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Abstract
The aim of this paper is to determine the thermal properties of an orthotropic planar
structure characterised by the thermal conductivity tensor in the coordinate system of
the main directions (Oxy) being diagonal. In particular, we consider retrieving the time-
dependent thermal conductivity components of the an orthotropic rectangular conductor
from nonlocal overspecified heat flux conditions. Since only boundary measurements are
considered, this inverse formulation belongs to the desirable approach of non-destructive
testing of materials. The unique solvability of this inverse coefficient problem is proved
based on the Schauder fixed point theorem and the theory of Volterra integral equa-
tions of the second kind. Furthermore, the numerical reconstruction based on a nonlinear
least-squares minimization is performed using the MATLAB optimization toolbox rou-
tine lsqnonlin. Numerical results are presented and discussed in order to illustrate the
performance of the inversion for orthotropic parameter identification.

Keywords: Orthotropic heat conductor; heat equation; inverse problem; thermal con-
ductivity; regularization.
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1 Introduction

Factors such as manufacturing and curing process may affect the material properties of a
structure often introducing additional variations such as anisotropy, [4], which are difficult
to measure directly. Such a coefficient identification problem is challenging because it is
inverse, nonlinear and, in general, ill-posed.

At steady-state, research on the determination of the diffusivity/conductivity of a
layered and orthotropic medium has been initiated in [1,3] and the general case of identi-
fication of anisotropic spacewise dependent conductivity in the Laplace-Beltrami elliptic
equation has been much investigated in the last two decades, [15].

In the time-dependent case the situation is much less investigated and here we only
mention the nonlinear identification of a temperature-dependent orthotropic material,
[14], the space-dependent anisotropic case considered in [11], and the recovery of the
leading coefficients of a heterogeneous orthotropic medium, [1, 5].

In this study, for the first time to the authors’ knowledge, the identification of the
time-dependent thermal conductivity of an orthotropic rectangular material from nonlocal
heat flux overdetermination boundary conditions is investigated both theoretically and
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numerically. The inverse problem that we formulate in Section 2 and propose to study
combines the features of multi-dimensions, multiple coefficient identification, [6], as well as
non-local overdetermination data, [2,7,8,10]. All these papers are unified by the approach
utilized to prove the existence of solution: the inverse problem is reformulated as a fixed
point problem for a certain nonlinear compact operator, so that the Schauder theorem can
be applied to it. Afterwards, uniqueness of solution follows from the theory of Volterra
integral equations of the second kind. In this paper, we also follow this approach and
prove the existence and uniqueness of the solution in Section 2. The numerical solutions
of the direct and inverse problems are described in Section 3 and 4, respectively, and
numerical results are presented and discussed in Section 5. Finally, conclusions are given
in Section 6.

2 Statement of the problem

We consider an inverse problem of identifying the thermal conductivity coefficients a1(t)
and a2(t) in the two-dimensional orthotropic heat equation

ut = a1(t)uxx + a2(t)uyy + f(x, y, t),

(x, y, t) ∈ QT := {(x, y, t) : 0 < x < h, 0 < y < l, 0 < t < T}, (1)

with initial condition

u(x, y, 0) = φ(x, y), (x, y) ∈ [0, h]× [0, l], (2)

Dirichlet boundary data

u(0, y, t) = µ11(y, t), u(h, y, t) = µ12(y, t), (y, t) ∈ [0, l]× [0, T ], (3)

u(x, 0, t) = µ21(x, t), u(x, l, t) = µ22(x, t), (x, t) ∈ [0, h]× [0, T ] (4)

and nonlocal overspecification conditions

a1(t)(ν11(t)ux(0, y0, t) + ν12(t)ux(h, y0, t)) = κ1(t), t ∈ [0, T ], (5)

a2(t)(ν21(t)uy(x0, 0, t) + ν22(t)uy(x0, l, t)) = κ2(t), t ∈ [0, T ], (6)

where x0, y0 are fixed values from the intervals (0, h) and (0, l) respectively.
Let Gk(x, t, ξ, τ) be the Green function for the equation ut = a1(t)uxx with Dirichlet

boundary conditions for k = 1, and with Neumann boundary conditions for k = 2. These
functions are defined by, [9],

Gk(x, t, ξ, τ) =
1

2
√
π(θ1(t)− θ1(τ))

+∞∑

n=−∞

(
exp

(
− (x− ξ + 2nh)2

4(θ1(t)− θ1(τ))

)

+(−1)k exp

(
− (x+ ξ + 2nh)2

4(θ1(t)− θ1(τ))

))
, k = 1, 2, θ1(t) =

t∫

0

a1(τ)dτ, t ∈ [0, T ]. (7)

At the same time we define the function Gm(y, t, η, τ) for the equation ut = a2(t)uyy

analogously to Gk(x, t, ξ, τ).
Then the Green function of the problem (1)-(4) is defined by

Gkm(x, y, t, ξ, η, τ) = Gk(x, t, ξ, τ)Gm(y, t, η, τ), when k = m = 1. (8)
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Theorem 1. Let the following assumptions be satisfied:

(A1) φ ∈ C2([0, h]×[0, l]), µ11, µ12 ∈ C2,1([0, l]×[0, T ]), µ21, µ22 ∈ C2,1([0, h]×[0, T ]),f ∈
C1,0(QT ), κ1,κ2, ν11, ν12 ∈ C([0, T ]);

(A2) κ1(t) > 0, ν11(t) + ν12(t) > 0, t ∈ [0, T ], φx(x, y) > 0, (x, y) ∈ [0, h] × [0, l],
µ21x(x, t) > 0, µ22x(x, t) > 0, (x, t) ∈ [0, h] × [0, T ], µ11t(y, t) − f(0, y, t) 6 0,
µ11yy(y, t) > 0, µ12t(y, t) − f(h, y, t) > 0, µ12yy(y, t) 6 0, (y, t) ∈ [0, l] × [0, T ],
fx(x, y, t) > 0, (x, y, t) ∈ QT ;

(A3) κ2(t) > 0, ν21(t) + ν22(t) > 0, t ∈ [0, T ], φy(x, y) > 0, (x, y) ∈ [0, h] × [0, l],
µ11y(y, t) > 0, µ12y(y, t) > 0, (y, t) ∈ [0, l] × [0, T ], µ21t(x, t) − f(x, 0, t) 6 0,
µ21xx(x, t) > 0, µ22t(x, t) − f(x, l, t) > 0, µ22xx(x, t) 6 0, (x, t) ∈ [0, h] × [0, T ],
fy(x, y, t) > 0, (x, y, t) ∈ QT ;

(A4) φ(0, y) = µ11(y, 0), φ(h, y) = µ12(y, 0), y ∈ [0, l], φ(x, 0) = µ21(x, 0), φ(x, l) =
µ22(x, 0), x ∈ [0, h], µ11(0, t) = µ21(0, t), µ11(l, t) = µ22(0, t), µ12(0, t) = µ21(h, t),
µ12(l, t) = µ22(h, t), t ∈ [0, T ].

Then the problem (1)-(6) has at least one solution (a1, a2, u) ∈ (C([0, T ]))2 × C2,1(QT ).

Proof. To prove the existence of a solution to (1)-(6) we are first going to reduce it to
an equivalent in a certain sense operator equation with respect to (a1, a2) and afterwards
apply the Schauder fixed point theorem.

If a1(t) > 0, a2(t) > 0 are known functions, the solution to the direct problem (1)-(4)
can be represented as

u(x, y, t) =

h∫

0

l∫

0

G11(x, y, t, ξ, η, 0)φ(ξ, η)dξdη +

l∫

0

t∫

0

G11ξ(x, y, t, 0, η, τ)a1(τ)µ11(η, τ)dηdτ

−
l∫

0

t∫

0

G11ξ(x, y, t, h, η, τ)a1(τ)µ12(η, τ)dηdτ +

h∫

0

t∫

0

G11η(x, y, t, ξ, 0, τ)a2(τ)µ21(ξ, τ)dξdτ

−
h∫

0

t∫

0

G11η(x, y, t, ξ, l, τ)a2(τ)µ22(ξ, τ)dξdτ +

h∫

0

l∫

0

t∫

0

G11(x, y, t, ξ, η, τ)f(ξ, η, τ)dξdηdτ.

(9)

Denote w1 := ux(x, y, t) and differentiate (9) with respect to x to obtain

w1(x, y, t) =

h∫

0

l∫

0

G21(x, y, t, ξ, η, 0)φξ(ξ, η)dξdη −
l∫

0

t∫

0

G21(x, y, t, 0, η, τ)(µ11τ (η, τ)

− f(0, η, τ)− a2(τ)µ11ηη(η, τ))dηdτ +

l∫

0

t∫

0

G21(x, y, t, h, η, τ)(µ12τ (η, τ)− f(h, η, τ)

− a2(τ)µ12ηη(η, τ))dηdτ +

h∫

0

t∫

0

G21η(x, y, t, ξ, 0, τ)a2(τ)µ21ξ(ξ, τ)dξdτ
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−
h∫

0

t∫

0

G21η(x, y, t, ξ, l, τ)a2(τ)µ22ξ(ξ, τ)dξdτ +

h∫

0

l∫

0

t∫

0

G21(x, y, t, ξ, η, τ)fξ(ξ, η, τ)dξdηdτ.

(10)

An operator equation with respect to a1 is obtained from (5) as

a1 = P1(a1, a2), (11)

where

P1(a1, a2)(t) =
κ1(t)

ν11(t)w1(0, y0, t) + ν12(t)w1(h, y0, t)
, t ∈ [0, T ]

and w1is defined by (10).
Analogously, in order to get an operator equation with respect to a2(t), we differentiate

(9) with respect to y and use the notation w2 := uy(x, y, t) to obtain

w2(x, y, t) =

h∫

0

l∫

0

G12(x, y, t, ξ, η, 0)φη(ξ, η)dξdη

+

l∫

0

t∫

0

G12ξ(x, y, t, 0, η, τ)a1(τ)µ11η(η, τ)dηdτ

−
l∫

0

t∫

0

G12ξ(x, y, t, h, η, τ)a1(τ)µ12η(η, τ)dηdτ

−
h∫

0

t∫

0

G12(x, y, t, ξ, 0, τ)(µ21τ (ξ, τ)− f(ξ, 0, τ)− a1(τ)µ21ξξ(ξ, τ))dξdτ

+

h∫

0

t∫

0

G12(x, y, t, ξ, l, τ)(µ22τ (ξ, τ)− f(ξ, l, τ)− a1(τ)µ22ξξ(ξ, τ))dξdτ

+

h∫

0

l∫

0

t∫

0

G12(x, y, t, ξ, η, τ)fη(ξ, η, τ)dξdηdτ. (12)

Therefore, an operator equation with respect to a2 is obtained from (6)

a2 = P2(a1, a2), (13)

where

P2(a1, a2)(t) =
κ2(t)

ν21(t)w2(x0, 0, t) + ν22(t)w2(x0, l, t)
, t ∈ [0, T ]

and w2 is defined by (12).
Denote:
N := {a1, a2 ∈ C([0, T ]) : α1 6 a1(t) 6 A1, α2 6 a2(t) 6 A2}, where the constants

α1, α2, A1, A2 ∈ R+ are to be determined below;
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P : N → N such that P (a1, a2) =

(
P1(a1, a2)
P2(a1, a2)

)
.

Thus, the problem (1)-(6) is reduced to the operator equation

(a1, a2) = P (a1, a2), (a1, a2) ∈ N . (14)

The problem (1)-(6) is equivalent to the equation (14) in the following sense: if
(a1, a2, u) is a solution to (1)-(6), then (a1, a2) is a solution to (14), and, conversely,
if (a1, a2) ∈ N is a solution to (14), then (a1, a2, u) is a solution to (1)-(6), where u is
defined by formula (9). This follows from the way the equation (14) has been obtained.

To make sure that the operator P maps N into itself let us estimate the constants
α1, α2, A1, A2 ∈ R+. From the uniqueness of the solution to the problem





ut = a1(t)uxx, (x, t) ∈ (0, h)× (0, T ),

u(x, 0) = 1, x ∈ [0, h],

ux(0, t) = 0, ux(h, t) = 0, t ∈ [0, T ],

the following identity is obtained

h∫

0

G2(x, t, ξ, 0)dξ = 1. (15)

According to the properties of the Green function (namely, that G1η(y, t, 0, η) > 0,
G1η(y, t, l, η) 6 0 and (15) holds) it follows from (A2) applied to (10) that

w1(x, y, t) > min
[0,h]×[0,l]

φx(x, y)

l∫

0

G1(y, t, η, 0)dη + min
[0,h]×[0,T ]

µ21x(x, t)

t∫

0

G1η(y, t, 0, τ)a2(τ)dτ

− min
[0,h]×[0,T ]

µ22x(x, t)

t∫

0

G1η(y, t, l, τ)a2(τ)dτ.

Similarly to (15), from the uniqueness of the solution to the problem





ut = a2(t)uyy, (y, t) ∈ (0, l)× (0, T ),

u(y, 0) = 1, y ∈ [0, l],

u(0, t) = 1, u(l, t) = 1, t ∈ [0, T ].

we obtain the formula

l∫

0

G1(y, t, η, 0)dξ +

t∫

0

G1η(y, t, 0, τ)a2(τ)dτ −
t∫

0

G1η(y, t, l, τ)a2(τ)dτ = 1. (16)

The formula (16) implies the estimate

w1(x, y, t) > min{ min
[0,h]×[0,l]

φx(x, y), min
[0,h]×[0,T ]

µ21x(x, t), min
[0,h]×[0,T ]

µ22x(x, t)} =: W1.
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Thus, the following estimate for the operator P1 holds:

P1(a1, a2)(t) 6

max
[0,T ]

κ1(t)

min
[0,T ]

(ν11(t) + ν12(t))W1

=: A1, t ∈ [0, T ].

Similarly,

P2(a1, a2)(t) 6 A2, t ∈ [0, T ],

where

A2 :=

max
[0,T ]

κ2(t)

min
[0,T ]

(ν21(t) + ν22(t))W2

,

W2 := min{ min
[0,h]×[0,l]

φy(x, y), min
[0,l]×[0,T ]

µ11y(y, t), min
[0,l]×[0,T ]

µ12y(y, t)}.

The next step is to obtain the upper bound estimate of w1(0, y0, t). It implies from
(15) and (16) that

h∫

0

l∫

0

G21(x, y, t, ξ, η, 0)φξ(ξ, η)dξdη +

h∫

0

t∫

0

G21η(x, y, t, ξ, 0, τ)a2(τ)µ21ξ(ξ, τ)dξdτ

−
h∫

0

t∫

0

G21η(x, y, t, ξ, l, τ)a2(τ)µ22ξ(ξ, τ)dξdτ

6 max{ max
[0,h]×[0,l]

φx(x, y), max
[0,h]×[0,T ]

µ21x(x, t), max
[0,h]×[0,T ]

µ22x(x, t)}.

It is shown in [9] that G2(0, t, 0, τ) 6

(
1

h
+

1√
πα1(t− τ)

)
and G2(0, t, h, τ) 6

1

h
. Thus,

−
l∫

0

t∫

0

G21(0, y0, t, 0, η, τ)(µ11τ (η, τ)− f(0, η, τ)− a2(τ)µ11ηη(η, τ))dηdτ

6

(
T

h
+

2
√
T√

πα1

)
(

max
[0,l]×[0,T ]

(−µ11t(y, t) + f(0, y, t)) + A2 max
[0,l]×[0,T ]

µ11yy(y, t)
)
;

l∫

0

t∫

0

G21(0, y0, t, h, η, τ)(µ12τ (η, τ)− f(h, η, τ)− a2(τ)µ12ηη(η, τ))dηdτ

6
1

h

(
max

[0,l]×[0,T ]
(µ12t(y, t)− f(h, y, t)) + A2 max

[0,l]×[0,T ]
(−µ12yy(y, t))

)
.

Finally, the last term of (10) is evaluated by

h∫

0

l∫

0

t∫

0

G12(x, y, t, ξ, η, τ)fξ(ξ, η, τ)dξdηdτ 6 T max
QT

fx(x, y, t).
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After the same procedure is applied to w1(h, y0, t), the following inequality is obtained:

ν11(t)w1(0, y0, t) + ν12(t)w1(h, y0, t) 6 C1 +
C2√
α1

.

Therefore, for P1 we obtain the lower bound estimate

C3

C1 +
C2√
α1

6 P1(a1, a2)(t), t ∈ [0, T ], where C3 := min
[0,T ]

κ1(t).

To ensure that P maps N into itself α1 must satisfy the equation

α1 =
C3

C1 +
C2√
α1

.

This equation has a unique positive solution

α1 :=

(
−C2 +

√
C2

2 + 4C1C3

2C1

)2

.

Similarly,

ν21(t)w2(x0, 0, t) + ν22(t)w2(x0, l, t) 6 C4 +
C5√
α2

,

which yields the lower bound estimate for P2

C6

C4 +
C5√
α2

6 P2(a1, a2)(t), t ∈ [0, T ], where C6 := min
[0,T ]

κ2(t).

Then, α2 satisfies the equation

α2 =
C6

C4 +
C5√
α2

,

which has only one positive solution

α2 :=

(
−C5 +

√
C2

5 + 4C4C6

2C4

)2

.

Taken such values for α1, α2, A1, A2 ∈ R+, the operator P maps the set N into itself.
Compactness of the operator P follows from [9]. According to the Schauder theorem
there exists a solution to (14), and therefore to the problem (1)-(6).

Theorem 2. Provided that κ1(t) ̸= 0, κ2(t) ̸= 0 for t ∈ [0, T ], the solution (a1, a2, u) to

the problem (1)-(6) is unique in C([0, T ])2 × C2,1(QT ).
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Proof. Suppose that there are two solutions (a1(t), a2(t), u(x, y, t)) and
(a∗1(t), a

∗
2(t), u

∗(x, y, t)) to the problem (1)-(6). Denote â1(t) = a1(t) − a∗1(t), â2(t) =
a2(t)− a∗2(t) û(x, y, t) = u(x, y, t)− u∗(x, y, t). Then (â1(t), â2(t), û(x, y, t)) is solution to
the problem

ût = a1(t)ûxx + a2(t)ûyy + â1(t)u
∗
xx(x, y, t) + â2(t)u

∗
yy(x, y, t), (x, y, t) ∈ QT , (17)

û(x, y, 0) = 0, (x, y) ∈ [0, h]× [0, l], (18)

û(0, y, t) = 0, û(h, y, t) = 0, (y, t) ∈ [0, l]× [0, T ], (19)

û(x, 0, t) = 0, û(x, l, t) = 0, (x, t) ∈ [0, h]× [0, T ], (20)

â1(t)(ν11(t)u
∗
x(0, y0, t) + ν12(t)u

∗
x(h, y0, t)) + a1(t)(ν11(t)ûx(0, y0, t)

+ ν12(t)ûx(h, y0, t)) = 0, t ∈ [0, T ], (21)

â2(t)(ν21(t)u
∗
y(x0, 0, t) + ν22(t)u

∗
y(x0, l, t)) + a2(t)(ν21(t)ûy(x0, 0, t)

+ ν22(t)ûy(x0, l, t)) = 0, t ∈ [0, T ]. (22)

The solution to the problem (17)-(20) can be calculated by formula (9) to read

û(x, y, t) =

t∫

0

l∫

0

h∫

0

G11(x, y, t, ξ, η, τ)(â1(τ)u
∗
xx(ξ, η, τ) + â2(τ)u

∗
yy(ξ, η, τ))dξdηdτ,

(x, y, t) ∈ QT . (23)

Substituting (23) into (21), (22) we obtain the system

â1(t)(ν11(t)u
∗
x(0, y0, t) + ν12(t)u

∗
x(h, y0, t)) = −a1(t)

t∫

0

l∫

0

h∫

0

(ν11(t)G11x(0, y0, t, ξ, η, τ)

+ ν12(t)G11x(h, y0, t, ξ, η, τ))(â1(τ)u
∗
xx(ξ, η, τ) + â2(τ)u

∗
yy(ξ, η, τ))dξdηdτ, t ∈ [0, T ],

(24)

â2(t)(ν21(t)u
∗
y(x0, 0, t) + ν22(t)u

∗
y(x0, l, t)) = −a2(t)

t∫

0

l∫

0

h∫

0

(ν21(t)G11y(x0, 0, t, ξ, η, τ)

+ ν22(t)G11y(x0, l, t, ξ, η, τ))(â1(τ)u
∗
xx(ξ, η, τ) + â2(τ)u

∗
yy(ξ, η, τ))dξdηdτ, t ∈ [0, T ]. (25)

Thus, (24) and (25) form a system of homogeneous Volterra integral equations of the
second kind. Since (a∗1, a

∗
2, u

∗) is solution to the problem (1)–(6), it implies from the
conditions (5), (6) and assumptions of the theorem that

ν11(t)u
∗
x(0, y0, t) + ν12(t)u

∗
x(h, y0, t) ̸= 0, ν21(t)u

∗
y(x0, 0, t) + ν22(t)u

∗
y(x0, l, t) ̸= 0, t ∈ [0, T ].

Therefore, the system of equations (24) and (25) has a unique trivial solution. The
uniqueness is proved.

3 Solution of direct problem

In this section, we consider the direct initial boundary value problem (1)–(4), where
a1(t), a2(t), f(x, y, t), ϕ(x, y), and µij, i, j = 1, 2, are known and the solution u(x, y, t)
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is to be determined. To achieve this, we use the Forward-Time-Central-Space (FTCS)
finite-difference scheme which is conditionally stable.

We subdivide the solution domain QT into Mx, My and N subintervals of equal step
lengths ∆x and ∆y, and uniform time step ∆t, where ∆x = h/Mx, ∆y = ℓ/My and ∆t =
T/N , for space and time, respectively. At the node (i, j, k) we denote uk

i,j := u(Xi, Yj, tk),
where Xi = i∆x, Yj = j∆y, tk = k∆t, ak1 := a(tk), a

k
2 := a2(tk) and fk

i,j := f(Xi, Yj, tk)

for i = 0,Mx, j = 0,My and k = 0, N .
The simplest explicit difference scheme for equation (1) is given by

uk+1
i,j − uk

i,j

∆t
=ak1

uk
i+1,j − 2uk

i,j + uk
i−1,j

(∆x)2
+ ak2

uk
i,j+1 − 2uk

i,j + uk
i,j−1

(∆y)2
+ fk

i,j (26)

for i = 1,Mx − 1, j = 1,My − 1 and k = 0, N . The initial and boundary conditions
(2)–(4) give

u0
i,j = ϕi,j, i = 0,Mx, j = 0,My, (27)

uk
0,j = µ11(Yj, tk), uk

Mx,j = µ12(Yj, tk), j = 0,My, k = 1, N, (28)

uk
i,0 = µ21(Xi, tk), uk

i,My
= µ22(Xi, tk), i = 0,Mx, k = 1, N. (29)

Let ã1 and ã2 be the maximum values of a1(t) and a2(t), respectively, then, the stability
condition for the explicit FDM scheme (26) will be [13],

ã1∆t

(∆x)2
+

ã2∆t

(∆y)2
≤ 1

2
. (30)

The fluxes (5) and (6) can be calculated using the second-order FDM approximations:

κ1(tk) = ak1

(
ν11(tk)ux(0, y0, tk) + ν12(tk)ux(h, y0, tk)

)
, k = 1, N, (31)

κ2(tk) = ak2

(
ν21(tk)uy(x0, 0, tk) + ν22(tk)uy(x0, ℓ, tk)

)
, k = 1, N, (32)

where

ux(0, y0, tk) =
4u(X1, y0, tk)− u(X2, y0, tk)− 3µ11(y0, tk)

2∆x
, k = 1, N, (33)

ux(h, y0, tk) =
4u(XMx−1, y0, tk)− u(XMx−2, y0, tk)− 3µ12(y0, tk)

−2∆x
, k = 1, N, (34)

uy(x0, 0, tk) =
4u(x0, Y1, tk)− u(x0, Y2, tk)− 3µ21(x0, tk)

2∆y
, k = 1, N, (35)

uy(x0, ℓ, tk) =
4u(x0, YMy−1, tk)− u(x0, YMy−2, tk)− 3µ22(x0, tk)

−2∆y
, k = 1, N. (36)

4 Solution of inverse problem

In this section, we aim to obtain stable reconstructions for the principal direction com-
ponents a1(t) > 0 and a2(t) > 0 of the two-dimensional orthotropic rectangular medium

9



together with the temperature u(x, y, t) satisfying the equations (1)–(6). One can re-
mark that at initial time t = 0 the values a1(0) and a2(0) can be obtained from the
overdetermination conditions (5) and (6) as

a1(0) =
κ1(0)

ν11(0)ϕx(0, y0) + ν12(0)ϕx(h, y0)
, (37)

a2(0) =
κ2(0)

ν21(0)ϕy(x0, 0) + ν22(0)ϕy(x0, ℓ)
. (38)

The inverse problem is solved based on the nonlinear minimization of the least-squares
objective function

F (a1, a2) :=

∥∥∥∥a1(t)
(
ν11(t)ux(0, y0, t) + ν12(t)ux(h, y0, t)

)
− κ1(t)

∥∥∥∥
2

+

∥∥∥∥a2(t)
(
ν21(t)uy(x0, 0, t) + ν22(t)uy(x0, l, t)

)
− κ2(t)

∥∥∥∥
2

, (39)

or, in discretised form

F (a1, a2) =
N∑

k=1

[
ak1

(
ν11(tk)ux(0, y0, tk) + ν12(tk)ux(h, y0, tk)

)
− κ1(tk)

]2

+
N∑

k=1

[
ak2

(
ν21(tk)uy(x0, 0, tk) + ν22(tk)uy(x0, l, tk)

)
− κ2(tk)

]2
. (40)

The minimization of the objective functional (40), subject to the physical simple bound
constraints a1 > 0 and a2 > 0 is accomplished using the MATLAB optimization toolbox
routine lsqnonlin, which does not require supplying (by the user) the gradient of the
objective function, [12]. Furthermore, within lsqnonlin we use the Trust-Region algorithm
which is based on the interior-reflective Newton method. Each iteration involves a large
linear system of equations whose solution, based on a preconditioned conjugate gradient
method, allows a regular and sufficiently smooth decrease of the objective functional (40).
Upper and lower bounds on the thermal conductivities a1 and a2 can be specified according
to a priori information on these physical parameters.

In the numerical computation, we take the parameters of the routine lsqnonlin, as
follows:

• Maximum number of iterations = 105× (number of variables).

• Maximum number of objective function evaluations = 106× (number of variables).

• Solution and objective function tolerances = 10−10.

The inverse problem (1)–(6) is solved subject to both exact and noisy measurements (5)
and (6). The noisy data is numerically simulated as

κ
ϵ1
1 (tk) = κ1(tk) + ϵ1k, κ

ϵ2
2 (tk) = κ2(tk) + ϵ2k, k = 1, N, (41)

where ϵ1k and ϵ2k are random variables generated from a Gaussian normal distribution
with mean zero and standard deviations σ1 and σ2 given by

σ1 = p× max
t∈[0,T ]

|κ1(tk)|, σ2 = p× max
t∈[0,T ]

|κ2(tk)|, (42)
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where p represents the percentage of noise. We use the MATLAB function normrnd to
generate the random variables ϵ1 = (ϵ1k)k=1,N and ϵ2 = (ϵ2k)k=1,N , as follows:

ϵ1 = normrnd(0, σ1, N), ϵ2 = normrnd(0, σ2, N). (43)

In the case of noisy data (41), we replace κ1(tk) and κ2(tk) by κ
ϵ1
1 (tk) and κ

ϵ1
2 (tk),

respectively, in (40).

5 Numerical results and discussion

In this section, we present numerical results for the reconstruction of the orthotropic
thermal conductivity components a1(t), a2(t) and the temperature u(x, y, t), in the case
of exact and noisy data (41). To assess the accuracy of the numerical solution we employ
the root mean square errors (rmse) defined by:

rmse(a1) =

[
1

N

N∑

k=1

(
anumerical
1 (tk)− aexact1 (tk)

)2
]1/2

, (44)

rmse(a2) =

[
1

N

N∑

k=1

(
anumerical
2 (tk)− aexact2 (tk)

)2
]1/2

. (45)

For simplicity, we take h = ℓ = T = 1. The bounds on the physical variables a1 and a2
are 10−9 (lower bounds) and 102 (upper bounds). Although the initial guess for a1(t) and
a2(t) could be taken as a1(0) and a2(0) which are known form (37) and (38), in order to
investigate the robustness of the numerical inversion we take them (arbitrary), say equal
to unity.

5.1 Example 1

Consider the inverse problem (1)–(6) with unknown coefficients a1(t) and a2(t), with the
input data φ, µij, νij and κi, i, j = 1, 2, as follows:

φ(x, y) = u(x, y, 0) = −(−2 + x)2 − (−2 + y)2, f(x, y, t) =
101.5 + 3t+ x+ y

50
,

µ11(y, t) = u(0, y, t) = −4 + 2t− (−2 + y)2, µ12(y, t) = u(1, y, t) = −1 + 2t− (−2 + y)2,

µ21(x, t) = u(x, 0, t) = −4 + 2t− (−2 + x)2, µ22(x, t) = u(x, 1, t) = −1 + 2t− (−2 + x)2,

ν11(t) = 1, ν12(t) = 1, ν22(t) = 1, ν21(t) = 1, κ1(t) =
3(t+ 1)

100
, κ2(t) =

3(2t+ 0.5)

50
,

x0 = 0.5, y0 = 0.5.

One can observe that conditions of Theorem 2 are satisfied and therefore, the uniqueness
of the solution is guaranteed. In fact, it can easily be checked by direct substitution that
the analytical solution is given by

a1(t) =
t+ 1

100
, a2(t) =

2t+ 0.5

100
, t ∈ [0, 1], (46)

u(x, y, t) = −(x− 2)2 − (y − 2)2 + 2t, (x, y, t) ∈ QT . (47)
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We take Mx = My = N = 10 which together with the upper bound 102 for the
unknown coefficients a1 and a2 ensure that the stability condition (30) is always satisfied
at each iteration of the minimization process.

We start the investigation for simultaneously determining the time-dependent un-
knowns a1 and a2 for exact and noisy input data, i.e., for the cases p ∈ {0, 1, 5, 10}% of
noise. Figure 1 presents the objective function (40), as a function of the number of itera-
tions. From this figure one can notice that a rapid convergence is achieved in 42 iterations.
The objective function (40) converges to a very small minimum value of O(10−28).

Figure 2 shows the unknown reconstructions for a1(t) and a2(t) for various noise levels.
As expected, the numerically obtained results become more stable and accurate as the
percentage of noise p decrease from 10% to 5% and then to 1%, see rmse(a1) and rmse(a2)
in Table 1.

5.2 Example 2

The previous example has recovered the smooth time-dependent orthotropic conductivity
components a1(t) and a2(t) given by (46). In this example we asses the performance of
the numerical method for reconstructing a non-smooth test case given by

a1(t) =
1

10

∣∣∣∣t−
1

2

∣∣∣∣+
1

20
, a2(t) =

1

10

∣∣∣∣t
2 − 1

2

∣∣∣∣+
1

20
, t ∈ [0, 1], (48)

and u given by (47). The input data φ, µi,j, νi,j, x0 and y0 are the same as in Example 1
but

f(x, y, t) =
1

5

∣∣∣∣t−
1

2

∣∣∣∣+
1

5

∣∣∣∣t
2 − 1

2

∣∣∣∣+
21

10
, (49)

κ1(t) =
3

5

∣∣∣∣t−
1

2

∣∣∣∣+
3

10
, κ2(t) =

3

5

∣∣∣∣t
2 − 1

2

∣∣∣∣+
3

10
. (50)

We take Mx = My = 10, N = 40 which, as in Example 1, together with the upper
bound of 102 imposed ensure that the stability condition (30) is always satisfied during
the iterative procedure. As we did in Example 1, Figures 3, 4 and Table 1 present the
plots of objective function (40) as a function of the number of iterations, the numerically
obtained reconstructions for the non-smooth coefficients and the rmse values (44) and
(45) for Example 2, respectively. The same conclusions can be drawn about the stable
reconstructions for the unknown coefficients.

6 Conclusions

The inverse problem concerning the simultaneous identification of the orthotropic ther-
mal conductivity components a1(t) and a2(t) in a rectangular domain has been theoret-
ically and numerically investigated. The unique solvability of the inverse problem has
been established using Schauder’s fixed point theorem and the theory of Volterra integral
equations of the second kind.

The orthotropic heat equation has been discretised using an explicit FDM. Further,
the inverse problem has been solved as a constrained minimization problem using the
MATLAB optimization toolbox routine lsqnonlin. Numerical results presented and dis-
cussed for both exact and noisy data show that accurate and stable solutions have been

12



obtained. No regularization has been found necessary indicating that the inverse problem
is in fact well-posed.
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Figure 1: The objective function (40), for various noise levels p ∈ {0, 1, 5, 10}%, for Example 1.
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Figure 2: The exact solution (—) and numerical solutions for various noise levels p ∈
{0, 1, 5, 10}% for (a) a1(t) and (b) a2(t), for Example 1.
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Figure 3: The objective function (40), for various noise levels p ∈ {0, 1, 5, 10}%, for Example 2.
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Figure 4: The exact solution (—) and numerical solutions for various noise levels p ∈
{0, 1, 5, 10}% for (a) a1(t) and (b) a2(t), for Example 2.

Table 1: The rmse values (44) and (45) for various noise levels p ∈ {0, 1, 5, 10}%.

Example 1 p = 0 p = 1% p = 5% p = 10%
rmse(a1) 2.6E-4 5.1E-4 0.0020 0.0038
rmse(a2) 2.9E-4 4.5E-4 0.0014 0.0026
Example 2 p = 0 p = 1% p = 5% p = 10%
rmse(a1) 2.9E-16 0.0014 0.0070 0.0140
rmse(a2) 2.9E-4 9.3E-4 0.0047 0.0093
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