7), Eq. (11) reduces to 
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Eq. (14) gives the pressure gradient in a conventional fluidized bed when the column 

cross-sectional area is Ap.  

 

2.3 Pressure drop  

Calculating the pressure drop across the confined bed is not straightforward. Intuitively, one would 

multiply the pressure gradient from Eq. (11) or Eq. (14) by the height of the packed-fluidized bed. 

However, this pressure drop must be equal to that across the packing alone when xf=0, a condition 

not fulfilled by these relationships. Indeed, there is a crucial difference between a mixture of two 

solids that directly interact during the process of fluidization and a confined fluidized bed: in the 

former case any change of xf leaves practically unchanged the height by which the pressure 

gradient is multiplied to obtain the total pressure drop;  with the latter system, instead, the 

decrease of xf is accompanied by the parallel reduction down to zero of the height of the finer 

component hosted in the voids of the coarser one, so that integration of the pressure gradient to 

obtain the total pressure drop becomes impossible.  

 Altogether this inconsistency stems from the non-interacting nature of the packed spheres, i.e. 

from the fact that fine particles can freely move within their interstitial voids. However, the absence 

of a direct interaction between the two components of the confined fluidized bed makes it possible 

to obtain a solution by considering only the force balances on the fluid and the fine solid. However, 

disregarding the force balance on the packed particles produces a lack of information on the 

geometry of the system.  In this regard, Eq. (14) suggests that the collection of fine particles can be 

considered as a fluidized bed in a column of reduced cross-sectional area Ap and with an internal 

voidage equal to . In these conditions, preserving the total fine mass requires the equivalent 

height of this bed to be: 
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and the contribution of the bed of fines to the dynamic pressure drop (i.e. devoid of the fluid 

hydrostatic head) can be calculated as: 
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The contribution of the packing  to the pressure drop can be obtained by eliminating the volumetric 

effect of the fine particles. In other words, the force balances on the fluid and the coarse solid, 

namely  Eqs (2) and (4), can be rewritten with =p, obtaining: 
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In light of Eq. (16), the dynamic pressure drop due to dissipation on the packing particles can be 

expressed as: 

 
 

fc
p

p

av

g
p H

d

u
P

3

2

2

1
180


 

      (19) 

Thus, the total pressure drop is obtained by adding Eqs. (16) and (19) and the hydrostatic head of 

the fluid, yielding:  
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At a first inspection, Eq. (20) appears to be inconsistent with the equation for the pressure drop in a 

binary-solid bed of non-interacting particles, derived elsewhere [6]. In reality, when two solid 

species are simultaneously fluidized, xf becomes the volume fraction of the finer of the two 

non-interacting solids. In absence of packing, both xf and p are therefore equal to 1 and Eq. (20) 

reduces to: 
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where dav is in this case the average Sauter diameter of the two non-interacting solids.  



In order to easily compare these results with what obtained with mixtures of non-interacting solids 

[2], the derivation of the previous expressions has resorted to the Carman-Kozeny’s equation. 

However, the presence of the coarse packing spheres requires Ergun’s equation to be used. In this 

case, Eq. (20) becomes: 
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As shown later on in this paper, Eq. (22) is used to predict the pressure drop in a packed-fluidized 

bed also beyond the onset of fluidization of the fine particles,  given that the overall voidage of the 

packed-fluidized bed is lower than p.  The values of  at u>umfc were obtained by direct reading of 

the packed-fluidized bed height. 

 

3. EXPERIMENTAL 

The experiments were carried out in two different columns: the smaller of the two has an internal 

diameter of  5 cm and a packing made of lead spheres with a diameter of 4.1 mm; the larger one, 

0.10 m ID, hosted a bed of glass spheres of 11 mm. In both cases the packing voidage was equal 

to 0.38. A high pressure drop porous plate was used as gas distributor. The fine particle bed was 

fluidized by air, whose flow rates were regulated by a set of rotameters covering the range 0-2600 

Nl/h. The total pressure drop across the confined particle bed was measured by a U-tube water 

manometer.  

Several cuts of glass ballotini, with size varying from 100 to about 600 µm were fluidized in the 

confined condition. Other spherical solids were also used, namely ceramic, zirconium oxide, steel 

and bronze; for all of them the cuts considered were 200-250 µm and 250-300  µm. Table 1 reports 

the properties of the experimental solids.  

A weighed amount of fine spheres was poured onto the column within the voids of the packing to 

form a packed-fluidized bed with an aspect ratio Hfc/D never smaller than 2, a condition that 

ensures repeatability of the measurements of the minimum fluidization velocity [23]. Furthermore, 

the height of the bed is measured after a fluidization-defluidization cycle, in order to obtain a 



repeatable initial state. Table 1 reports also the ratio between the particle diameter of the fine 

solids and the equivalent hydraulic diameter of the void network of the packed bed defined as 

  p
p

p
h dd






13

2
      (23) 

For the lead and glass spheres used to form the packing in the two different columns, dh results 

equal to 0.168 and 0.453 cm respectively. The “relative voidage” fc (i.e. the voidage that the fine 

bed would have in a column of section Ap), which can be compared with the bed voidage f in a 

conventional fluidization column, has been determined as the ratio between the absolute voidage 

defined by Eq. (9))and that of the packing, p. This comparison is illustrated in Fig. 2, at varying 

size ratio df/dh (for the sake of clarity only the data relevant to glass ballotini are reported). It is 

noticed that for a given size of the packed spheres the increase of df leads to a more permeable 

particle matrix, as a result of the growing difficulty of filling the packed bed voids with the finer 

particles. At the same time, it is found that solids of different density give place to the same relative 

voidage (see Table 1). An exception is provided by ceramic spheres, apparently affected by 

electrostatic phenomena during expansion. 

Before to apply the model previously illustrated to the experimental solids, values of the relative 

voidage for all solids have been calculated as a function of df/dh by the following correlation 

(obtained by experimental data regression and shown in Fig. 2)  

38.056.024.0
2




















h

f

h

f
fc d

d

d

d
     (24) 

and the relevant values have also been included in Table 1. 

 

4. RESULTS AND DISCUSSION 

Prior to experiments on confined fluidized beds, the pressure drop across the fixed packing alone 

has been measured. For both types of coarse materials used, i.e. lead spheres and glass ballotini, 

Ergun equation gives accurate predictions of P, as shown by Fig. 3. Such a verification makes it 

possible to calculate Pep after measuring the height of the confined bed. This value is then 



subtracted to the experimental value of Ptot, in a way that the pressure drop across the confined 

fluidized bed Pconf (see again Fig. 1) is evaluated as 

eptotconf PPP                                                            (25) 

Thus, the diagrams of Fig. 4 report the trend of the pressure drop across the confined bed (Pconf) 

and that of the voidage  versus the superficial gas velocity. 

Data of Fig. 4(a) were obtained in the 5 cm column packed with lead spheres, with GB136 m and 

BR229 m as confined fluidized particles. Although log-log  diagrams do not illustrate that clearly, 

a different behaviour is observed in the particulate fluidization of the two solids: bronze particles 

exhibit more regular homogeneous expansion, which starts at a definite value of umfc; the voidage 

variation follows a unique power law and the corresponding pressure drop is described by Ergun's 

equation, in the form of Eq. (22). On the other hand, glass ballotini do not show an equally sharp 

transition to homogeneous fluidization. Moreover, their expansion follows two distinct trends: at 

relatively low velocity the pressure drop tends to remain constant like in conventional fluidization, 

whereas a monotonic increase is observed at higher velocities.  

Data of Fig. 4(b) are relevant to fluidization of GB 100 m  in the 5 cm column and to that of GB 

319m in the 10 cm column; their behaviour is fully similar to that of GB 136 m described above. 

For these two systems, dh results equal to 1.68 and 4.53 mm, respectively, but the corresponding 

df/dh ratios are very close. In more general terms, it can be stated that solids for which the ratio 

df/dh is lower than about 0.1 display an anomalous regime of homogeneous expansion. This is the 

case of the three finest cuts of GB in the 5 cm column and of the two finest cuts in the 10 cm 

column. A possible interpretation of this finding is that in their fixed state small particles can 

penetrate the voids of the packing more deeply than bigger ones, up to the region around the 

contact points between the coarse spheres. It may be thought, therefore, that at relatively low 

velocities the amount of particles involved in the expansion process is somewhat limited and that 

higher velocities are required to mobilize the whole mass of fines. 

Finally, inspection of Fig. 4(c), which reports results relevant to solids of noticeably different density 

(2480 kg/m3 for glass ballotini and 6150 kg/m3 for spheres of zirconium oxide), shows that for 



solids of comparable size neither the trend of the pressure drop variation nor that of the bed 

expansion is affected by the density variation. 

To illustrate the dependence of the minimum fluidization velocity of the confined bed on particle 

diameter, Fig. 5 compares data of umfc of glass ballotini with those of conventional umf. It may be 

observed that the transition to the fluidized state of the confined bed occurs at lower velocities, so 

that umfc is at least half the value of umf. At the same time, the dependence of the minimum 

fluidization velocity of the confined bed on particle density keeps on being linear, as demonstrated 

by Fig. 6. 

The minimum fluidization velocities of the fine solids in the confined condition predicted by Eq.(12) 

are reported in the last column of Table 1 and then compared with the experimental values of umfc 

in Fig. 7. The error is generally lower than 15% while the maximum divergence is about 20%. 

Altogether, in spite of some deviations, the model is in good agreement with the experiments over 

a wide range of conditions.  

Equation (22) has also been used to predict the variation of the pressure drop with gas velocity. To 

this regard, Fig. 8 compares the experimental values of Pconf with its predictions. The three 

systems referred to in these plots are an example of how a satisfactory agreement between 

experimental data and model predictions is normally obtained. It may also be noticed that this 

agreement is not impeded by the simplification inherent in using the Ergun’s equation at high solid 

fractions, as it is generally accepted that a slightly different dependence on voidage should be 

considered at values significantly far from 0.6 [26]. Nevertheless, the comparison between model 

predictions and experimental data demonstrates that the theory based on separate force balances 

succeeds in describing the fluidization process in a confined environment. 

In this way this study extends to confined fluidized beds the approach originally proposed for 

two-solid mixtures whose components undergo fluidization simultaneously [6]. With both categories 

of systems the role played by solid-solid interaction in determining  the mechanism of fluidization is 

crucial, although the nature of this interaction is not the same. In a confined environment the 

presence of the packing modifies the fluid flow and, indirectly, the drag force exerted on the fine 

solids.  On the other hand, when mixtures of solids with comparable values of umf  are fluidized, an 



additional force is directly exchanged between the two phases. The approach followed in this study 

proves therefore capable of identifying the forces at work during the process and sheds some light 

on its essential features. 

 

CONCLUSIONS 

 

The validity of the novel theoretical approach followed in this paper, based on writing separate 

force balances on the different phases of a confined fluidized bed, has been established by 

comparison of its predictions with a large number of experimental data. Over a wide range of 

conditions, including the variation of density and size of the fluidized particles as well as that of the 

diameter of the packed spheres and of the fluidization column, the model proposed calculates with 

good accuracy the pressure drop across the bed at varying velocity both in the fixed and in the 

suspended state. From it, the minimum fluidization velocity of the fine particles in the voids of the 

coarser packing is predicted with a satisfactoy degree of precision 

 The results obtained extend the range of application of a model originating from the analysis of 

multicomponent fluidization and provide a firm basis to representation of the phenomenology of 

confined fluidization.  

 

  



NOMENCLATURE 

 

A column cross-sectional area, cm2  

bi the body forces per unit volume on the ith component, N/m3 

D column internal diameter, cm 

dav Sauter mean diameter, m   

df fine solid diameter,  m  

dh hydraulic diameter of the voids , mm  

dp diameter of the packed solid, mm   

fd drag force per unit volume of fluid, N/m3 

fi the average surface forces per unit volume on the ith component, N/m3 

g gravity acceleration, m/s2  

Hfc confined bed height, cm 

Hf
eq equivalent bed height, cm  

Hp packed bed height, cm 

mf/p mass of the fine /packed solid, kg  

P pressure, Pa  

u superficial gas velocity, cm/s 

umf minimum fluidization velocity of the conventional bed, cm/s  

umfc minimum fluidization velocity of the confined bed, cm/s 

z vertical distance above the distributor, cm 

xf/p volume fraction of the fine/packed component in the solid mass, - 

 

Greek symbols 

f/p  volume fraction of the fine /packed solid, - 

Pconf  pressure drop in the confined system, Pa 

Pep pressure drop in the empty packing, Pa 

Ptot  pressure drop in the whole system, Pa 

  voidage of the packed-fluidized bed, - 



f  voidage of the fine solid in a conventional bed, - 

fc  voidage of the equivalent conventional bed /p, - 

p  voidage of the packed bed, - 

g  gas viscosity, (kg/m s) 

f/p  density of the fine /packed solid, kg/m3 

g  gas density, kg/m3 

 

Subscripts 

g  of the gas  

f  of the fine solid 

p  of the packed solid 
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Fig.1 -  Schematic structure of a packed fluidized bed. 

  



 

Fig.2 -  Comparison between the trend of the relative voidage fc versus df/dh and that the 
conventional bed voidage f (full symbols are GB solids investigated in the 10 cm OD 

column). 

  



 

Fig.3 -  Prediction of the pressure drop across the empty packings by Ergun equation. 

  



 

Fig.4 -  Typical experimental variation of the pressure drop and voidage with fluidization velocity. 



 

Fig.5 - Comparison between the minimum fluidization velocity in the conventional and confined bed 
(full symbols are GB solids investigated in the 10 cm OD column). 

  



 

Fig.6 - Effect of particle density on the confined minimum fluidization velocity. 

  



 

Fig.7 -  Comparison between experimental and calculated values of the minimum fluidization 
velocity in confined bed. 

  



 

Fig.8 -  Prediction of the pressure drop in confined bed in function of velocity by Eq. (22). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solids in bold are investigated in the 10-cm-OD column with a 11-mm-GB packing. 

Table 1 - Fluidization properties of the experimental solids. 

 

Particle 

density 

f   

[kg/m3] 

Sauter 

diameter 

df  [m] 

 

df/dh 

[-] 

Conventional Confined Predicted 

umf   

 [cm/s] 

f  

  [-] 

fc    

[-] 

umfc    

[cm/s] 

fc    

(Eq.(24))   

[-] 

umfc  

 (Eq. (12))  

[cm/s] 

GB  90-125 m 

2480 

100 0.060 0.9 0.411 0.419 0.39 0.412 0.36 

GB 125-150 m 136 0.082 1.8 0.408 0.433 0.83 0.424 0.70 

GB 150-200 m 171 0.103 2.3 0.405 0.424 1.10 0.434 1.17 

GB 200-250 m 228 0.137 5.2 0.400 0.465 2.27 0.451 2.24 

GB 250-300 m 271 0.163 6.8 0.393 0.473 3.00 0.464 3.32 

GB 300-355 m 327 0.197 8.6 0.394 0.474 5.18 0.479 5.08 

GB 355-400 m 361 0.218 12.3 0.389 0.487 6.00 0.489 6.32 

GB 300-355m 319 0.070  8.2 0.389 0.403 3.85 0.418 3.64 

GB 400-500m 460 0.102 17.1 0.386 0.432 8.54 0.434 7.70 

GB 560-630m 588 0.130 25.3 0.384 0.440 12.5 0.448 12.27 

CE 200-250 m 3780 

 

230 0.139 8.4 0.399 0.412 2.89 0.452 3.46 

CE 250-300 m 268 0.161 10.3 0.396 0.448 4.70 0.463 4.87 

ZO 200-250 m 6150 245 0.148 12.4 0.391 0.465 4.52 0.456 6.38 

ZO 250-300 m 261 0.157 14.0 0.386 0.473 6.35 0.461 7.32 

SS 200-250 m 7520 204 0.121 12.7 0.400 0.465 4.88 0.444 5.17 

SS 250-300 m 261 0.155 17.7 0.393 0.473 9.15 0.461 8.84 

BR 200-250 m 8750 229 0.138 16.3 0.399 0.465 5.64 0.451 7.70 

BR 250-300 m 272 0.164 21.6 0.394 0.473 9.04 0.464 11.12 
 

GB glass ballotini, CE ceramic, ZO zirconium oxide, BR bronze, SS steel and LS lead spheres 


