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Abstract

This paper considers the computation of the degree t of an approximate greatest

common divisor d(y) of two Bernstein polynomials f(y) and g(y), which are

of degrees m and n respectively. The value of t is computed from the QR

decomposition of the Sylvester resultant matrix S(f, g) and its subresultant

matrices Sk(f, g), k = 2, . . . ,min(m,n), where S1(f, g) = S(f, g). It is shown

that the computation of t is significantly more complicated than its equivalent

for two power basis polynomials because (a) Sk(f, g) can be written in several

forms that differ in the complexity of the computation of their entries, (b)

different forms of Sk(f, g) may yield different values of t, and (c) the binomial

terms in the entries of Sk(f, g) may cause the ratio of its entry of maximum

magnitude to its entry of minimum magnitude to be large, which may lead to

numerical problems. It is shown that the QR decomposition and singular value

decomposition (SVD) of the Sylvester matrix and its subresultant matrices yield

better results than the SVD of the Bézout matrix, and that f(y) and g(y)

must be processed before computations are performed on these resultant and

subresultant matrices in order to obtain good results.
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1. Introduction

The computation of the greatest common divisor (GCD) of two polynomi-

als occurs in several applications, including image processing, control systems,

robotics and the computation of intersections of Bézier curves and surfaces in

computer aided geometric design [4]. The GCD is defined for exact polynomials5

only, but practical problems yield inexact polynomials because their coefficients

are corrupted by noise. It is therefore necessary to consider an approximate

greatest common divisor (AGCD) of noisy forms f(y) and g(y) of, respectively,

the exact polynomials f̂(y) and ĝ(y). The GCD of f̂(y) and ĝ(y) is unique up

to an arbitrary non-zero constant, but an AGCD of f(y) and g(y) is not unique10

because it can be defined in several ways. Furthermore, each AGCD may be

considered to be the GCD of polynomials that lie in neighbourhoods of f(y)

and g(y), and these AGCDs may not be unique, apart from scaling.

An AGCD of two polynomials and methods for its computation are discussed

in Section 2, and it is shown in Section 3 that the degree of the GCD of f̂(y)15

and ĝ(y), which are of degrees m and n respectively, can be calculated from the

rank of their Sylvester matrix S(f̂ , ĝ) and its subresultant matrices Sk(f̂ , ĝ),

k = 2, . . . ,min(m,n), where S1(f̂ , ĝ) = S(f̂ , ĝ). Consideration of the entries

of these matrices shows it is convenient to rearrange them in order to reduce

the computational complexity of their evaluation. This rearrangement leads to20

Section 4, where an equation that allows Sk(f̂ , ĝ) to be computed from Sj(f̂ , ĝ),

j < k, is developed.

It is shown in Section 5 that Sk(f̂ , ĝ), k = 1, . . . ,min(m,n), must be pro-

cessed by three operations before computations are performed on these matrices

in order to minimise numerical problems that may arise. Methods for the com-25

putation of the degree of an AGCD of f(y) and g(y) are discussed in Section

6, and Section 7 contains examples of this computation. The contents of the

paper are summarised in Section 8.
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2. An approximate greatest common divisor

The following definition of an AGCD of two polynomials is used by Bini30

and Boito [2]. It involves concepts of the nearness of two polynomials, the

maximum degree of a polynomial from the set of polynomials that satisfy the

nearness condition, and a measure of the distance between two polynomials.

Definition 2.1. Let f(y) and g(y) be polynomials of degrees m and n respec-

tively. A polynomial d(y) is an ǫ-divisor of f(y) and g(y) if there exist polyno-35

mials f̃(y) and g̃(y), of degrees m and n respectively, such that

∥

∥

∥f(y)− f̃(y)
∥

∥

∥ ≤ ǫ ‖f(y)‖ and ‖g(y)− g̃(y)‖ ≤ ǫ ‖g(y)‖ ,

and d(y) divides f̃(y) and g̃(y). If d(y) is an ǫ-divisor, of maximum degree, of

f(y) and g(y), then it is called an ǫ-GCD, or AGCD, of f(y) and g(y). The

polynomials u(y) = f̃(y)/d(y) and v(y) = g̃(y)/d(y) are called ǫ-cofactors.

This definition of an AGCD of f(y) and g(y) is a function of ǫ, the maximum40

value of the upper bound of the relative error between f(y) and f̃(y), and g(y)

and g̃(y). The value of ǫ may not be known, or it may only be known ap-

proximately, in which case this definition of an AGCD may not be appropriate.

Another definition, which uses subresultant matrices of the Sylvester matrix of

f(y) and g(y), is therefore considered in Section 3.45

Previous work on the computation of an AGCD of two power basis polynomi-

als has used the QR decomposition [7, 20] and the singular value decomposition

(SVD) [6, 9] of the Sylvester matrix. Also, optimisation methods [5, 21] and

methods that exploit the structure of the Sylvester matrix [1, 2, 11, 12, 21] have

been used. The methods described in these papers require that the threshold ǫ50

be specified, and common divisors of degree k, k = min(m,n), min(m,n) − 1,

min(m,n)−2, . . . , 2, 1, are computed and an error measure is calculated for each

value of k. The procedure terminates at the first (largest) value of k for which

the error measure is less than ǫ.

It was noted above that ǫ may not be known in practical problems, or it55

may only be known approximately. Previous work has shown, however, that if
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f(y) and g(y) are preprocessed, then computations on the Sylvester matrix and

its subresultant matrices enable the degree t of an AGCD to be computed, even

when the value of ǫ, or bounds on its value, are not known [17]. This method

for the determination of t has been used for the computation of a structured60

low rank approximation of the Sylvester matrix [16] and multiple roots of a

polynomial [14, 18].

The computation of an AGCD of two Bernstein polynomials is considered

in [3, 19], and the work described in this paper extends the work in these two

papers. The application of Euclid’s algorithm to the computation of the GCD65

of two Bernstein polynomials is considered in [13], but unsatisfactory results are

obtained and the need for robust methods for this computations is emphasized.

3. The Sylvester matrix and the degree of the GCD

This section considers the calculation of the degree of the GCD of f̂(y) and

ĝ(y), and it is shown that it reduces to the computation of the rank of each70

matrix Sk(f̂ , ĝ), k = 1, . . . ,min(m,n). The discussion in this section is brief,

and more details are in [19].

If the degree of the GCD of f̂(y) and ĝ(y) is t̂, then, for each value of

k = 1, . . . , t̂− 1, f̂(y) and ĝ(y) have more than one common divisor of degree k,

and they have only one common divisor, to within an arbitrary non-zero scalar75

multiplier, of degree t̂. It follows that if d̂k(y) is a common divisor of degree k,

there exist quotient polynomials ûk(y) and v̂k(y), which are of degrees m − k

and n− k respectively, such that

f̂(y) = ûk(y)d̂k(y) and ĝ(y) = v̂k(y)d̂k(y).

It is shown in [19] that these equations can be expressed in matrix form as

D−1
k Tk(f̂ , ĝ)Qk





v̂k

−ûk



 = 0, k = 1, . . . ,min(m,n), (1)

where D−1
k ∈ R

(m+n−k+1)×(m+n−k+1) is given by80

D−1
k = diag

[

1

(m+n−k

0 )
1

(m+n−k

1 )
. . . 1

(m+n−k

m+n−k)

]

,
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Tk(f̂ , ĝ) ∈ R
(m+n−k+1)×(m+n−2k+2) is given by

Tk(f̂ , ĝ) =







































â0
(

m
0

)

b̂0
(

n
0

)

â1
(

m

1

) . . . b̂1
(

n

1

) . . .

...
. . . â0

(

m

0

) ...
. . . b̂0

(

n

0

)

...
. . . â1

(

m
1

) ...
. . . b̂1

(

n
1

)

âm
(

m
m

) . . .
... b̂n

(

n
n

) . . .
...

. . .
...

. . .
...

âm
(

m

m

)

b̂n
(

n

n

)







































, (2)

Qk ∈ R
(m+n−2k+2)×(m+n−2k+2) contains the binomial terms of the quotient

polynomials ûk(y) and v̂k(y),

Qk = diag
[

(

n−k

0

)

· · ·
(

n−k

n−k

) (

m−k

0

)

· · ·
(

m−k

m−k

)

]

, (3)

and ûk ∈ R
m−k+1 and v̂k ∈ R

n−k+1 contain the coefficients of ûk(y) and v̂k(y)

respectively. The matrix Sk(f̂ , ĝ) ∈ R
(m+n−k+1)×(m+n−2k+2) is a modified form85

of the kth Sylvester subresultant matrix,

Sk(f̂ , ĝ) = D−1
k Tk(f̂ , ĝ)Qk, (4)

because the standard form of this matrix is D−1
k Tk(f̂ , ĝ). It is shown in the se-

quel that the modified form Sk(f̂ , ĝ) of the Sylvester matrix and its subresultant

matrices has computational advantages [19].

Equation (1) has a non-zero solution for k = 1, . . . , t̂, and the coefficient90

matrix Sk(f̂ , ĝ) is therefore singular for these values of k. Since f̂(y) and ĝ(y)

do not possess a common divisor of degree k, k = t̂+1, . . . ,min(m,n), it follows

that

rank Sk(f̂ , ĝ) < m+ n− 2k + 2, k = 1, . . . , t̂,

rank Sk(f̂ , ĝ) = m+ n− 2k + 2, k = t̂+ 1, . . . ,min(m,n). (5)

The value of t̂ is therefore equal to the largest integer k such that Sk(f̂ , ĝ) is

singular, and thus the computation of t̂ reduces to the determination of the rank95

of each matrix Sk(f̂ , ĝ).
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An AGCD of f(y) and g(y) was defined in Definition 2.1, but it may not

be suitable for the solution of practical problems because it is a function of ǫ,

which may not be known. Equation (5) allows a definition of the degree of an

AGCD of f(y) and g(y) that is independent of ǫ to be given. This definition of100

the degree of an AGCD is posed in terms of the condition number κ(Sk(f, g))

of Sk(f, g) because κ(Sk(f, g)) is large if minor perturbations in f(y) and/or

g(y) induce singularity in Sk(f, g), but κ(Sk(f, g)) is small if Sk(f, g) is distant

from singularity. The ratio of this condition number for two successive values

of k can be used to calculate the degree of an AGCD of f(y) and g(y) because105

it allows the change from singularity to non-singularity of Sk(f, g), with respect

to a unit change in the value of k, to be determined.2

Definition 3.1. Let f(y) and g(y) be polynomials of degrees m and n respec-

tively, and let Sk(f, g), k = 1, . . . ,min(m,n), be the kth Sylvester subresultant

matrix, where S1(f, g) = S(f, g). If κ(Sk(f, g)) is the condition number of110

Sk(f, g), then the degree t of an AGCD of f(y) and g(y) is equal to the value

of k for which the ratio κ(Sk(f, g))/κ(Sk+1(f, g)), k = 1, . . . ,m + n − 2k + 1,

attains its maximum value,

t = arg max
k=1,...,m+n−2k+1

κ(Sk(f, g))

κ(Sk+1(f, g))
.

It follows from (4) that

rank Sk(f̂ , ĝ) = rank D−1
k Tk(f̂ , ĝ)Qk, (6)

and since D−1
k and Qk are non-singular, it also follows that115

rank Sk(f̂ , ĝ) = rank Tk(f̂ , ĝ) = rank D−1
k Tk(f̂ , ĝ) = rank Tk(f̂ , ĝ)Qk, (7)

and thus the second, third and fourth expressions can, in principle, be used for

the determination of the rank of Sk(f̂ , ĝ). It may be thought it is easiest to use

2The degree and coefficients of an AGCD are defined in Definition 2.1, but only the degree

of an AGCD is defined in Definition 3.1. This restriction in Definition 3.1 is justified because

this paper is concerned with the computation of the degree of an GCD, and not its coefficients.
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Tk(f̂ , ĝ) because of the simplicity of the formation of its entries, but it follows

from (2) that even if ai, bj = O(1), these entries may range over several orders

of magnitude because of the binomial terms, and this may cause numerical120

problems [8, 10]. This consideration also shows that numerical problems may

arise when Tk(f̂ , ĝ)Qk is used to determine the degree of the GCD of f̂(y) and

ĝ(y) because each non-zero entry of this matrix contains the product of two

binomial terms.

Similar problems occur when D−1
k Tk(f̂ , ĝ) is used, but they manifest them-125

selves slightly differently because its entries contain the binomial terms
(

m

i

)

(

m+n−k
p

) , i = 0, . . . ,m, p = i, . . . , n− k + i,

and
(

n

j

)

(

m+n−k
q

) , j = 0, . . . , n, q = j, . . . ,m− k + j,

and thus the range of the magnitude of the terms in the denominators is sig-

nificantly larger than the range of the magnitude of the terms in the numer-

ators, even for moderate values of m and n. It therefore follows that even if130

ai, bj = O(1), the numerical problems stated above may arise when D−1
k Tk(f̂ , ĝ)

is used to determine the degree of the GCD of f̂(y) and ĝ(y). The problems asso-

ciated with the second, third and fourth expressions in (7) show, therefore, that

it is necessary to consider the modified Sylvester matrix and its subresultant

matrices, which are defined in (6) and whose binomial terms are135

(

m

i

)(

n−k

p−i

)

(

m+n−k
p

) , i = 0, . . . ,m, p = i, . . . , n− k + i,

and
(

n
j

)(

m−k
q−j

)

(

m+n−k
q

) , j = 0, . . . , n, q = j, . . . ,m− k + j.

Computational experiments in Section 4 show that D−1
k Tk(f̂ , ĝ)Qk is the best

form of the Sylvester matrix and its subresultant matrices, with respect to the

complexity of the computation of the entries of the matrix, the condition number

7



and the minimisation of the ratio of the entry of maximum magnitude to the140

entry of minimum magnitude, to use for the rank test (5). This form appears to

be the most complicated of the four forms in (7), but it is shown in the sequel

that its advantages with respect to the other three forms are significant.

4. An alternative form for the entries of Sk(f̂ , ĝ)

Each entry of Sk(f̂ , ĝ) = D−1
k Tk(f̂ , ĝ)Qk requires the evaluation of three bi-145

nomial terms, but it is shown in this section it can be rearranged, such that only

two binomial terms need be evaluated, which leads to more efficient computa-

tions. It is then shown that Sk(f̂ , ĝ) can be obtained from Sj(f̂ , ĝ), j < k, by

a series of matrix multiplications. This method for the computation of Sk(f̂ , ĝ)

from Sj(f̂ , ĝ) differs from the method in [19], where each matrix Sk(f̂ , ĝ) is150

computed using the matrix multiplications in (4).

4.1. Rearrangement of the entries of Sk(f̂ , ĝ)

The matrix Sk(f̂ , ĝ) has the form













































â0(m0 )(
n−k

0 )
(m+n−k

0 )
b̂0(n0)(

m−k

0 )
(m+n−k

0 )
â1(m1 )(

n−k

0 )
(m+n−k

1 )

. . .
b̂1(n1)(

m−k

0 )
(m+n−k

1 )

. . .

...
. . .

â0(m0 )(
n−k

n−k)
(m+n−k

n−k )

...
. . .

b̂0(n0)(
m−k

m−k)
(m+n−k

m−k )
...

. . .
â1(m1 )(

n−k

n−k)
(m+n−k

n−k+1 )

...
. . .

b̂1(n1)(
m−k

m−k)
(m+n−k

m−k+1)
âm(mm)(

n−k

0 )
(m+n−k

m )

. . .
...

b̂n(nn)(
m−k

0 )
(m+n−k

n )

. . .
...

. . .
...

. . .
...

âm(mm)(
n−k

n−k)
(m+n−k

m+n−k)
b̂n(nn)(

m−k

m−k)
(m+n−k

m+n−k)













































, (8)

and its entries are functions of k, which implies they differ from the entries of

Sk−1(f̂ , ĝ). It follows from (8) that Sk(f̂ , ĝ) can be partitioned as155

Sk(f̂ , ĝ) =
[

Ck(f̂) Ck(ĝ)
]

, (9)
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where Ck(f̂) ∈ R
(m+n−k+1)×(n−k+1) and Ck(ĝ) ∈ R

(m+n−k+1)×(m−k+1) contain

the coefficients of f̂(y) and ĝ(y) respectively. Entry (i, j) of Ck(f̂) is given by

Ck(f̂)(i,j) =



















âi−j( m

i−j)(
n−k

j−1)
(m+n−k

i−1 )
,

j = 1, . . . , n− k + 1,

i = j, . . . ,m+ j,

0, otherwise,

(10)

and similarly, entry (i, j) of Ck(ĝ) is given by

Ck(ĝ)(i,j) =



















b̂i−j( n

i−j)(
m−k

j−1 )
(m+n−k

i−1 )
,

j = 1, . . . ,m− k + 1,

i = j, . . . , n+ j,

0, otherwise.

(11)

The binomial terms in these expressions are functions of i or j, and it is shown

they can be simplified, such that two, and not three, binomial terms need be

evaluated for each value of k. These modified expressions have many advantages,

including the simplification of the calculation of the geometric means of the non-

zero entries of Ck(f̂) and Ck(ĝ), and the removal of constant column multipliers160

from these matrices. Also, they allow the development of an equation in which

Sk(f̂ , ĝ) is expressed in terms of Sj(f̂ , ĝ), j < k.

The binomial terms in entry (i, j) of Ck(f̂), which is defined in (10), can be

simplified

(

m

i−j

)(

n−k

j

)

(

m+n−k
i

) =

(

m+n−k−i

n−k−j

)(

i

j

)

(

m+n−k
n−k

) ,

and thus (10) and (11) can be written as165

Ck(f̂)(i,j) =



















âi−j(m+n−k−i+1
n−k−j+1 )(i−1

j−1)
(m+n−k

n−k )
,

j = 1, . . . , n− k + 1,

i = j, . . . ,m+ j,

0, otherwise,

(12)

and

Ck(ĝ)(i,j) =



















b̂i−j(m+n−k−i+1
m−k−j+1 )(i−1

j−1)
(m+n−k

m−k )
,

j = 1, . . . ,m− k + 1,

i = j, . . . , n+ j,

0, otherwise,

(13)
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respectively. The forms of Ck(f̂) and Ck(ĝ) in (10) and (11) show that the

denominators must be evaluated m + n − k + 1 times for each value of k, but

their forms in (12) and (13) are computationally more efficient because they

require only two evaluations for each value of k. These improved expressions for170

the entries of Ck(f̂) and Ck(ĝ) require that the modified Sylvester matrix and its

subresultant matrices (4) be used, rather than the standard form D−1
k Tk(f̂ , ĝ).

The denominators can be removed from Ck(f̂) and Ck(ĝ) because they do

not change the properties of Sk(f̂ , ĝ) for the computation of the degree of the

GCD of f̂(y) and ĝ(y). In particular, their removal is equivalent to scaling f̂(y)

and ĝ(y) by, respectively,
(

m+n−k

n−k

)

and
(

m+n−k

m−k

)

for each value of k, and thus

if the modified Sylvester matrix and its subresultant matrices from which the

denominators are omitted are denoted by S̃k(f̂ , ĝ),

S̃k(f̂ , ĝ) =
[

C̃k(f̂) C̃k(ĝ)
]

, k = 1, . . . ,min(m,n), (14)

then

C̃k(f̂) =

(

m+ n− k

n− k

)

Ck(f̂) and C̃k(ĝ) =

(

m+ n− k

m− k

)

Ck(ĝ). (15)

The simplifications (12) and (13) of the entries of D−1
k Tk(f̂ , ĝ)Qk are one advan-

tage of this modified form of the Sylvester matrix and its subresultant matrices,175

and its other advantages arise from consideration of the condition numbers,

and the magnitudes of the entries, of D−1
k Tk(f̂ , ĝ)Qk, D

−1
k Tk(f̂ , ĝ), Tk(f̂ , ĝ) and

S̃k(f̂ , ĝ), which is defined in (14). These advantages are considered in Example

4.1.

Example 4.1. Let the degree and coefficients of f̂(y) bem = 50 and âi = 1, i =180

0, . . . , 50, and let the degree and coefficients of ĝ(y) be n = 5 and b̂j = 1, j =

0, . . . , 5. The restriction that the coefficients be equal to one makes it easier to

isolate the effects of the binomial coefficients. Figures 1 and 2 show the variation

of log10 κ(D
−1
k Tk(f̂ , ĝ)Qk) and log10 κ(S̃k(f̂ , ĝ)), and log10 κ(D

−1
k Tk(f̂ , ĝ)Qk),

log10 κ(D
−1
k Tk(f̂ , ĝ)) and log10 κ(Tk(f̂ , ĝ)), respectively, with k, where κ(X) de-185

notes the condition number of X . Figure 3 shows the ratios, on a logarithmic

10



scale, of the entry of maximum magnitude to the entry of minimum magnitude

of D−1
k Tk(f̂ , ĝ)Qk, D

−1
k Tk(f̂ , ĝ) and Tk(f̂ , ĝ).

The degree of ĝ(y) was then changed to n = 25 and n = 45, and the results

are shown in Figures 4, 5 and 6, and Figures 7, 8 and 9, respectively. The graphs190

in the figures and other results show the advantages of performing all the GCD

computations using the modified Sylvester matrix and its subresultant matrices

D−1
k Tk(f̂ , ĝ)Qk, k = 1, . . . ,min(m,n):

1. Figures 1, 4 and 7 show that κ(D−1
k Tk(f̂ , ĝ)Qk) is several orders of magni-

tude smaller than κ(S̄(f̂ , ĝ)), apart from for small values of k, when they195

are approximately equal.

2. Figures 2, 5 and 8 show that

κ(D−1
k Tk(f̂ , ĝ)Qk) < κ(D−1

k Tk(f̂ , ĝ)), κ(Tk(f̂ , ĝ)),

for all values of k, and the maximum ratio between these condition num-

bers occurs for small values of k.

3. Figures 3, 6 and 9 show the ratios τ1 and τ2 of the entry of maximum mag-200

nitude to the entry of minimummagnitude of, respectively,D−1
k Tk(f̂ , ĝ)Qk

and D−1
k Tk(f̂ , ĝ). The value of this ratio for Tk(f̂ , ĝ) is also shown, and

it is constant because its entries are functions of m and n only, and they

are independent of k. It is seen that τ1/τ2 ≪ 1 if m(n) is much larger

than n(m), and it increases as m → n. Even though the coefficients of205

f̂(y) and ĝ(y) are equal to one, the ratios τ1 and τ2 may be very large for

moderate and large values of m and n, and these large values can cause

numerical problems in polynomial computations [8, 10].

The graphs in Figures 1 - 9 are typical of the results obtained with other val-

ues of m,n and k, but there are combinations of m,n and k for which the trends210

in these figures are not observed and slightly different results are obtained. �

The results of Example 4.1 suggest it is better to use the modified form

D−1
k Tk(f̂ , ĝ)Qk of the Sylvester matrix and its subresultant matrices than the

standard formD−1
k Tk(f̂ , ĝ) because of its smaller condition number for all values

11
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Figure 1: The condition numbers of (a) D−1

k
Tk(f̂ , ĝ)Qk and (b) S̃k(f̂ , ĝ), against k, for m = 50

and n = 5.
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Figure 2: The condition numbers of (a) D−1

k
Tk(f̂ , ĝ)Qk, (b) D−1

k
Tk(f̂ , ĝ) and (c) Tk(f̂ , ĝ),

against k, for m = 50 and n = 5.
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Figure 3: The ratios of the entry of maximum magnitude to the entry of minimum magnitude

of (a) D−1

k
Tk(f̂ , ĝ)Qk, (b) D−1

k
Tk(f̂ , ĝ) and (c) Tk(f̂ , ĝ), against k, for m = 50 and n = 5.

12



k
5 10 15 20 25

lo
g 

co
nd

iti
on

 n
um

be
r

20

25

30

35

40

(a)

(b)

Figure 4: The condition numbers of (a) D−1

k
Tk(f̂ , ĝ)Qk and (b) S̃k(f̂ , ĝ), against k, for m = 50

and n = 25.
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Figure 5: The condition numbers of (a) D−1

k
Tk(f̂ , ĝ)Qk, (b) D−1

k
Tk(f̂ , ĝ) and (c) Tk(f̂ , ĝ),

against k, for m = 50 and n = 25.
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Figure 6: The ratios of the entry of maximum magnitude to the entry of minimum magnitude

of (a) D−1

k
Tk(f̂ , ĝ)Qk, (b) D−1

k
Tk(f̂ , ĝ) and (c) Tk(f̂ , ĝ), against k, for m = 50 and n = 25.
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Figure 7: The condition numbers of (a) D−1

k
Tk(f̂ , ĝ)Qk and (b) S̃k(f̂ , ĝ), against k, for m = 50

and n = 45.
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Figure 8: The condition numbers of (a) D−1

k
Tk(f̂ , ĝ)Qk, (b) D−1

k
Tk(f̂ , ĝ) and (c) Tk(f̂ , ĝ),

against k, for m = 50 and n = 45.
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Figure 9: The ratios of the entry of maximum magnitude to the entry of minimum magnitude

of (a) D−1

k
Tk(f̂ , ĝ)Qk, (b) D−1

k
Tk(f̂ , ĝ) and (c) Tk(f̂ , ĝ), against k, for m = 50 and n = 45.
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of k, and τ1 ≤ τ2. Figures 6 and 9 show that the ratio τ1 may be large, but215

it is shown in Section 5 that f(y) and g(y) are processed before an AGCD

is computed, such that τ1 is minimised. The range of the magnitudes of the

entries of Tk(f̂ , ĝ) may be more or less than the range of the magnitudes of the

entries of D−1
k Tk(f̂ , ĝ)Qk, depending on the values of m,n and k, but Figures

2, 5 and 8 show that its condition number is larger than the condition number220

of D−1
k Tk(f̂ , ĝ)Qk. It is important to note that these observations arise from

computational experiments, and they are not theoretical derivations.

Equations (12) and (13) show that the entries of D−1
k Tk(f̂ , ĝ)Qk can be

computed more efficiently than the entries of D−1
k Tk(f̂ , ĝ), and the next section

shows that the entries of D−1
k Tk(f̂ , ĝ)Qk can also be computed recursively.225

4.2. The computation of Sk(f̂ , ĝ) from Sk−1(f̂ , ĝ)

An equation that allows the entries of Sk(f̂ , ĝ) to be computed from the en-

tries of Sk−1(f̂ , ĝ) is developed in this section. The partitioned form of Sk(f̂ , ĝ) is

shown in (9), and it is adequate to establish the relationship between Ck(f̂) and

Ck−1(f̂) because an identical relationship is valid between Ck(ĝ) and Ck−1(ĝ),230

with m replaced by n.

Theorem 4.1. The matrices Ck(f̂) and Ck−1(f̂) satisfy

Ck(f̂) = λk−1Ak−1(f̂ , ĝ)Ck−1(f̂)Bk−1(ĝ), (16)

where Ak−1 = Ak−1(f̂ , ĝ) is given by

Ak−1 =

















0 1
1

0 1
2

. . .

0 1
m+n−(k−1)

















∈ R
(m+n−k+1)×(m+n−k+2), (17)

15



Bk−1(ĝ) =























0 0 · · · 0

1

2

. . .

n− (k − 1)























∈ R
(n−k+2)×(n−k+1), (18)

λk−1 =

(

m+n−k+1
n−k+1

)

(

m+n−k
n−k

) =
m+ n− k + 1

n− k + 1
,

and the only non-zero entries of Ak−1(f̂ , ĝ) and Bk−1(ĝ) are on their super-235

diagonal and sub-diagonal, respectively.

Proof Use the definitions of Ck(f̂), Ak−1(f̂ , ĝ), Bk−1(ĝ) and λk−1 to estab-

lish the equivalence of the left and right hand sides of (16). �

The application of Theorem 4.1 to Ck(ĝ) shows that

Sk(f̂ , ĝ) =
[

Ck(f̂) Ck(ĝ)
]

= Ak−1(f̂ , ĝ)
[

λk−1Ck−1(f̂)Bk−1(ĝ) µk−1Ck−1(ĝ)Bk−1(f̂)
]

,

(19)

where Bk−1(f̂) ∈ R
(m−k+2)×(m−k+1) is given by240

Bk−1(f̂) =























0 0 · · · 0

1

2

. . .

m− (k − 1)























and µk−1 =
m+ n− k + 1

m− k + 1
,

and it therefore follows from (14) and (15) that (19) can be written in a form

in which the constants λk−1 and µk−1 are omitted,

S̃k(f̂ , ĝ) = Ak−1(f̂ , ĝ)
[

C̃k−1(f̂)Bk−1(ĝ) C̃k−1(ĝ)Bk−1(f̂)
]

. (20)
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Equations (19) and (20) show that the kth subresultant matrix can be com-

puted from the (k − 1)th subresultant matrix, and they can be extended to

the equations between Sk(f̂ , ĝ) and Sj(f̂ , ĝ), and S̃k(f̂ , ĝ) and S̃j(f̂ , ĝ), respec-245

tively, j < k. For simplicity, only the relationship between S̃k(f̂ , ĝ) and S̃j(f̂ , ĝ)

is derived, and this is considered in Theorem 4.2.

Theorem 4.2. The matrices C̃k(f̂) and C̃j(f̂) satisfy

C̃k(f̂) = Ak−1 · · ·

(

Aj+1

(

AjC̃j(f̂)Bj

)

Bj+1

)

· · ·Bk−1, (21)

where Ap = Ap(f̂ , ĝ), Bq = Bq(ĝ), and Ak−1(f̂ , ĝ) and Bk−1(ĝ) are defined in

(17) and (18) respectively. The product Ak−1 · · ·Aj yields the matrix Ak,j(f̂ , ĝ) ∈

R
(m+n−k+1)×(m+n−j+1),

Ak,j(f̂ , ĝ) =
k−1
∏

i=j

Ai(f̂ , ĝ) =











0 · · · 0 0!
(k−j)!

...
...

. . .

0 · · · 0 (m+n−k)!
(m+n−j)!











,

where the zero matrix is of order (m + n − k + 1) × (k − j) and the diagonal

matrix is square and of order (m + n − k + 1). The product Bj · · ·Bk−1 has a

similar form,

Bj,k(ĝ) =

k−1
∏

i=j

Bi(ĝ) =































0 . . . 0

...
...

0 · · · 0

(k−j)!
0!

. . .

(n−j)!
(n−k)!































∈ R
(n−j+1)×(n−k+1),

where the zero matrix is of order (k − j)× (n− k + 1) and the diagonal matrix

is square and of order (n− k + 1).250

Proof The equivalence of the left and right hand sides of (21) follows from the

definitions of Aj(f̂ , ĝ), Bj(ĝ) and C̃j(f̂). �
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5. Preprocessing operations

It has been shown it is advantageous to compute the degree of the GCD of

f̂(y) and ĝ(y) from Sk(f̂ , ĝ) = D−1
k Tk(f̂ , ĝ)Qk because it requires the evaluation255

of fewer binomial terms and, as shown in Example 4.1, the effect of the bino-

mial terms on its condition number is smaller than on the condition numbers of

D−1
k Tk(f̂ , ĝ) and Tk(f̂ , ĝ). The ratio of the entry of maximum magnitude to the

entry of minimum magnitude of D−1
k Tk(f̂ , ĝ)Qk may still, however, be large,

which may cause numerical problems, and numerical problems may also arise260

because of the partitioned form of Sk(f̂ , ĝ). This section considers three pre-

processing operations that must be performed on Sk(f̂ , ĝ) in order to minimise

the effects of these numerical problems. It is shown in [15, 16, 17, 19] that the

inclusion of these preprocessing operations on f̂(y) and ĝ(y) yields improved

results for AGCD computations. These preprocessing operations are:265

1. The normalisation of the entries in the first n−k+1 columns and the last

m− k + 1 columns of Sk(f̂ , ĝ) by their geometric means.

2. The replacement of ĝ(y) by αĝ(y) where α is a non-zero constant whose

optimal value is computed.

3. The transformation of the independent variable y to a new independent

variable w by the substitution,

y = θw, (22)

where θ is a parameter whose optimal value is computed.270

The first preprocessing operation requires the normalisation of Ck(f̂) and Ck(ĝ)

by the geometric means of their non-zero entries. These means are functions of k,

and expressions for them, using the explicit computation (4), are derived in [19].

This derivation is reviewed and the calculation of the geometric means when

the subresultant matrices are computed from (12) and (13) is then considered.275

Consider initially the geometric means computed in [19], which uses the

form of Sk(f̂ , ĝ) in (8). In particular, it is shown that the geometric mean of
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the non-zero entries of Ck(f̂) is

m
∏

i=0





∣

∣âi
(

m
i

)∣

∣

n−k+1 ∏n−k

j=0

(

n−k
j

)

∏n−k+i

j=i

(

m+n−k
j

)





1
(n−k+1)(m+1)

, (23)

and that the geometric mean of the non-zero entries of Ck(ĝ) is

n
∏

i=0







∣

∣

∣b̂i
(

n

i

)

∣

∣

∣

m−k+1
∏m−k

j=0

(

m−k

j

)

∏m−k+i

j=i

(

m+n−k
j

)







1
(m−k+1)(n+1)

. (24)

Consider now the computation of the geometric means of the non-zero entries

of the modified Sylvester matrix and its subresultant matrices when they are

expressed in the forms (12) and (13). The change of index î = i− j allows these

entries to be expressed as

Ck(f̂)(̂i+j+1,j+1) =



















â
î(

m+n−k−î−j

n−k−j )(î+j

j )
(m+n−k

n−k )
,

î = 0, . . . ,m,

j = 0, . . . , n− k,

0, otherwise,

(25)

and

Ck(ĝ)(̂i+j+1,j+1) =



















b̂
î(

m+n−k−î−j

m−k−j )(î+j

j )
(m+n−k

m−k )
,

î = 0, . . . , n,

j = 0, . . . ,m− k,

0, otherwise,

(26)

from which it is seen that the denominator in each entry of Ck(f̂) is constant

for each value of k, and likewise, the denominator in each entry of Ck(ĝ) is

constant for each value of k. These constant values simplify the calculation of

the geometric means of the non-zero entries of Ck(f̂) and Ck(ĝ).

The binomial terms in the numerators of (25) and (26) satisfy a simple

relationship that can be exploited for the efficient computation of the geometric

means of the non-zero entries in Ck(f̂) and Ck(ĝ). In particular, it follows from

the substitutions

p = n− k − j and q = m− i,
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that the evaluation of the geometric means of the numerators of the non-zero

terms in (25) is simplified because

n−k
∏

j=0

m
∏

i=0

(

m+ n− k − i− j

n− k − j

)

=

n−k
∏

j=0

m
∏

i=0

(

i+ j

j

)

.

This equation shows that the product of the first set of binomial terms in the

numerators of the entries of Ck(f̂) in (25) is equal to the product of the second

set of binomial terms, and thus the geometric mean of its non-zero entries is

λk =

(

∏m

i=0 |âi|
)

1
m+1

(

∏n−k

j=0

∏m

i=0

(

i+j

j

)

)
2

(n−k+1)(m+1)

(

m+n−k

n−k

) . (27)

The repetition of this analysis for Ck(ĝ) in (26) shows that the geometric mean

of its non-zero entries is

µk =

(

∏n

i=0

∣

∣

∣b̂i

∣

∣

∣

)
1

n+1
(

∏m−k

j=0

∏n

i=0

(

i+j

j

)

)
2

(m−k+1)(n+1)

(

m+n−k
m−k

) . (28)

The expressions (27) and (28) enable the normalised forms of f̂(y) and ĝ(y) to280

be calculated, and it is clear they are computationally more efficient than the

expressions (23) and (24), respectively, which are obtained from (4).

The second preprocessing operation requires that the normalised form of

ĝ(y) be scaled by α, and the third preprocessing operation requires the substi-

tution (22). It therefore follows that the three preprocessing operations yield285

the polynomials

ḟ(w) =

m
∑

i=0

(

āiθ
i
)

(

m

i

)

(1− θw)m−iwi, āi =
âi
λk

, (29)

and

αġ(w) = α

n
∑

i=0

(

b̄iθ
i
)

(

n

i

)

(1 − θw)n−iwi, b̄i =
b̂i
µk

. (30)

The next section considers the computation of the optimal values of α and θ,

and it is shown they are functions of k, that is, the computation of their optimal

values must be performed for each value of k, k = 1, . . . ,min(m,n).290
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5.1. The optimal values of α and θ

Numerical problems may occur when computations are performed on poly-

nomials whose coefficients vary widely in magnitude. The optimal values of α

and θ are therefore chosen such that the ratio of the entry of maximum mag-

nitude, to the entry of minimum magnitude, of Sk(ḟ , αġ) = D−1
k Tk(ḟ , αġ)Qk,295

where ḟ = ḟ(w) and ġ = ġ(w) are defined in (29) and (30) respectively, is

minimised.

The general expression for a non-zero entry in the first n− k+1 columns of

Sk(ḟ , αġ) is, from (25) and (29),

āi
(

m+n−k−i−j
n−k−j

)(

i+j
j

)

θi
(

m+n−k

n−k

) , i = 0, . . . ,m, j = 0, . . . , n− k,

and similarly, the general expression for a non-zero entry in the last m− k + 1

columns of Sk(ḟ , αġ) is, from (26) and (30),

αb̄i
(

m+n−k−i−j
m−k−j

)(

i+j
j

)

θi
(

m+n−k
m−k

) , i = 0, . . . , n, j = 0, . . . ,m− k.

It is convenient to define the sets Pk(θ) and Qk(α, θ) as

Pk(θ) =







∣

∣

∣
āi
(

m+n−k−i−j
n−k−j

)(

i+j
j

)

θi
∣

∣

∣

(

m+n−k
n−k

) ; i = 0, . . . ,m, j = 0, . . . , n− k







,

and

Qk(α, θ) =







∣

∣

∣αb̄i
(

m+n−k−i−j

m−k−j

)(

i+j

j

)

θi
∣

∣

∣

(

m+n−k
m−k

) ; i = 0, . . . , n, j = 0, . . . ,m− k







,

respectively, and the optimal values α0(k) and θ0(k) of α and θ minimise the

ratio of the entry of maximum magnitude to the entry of minimum magnitude

of Sk(ḟ , αġ). They are therefore given by

α0(k), θ0(k) = argmin
α,θ

{

max{max{Pk(θ)},max{Qk(α, θ)}}

min{min{Pk(θ)},min{Qk(α, θ)}}

}

,

for k = 1, . . . ,min(m,n), and it is shown in [19] that this minimisation leads

to a linear programming problem. The substitution of the solutions α0(k) and
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θ0(k) in (29) and (30) shows that the polynomials whose AGCD is computed

are f̄(w) and α0ḡ(w),

f̄(w) =
m
∑

i=0

(

āiθ
i
0

)

(

m

i

)

(1− θ0w)
m−iwi, (31)

and

α0ḡ(w) = α0

n
∑

i=0

(

b̄iθ
i
0

)

(

n

i

)

(1− θ0w)
n−iwi, (32)

where α0 = α0(k) and θ0 = θ0(k).

6. The degree of an AGCD

This section considers three methods for the computation of the degree of300

an AGCD of the polynomials f̄(w) and α0ḡ(w), which are defined in (31) and

(32) respectively. These methods are described in Sections 6.1 and 6.2, and they

use the residuals of a set of approximate linear algebraic equations and the QR

decomposition of each matrix Sk(f̄ , α0ḡ), k = 1, . . . ,min(m,n), respectively.

6.1. The method of residuals305

A method for the calculation of the degree t of an AGCD of f̄(w) and α0ḡ(w)

that is based on (5), using the residuals of a set of approximate linear algebraic

equations, is considered in [17]. These approximate equations are

Ak,qxq ≈ ck,q, k = 1, . . . ,min(m,n), q = 1, . . . ,m+ n− 2k + 2, (33)

where Ak,q and ck,q are derived from Sk(f̄ , α0ḡ). The residual rk,q of the least

squares solution of each of these approximate equations is computed, and the310

minimum residual for each value of k is calculated,

r(k) = min
q

{rk,q} , k = 1, . . . ,min(m,n). (34)

It is shown in [17] that if r(k) is large, Sk(f̄ , α0ḡ) has full column rank and

thus f̄(w) and α0ḡ(w) do not have an AGCD of degree k. If, however, r(k) is

small, then there exists at least one column of Sk(f̄ , α0ḡ) that is almost linearly
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dependent on its other columns, and thus Sk(f̄ , α0ḡ) is numerically singular. It315

therefore follows that f̄(w) and α0ḡ(w) have an approximate common divisor

of degree k, and the degree of an AGCD is equal to the largest value of k such

that Sk(f̄ , α0ḡ) is numerically singular. The degree t of an AGCD of f̄(w) and

α0ḡ(w) is therefore given by

t = arg max
k=1,...,min(m,n)−1

r(k + 1)

r(k)
,

that is, t is equal to the value of k for which the ratio between two successive320

values of r(k) is a maximum because this marks the change from a numerically

singular matrix Sk(f̄ , α0ḡ) (r(k) is small) to a matrix Sk+1(f̄ , α0ḡ) that is far

from singularity (r(k + 1) is large).

The residuals rk,q are usually calculated by the SVD, and this paper also

considers their computation by the QR decomposition. This decomposition has325

been used by other researchers [7, 20], but the methods used to calculate the

degree of an AGCD in this paper differ from the methods in these references.

6.2. The application of the QR decomposition

The value of t can also be calculated from the square upper triangular matrix

Rk of the QR decomposition of Sk(f̄ , α0ḡ),

Sk(f̄ , α0ḡ) = Qk





Rk

0



 , (35)

where Qk is an orthogonal matrix.3 Two tests can be performed on Rk in order

to determine the numerical rank of Sk(f̄ , α0ḡ), and therefore the degree of an330

AGCD of f̄(w) and α0ḡ(w).

1. The ratio ρ1(k) of the maximum diagonal entry of Rk to the minimum

diagonal entry of Rk,

ρ1(k) =
maxi {|Rk,i,i|}

mini {|Rk,i,i|}
, k = 1, . . . ,min(m,n), (36)

3It is clear that this matrix is not related to the diagonal matrix Qk of binomial factors

defined in (3).
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is computed, where Rk,i,j is entry (i, j) of Rk. Since ρ1(k) is finite if Rk

is non-singular and infinite if Rk is singular, it follows from (5) that t is

given by the maximum change between successive values of k,

t = arg max
k=1,...,min(m,n)−1

ρ1(k)

ρ1(k + 1)
.

2. If sk,i is the ith row of Rk, then the ratio ρ2(k) is defined as the ratio of

the maximum 2-norm to the minimum 2-norm of the rows of Rk,335

ρ2(k) =
maxi

{

‖sk,i‖2
}

mini
{

‖sk,i‖2
} , k = 1, . . . ,min(m,n). (37)

A matrix is near singularity if ρ2(k) is large, and it therefore follows that

t can also be computed from

t = arg max
k=1,...,min(m,n)−1

ρ2(k)

ρ2(k + 1)
.

Many AGCD computations, for the power and Bernstein bases, have shown

that ρ1(k) and ρ2(k) are useful for the (heuristic) computation of the rank of a

matrix, and therefore the degree of an AGCD of two polynomials.

7. Examples340

This section contains two examples that demonstrate the theory discussed

in the previous sections. The coefficients âi of the exact polynomial f̂(y) were

corrupted by random noise, such that the upper bound of the component-

wise relative error is a uniformly distributed random variable εi in the interval

[10−p, 10−q], p > q > 0, and similarly, for the coefficients b̂j of ĝ(y),345

ai = âi + δai, δai = εiâiri, i = 0, . . . ,m, (38)

and

bj = b̂j + δbj , δbj = εj b̂jrj , j = 0, . . . , n, (39)
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where ai and bj are the coefficients of the perturbed polynomials f(y) and g(y)

respectively, and ri and rj are uniformly distributed random variables in the

interval [−1, 1]. A method for the determination of the degree of an AGCD

of f(y) and g(y) that requires a threshold cannot be used because the upper350

bounds εi and εj of the relative errors are not constant.

The degree of an AGCD of f(y) and g(y) was also computed from the rank

loss of the modified Sylvester matrix D−1T (f̄ , α0ḡ)Q = D−1
1 T1(f̄ , α0ḡ)Q1 and

the Bézout matrix B(f, g) of f(y) and g(y) [3]. This matrix is square, like the

Sylvester matrix, but it differs from it because it is (a) of order max(m,n),355

rather than m+n, (b) symmetric, and (c) bilinear. It follows from property (c)

that the only preprocessing operation that need be applied is the transformation

of the independent variable y to the independent variable w, which is defined by

(22). The calculation of the optimal value of θ requires the solution of a linear

programming problem, which is considered in [19].360

Example 7.1. Consider the polynomials f̂(y) and ĝ(y),

f̂(y) =
19
∑

i=0

âi

(

19

i

)

(1− y)19−iyi

= (y − 0.10)4(y − 0.30)2(y − 0.50)2(y − 0.70)3 ×

(y − 0.80)2(y − 2.50)3(y + 3.40)3,

and

ĝ(y) =

16
∑

i=0

b̂i

(

16

i

)

(1− y)16−iyi

= (y − 0.10)3(y − 0.80)2(y − 0.85)4(y − 0.90)4(y − 1.10)3,

whose GCD is of degree five. The polynomials f(y) and g(y) were formed by

adding noise, where εi and εj are uniformly distributed random variables in

the range
[

10−10, 10−8
]

, as discussed above. The matrices D−1
k Tk(f, g)Qk, k =365

1, . . . , 16, were constructed by the evaluation of the binomial terms in (12)

and (13), and the recurrence equation (16) and its equivalent for g(y). The

preprocessing operations discussed in Section 5 were applied to these matrices,
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Figure 10: The variation of log10 ρ1(k) with k, when preprocessing is included, for Example

7.1.

computed by both methods, and thus the polynomials f̄(w) and α0ḡ(w), which

are defined in (31) and (32) respectively, were formed.370

The ratios ρ1(k) and ρ2(k), which are defined in (36) and (37) respectively,

were computed for both forms of construction of the modified Sylvester matrix

and its subresultant matrices, and the correct degree of the GCD was obtained

for both forms. In particular, Figures 10 and 11 show the variation of log10 ρ1(k)

and log10 ρ2(k) with k, and it is seen that the greatest change between successive375

values of ρ1(k) and ρ2(k) occurs at k = 5, which is correct because this is equal

to the degree of the GCD of f̂(y) and ĝ(y). Figure 12 shows the variation of

the residual log10 r(k), computed by the QR decomposition and SVD, where rk

is defined in (34), against k, and it is seen that the maximum gradient occurs

at k = 5, which is correct. The greatest difference in the residuals calculated380

by the two methods occurs for k < 5, and the residuals are equal for k ≥ 5.

The residuals computed by the QR decomposition increase monotonically with

k, but this property is not shared by the residuals computed by the SVD.

The computations described above were repeated, but the preprocessing op-

erations were not implemented, that is, normalisation by the geometric means385

is omitted and α0 = θ0 = 1. Figures 13 and 14 show, respectively, the varia-

tion of log10 ρ1(k) and log10 ρ2(k) with k, and Figure 15 shows the variation of

log10 r(k) with k, computed by the QR decomposition and the SVD. It is clear
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Figure 11: The variation of log10 ρ2(k) with k, when preprocessing is included, for Example

7.1.
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Figure 12: The residual log10 r(k) calculated by the QR decomposition and SVD, against k,

when preprocessing is included, for Example 7.1.
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Figure 13: The variation of log10 ρ1(k) with k, when preprocessing is not included, for Example

7.1.
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Figure 14: The variation of log10 ρ2(k) with k, when preprocessing is not included, for Example

7.1.

that Figures 13-15 yield incorrect results, which shows the importance of the

preprocessing operations.390

The normalised singular values log10 σi/σ1 of D−1T (f̄ , α0ḡ)Q, with and

without preprocessing, are shown in Figure 16 . The correct result is obtained

when preprocessing is included because the rank loss is five, but an incorrect

result (degGCD(f̂ , ĝ) = 2) is obtained when preprocessing is not included, and

it is interesting to note that the same incorrect result is obtained in Figures 13-395

15. Figure 17 shows the normalised singular values of the Bézout matrix B(f, g)

when preprocessing is, and is not, included. An incorrect result is obtained when

preprocessing is omitted because the rank loss is two, but the correct result is
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Figure 15: The residual log10 r(k) calculated by the QR decomposition and SVD, against k,

when preprocessing is not included, for Example 7.1.
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Figure 16: The normalised singular values of D−1T (f̄ , α0ḡ)Q, with and without preprocessing,

for Example 7.1.

obtained when preprocessing is included because the rank loss is five, and the

figure is therefore consistent with Figures 10-16. �400

Example 7.2. Consider the polynomials f̂(y) and ĝ(y),

f̂(y) =

21
∑

i=0

âi

(

21

i

)

(1− y)21−iyi

= (y − 0.10)3(y − 0.56)4(y − 0.75)3(y − 0.82)3 ×

(y − 1.37)3(y + 0.27)3(y − 1.46)2,
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Figure 17: The normalised singular values of the Bézout matrix B(f, g), with and without

preprocessing, for Example 7.1.

and

ĝ(y) =

22
∑

i=0

b̂i

(

22

i

)

(1− y)22−iyi

= (y − 0.10)2(y − 0.56)4(y − 0.75)3(y − 0.99)4 ×

(y − 1.37)3(y − 2.12)3(y − 1.20)3,

for which degGCD(f̂ , ĝ) = 12. Each coefficient of f̂(y) and ĝ(y) was perturbed

by a uniformly distributed random variable in the interval
[

10−10, 10−8
]

, as

shown in (38) and (39), thereby yielding the noisy polynomials f(y) and g(y).405

Both forms of the modified Sylvester matrix (using (12) and (13), and (16))

and its subresultant matrices were computed, and the preprocessing operations

were implemented, as described in Example 7.1.

Figures 18 and 19 show the variation of log10 ρ1(k) and log10 ρ2(k) with

k, and the degree k = 12 of the GCD of f̂(y) and ĝ(y) is clearly defined410

in both figures. These figures were obtained using the explicit construction

of D−1
k Tk(f̄ , α0ḡ)Qk, and identical results were obtained when the recurrence

equation (16) and its equivalent for g(y) were used. Figures 20 and 21 show

the variation of log10 r(k), computed by the QR decomposition and the SVD,

with k for the two forms of construction of the modified Sylvester matrix and415

its subresultant matrices. It is seen that both forms yield the correct result,

that the graphs are similar for k ≤ 12, and that they differ for k > 12.
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Figure 18: The variation of log10 ρ1(k) with k, when preprocessing is included, for Example

7.2.
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Figure 19: The variation of log10 ρ2(k) with k, when preprocessing is included, for Example

7.2.
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Figure 20: The residual log10 r(k) calculated by the QR decomposition and SVD, against k,

when D−1

k
Tk(f̄ , α0ḡ)Qk is constructed explicitly and preprocessing is included, for Example

7.2.
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Figure 21: The residual log10 r(k) calculated by the QR decomposition and SVD, against k,

when D−1

k
Tk(f̄ , α0ḡ)Qk is constructed using the recurrence equation (16) and its equivalent

for g(y), and preprocessing is included, for Example 7.2.

Good results were also obtained when the denominator was not included,

that is, the form of the modified Sylvester matrix and its subresultant matrices

(20) were used. Incorrect results were, however, obtained when the preprocess-420

ing operations were not included, which are therefore consistent with the results

of Example 7.1. Figure 22 shows the normalised singular values log10 σi/σ1 of

D−1T (f̄ , α0ḡ)Q, with and without preprocessing. The correct result is obtained

when preprocessing is included because the rank loss is 12, but an incorrect re-

sult is obtained when preprocessing is not included because the numerical rank425

is not defined, that is, a clear gap between two successive singular values does

not exist. Figures 23 shows the normalised singular values of the Bézout matrix

B(f, g) when preprocessing is, and is not, included. It is seen that the correct

result is obtained when preprocessing is included, but the numerical rank of

B(f, g) is not defined when f(y) and g(y) are not preprocessed. The results in430

Figures 22 and 23 are therefore consistent with the results in Figures 16 and 17

for Example 7.1. �

The computation of the degree of an AGCD of f(y) and g(y) was repeated

(noise was added to the coefficients of the exact polynomials, which were then435

preprocessed), but the matrices Tk(f, α0g) and D−1
k Tk(f, α0g), where Tk(f̂ , ĝ)
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Figure 22: The normalised singular values of D−1T (f̄ , α0ḡ)Q, with and without preprocessing,

for Example 7.2.
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Figure 23: The normalised singular values of the Bézout matrix B(f, g), with and without

preprocessing, for Example 7.2.
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is defined in (2), were used. The results were not good because the relative

errors in the computed coprime polynomials and AGCD were much larger than

their corresponding values obtained from D−1
k Tk(f, α0g)Qk. Also, the rank

loss of Tk(f, α0g) and the rank loss of D−1
k Tk(f, α0g) were not clearly defined,440

which shows it is better to compute a structured low rank approximation of the

Sylvester matrix of f(y) and g(y) from D−1
k Tk(f, α0g)Qk than from Tk(f, α0g)

and D−1
k Tk(f, α0g).

Figures 12, 15, 20 and 21 show that the residual computed by the QR de-

composition is smaller than the residual computed by the SVD for k < t. The445

simple use of the SVD of a matrix A that is near singularity may lead to a bad

result in a least squares problem because the reciprocal of the small singular

values of A must be computed. This solution is essentially the same as the so-

lution obtained with the function pinv in MATLAB, and it is associated with

a large error in the least squares solution if a tolerance for the small singular450

values of A is not specified. A better solution is obtained when these small

singular values are set equal to zero, which can be implemented by the addition

of a parameter tol to pinv. In this circumstance, the QR decomposition and

SVD yield residuals that may be considered equal, and thus the larger residuals

obtained by the SVD follow from the absence of the specification of tol in the455

arguments of pinv. It is noted that if A is ill-conditioned and its numerical rank

is not defined, that is, its singular values cannot be divided into two groups that

are separated by a large and well-defined gap, then the results from pinv may

be dependent upon the value of tol.

The results in Examples 7.1 and 7.2 are typical of the results obtained with460

other polynomials. For example, the inclusion of the preprocessing operations

yielded a significant improvement in the results, and the best results were ob-

tained when the terms in the denominator were included in the computations,

that is, the form Sk(f̄ , α0ḡ), rather than the form S̃k(f̄ , α0ḡ), was used, where

Sk(f̄ , α0ḡ) =
[

Ck(f̄) α0Ck(ḡ)
]

, S̃k(f̄ , α0ḡ) =
[

C̃k(f̄) α0C̃k(ḡ)
]

,

and C̃(f̂) and C̃(ĝ) are defined in (15). The values of ρ1(k) and ρ2(k) were good465
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measures of the change from singularity to non-singularity for the calculation

of the rank of Rk, which is defined in (35).

The rank loss of the Bézout matrix of f(y) and g(y) did not yield good results

for the degree of an AGCD when the preprocessing operations were omitted, and

better results were obtained when the polynomials were preprocessed. Other470

examples showed that the modified Sylvester matrix and its subresultant ma-

trices yielded better results than the Bézout matrix in the presence of errors in

the coefficients of f(y) and g(y). The inferior results obtained with the Bézout

matrix are noted by Bini and Marco [4], and it is believed this arises because

each entry of this matrix is of the form
∑

i,j(aibj − ajbi) and thus small errors475

in aibj and ajbi may lead to a large error in the difference (aibj − ajbi) because

of numerical cancellation.

All computations were performed in double precision using MATLAB on a

standard desktop computer using Windows 7.

8. Summary480

This paper has considered the application of the Sylvester and Bézout re-

sultant matrices to the calculation of the degree of an AGCD of two Bernstein

polynomials. It was shown that the binomial terms in the Bernstein basis func-

tions may cause numerical problems, the effects of which can be mitigated by

preprocessing the polynomials. It was shown that the best results are obtained485

when a modified form D−1
k Tk(f̄ , α0ḡ)Qk of the Sylvester matrix and its subre-

sultant matrices is used.
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