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Abstract Using multiobjective genetic programming with a complexity objective to over-
come tree bloat is usually very successful but can sometimes lead to undesirable collapse of
the population to all single-node trees. In this paper we report a detailed examination of why
and when collapse occurs. We have used different types of crossover and mutation operators
(depth-fair and sub-tree), different evolutionary approaches (generational and steady-state),
and different datasets (6-parity boolean and a range of benchmark machine learning prob-
lems) to strengthen our conclusion. We conclude that mutation has a vital role in preventing
population collapse by counterbalancing parsimony pressure and preserving population di-
versity. Also, mutation controls the size of the generated individuals which tends to dominate
the time needed for fitness evaluation and therefore the whole evolutionary process. Further,
the average size of the individuals in a GP population depends on the evolutionary approach
employed. We also demonstrate that mutation has a wider role than merely culling single-
node individuals from the population; even within a diversity-preserving algorithm such as
SPEA2 mutation is has a role in preserving diversity.

1 Introduction

It is widely recognized that unless specific measures are taken to prevent it, the chromosomes
in a genetic programming (GP) population will ‘bloat’ – that is, continue to grow in size
without any accompanying improvement in fitness. (Indeed, Langdon [18], and Langdon and
Poli [17] have shown that any variable length representation suffers from the same problem;
research on the causes of bloat has been recently summarized in [20].) The objections to
bloat are similarly well-rehearsed: i) Excessive computation times and ii) complex solutions
which are held to generalize less well than more compact trees. As a consequence, bloat
has been the subject of a great deal of research in recent years, both to understand the
phenomenon and to avoid its occurrence. Poli et al. [20] have summarized the three main
techniques used to control bloat in GP:

1. Limiting the maximum permissible tree depth (or size) to a pre-defined value.
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2. Tailoring the genetic operators
3. Employing parsimony to exert selective pressure which favors smaller trees.

The approach of limiting tree depth (or size) is unsatisfactory since the appropriate tree
depth (or size) required to solve a given problem is unknown and generally has to be ad-
justed iteratively by repeated runs. Silva and Almeida [22] have proposed a dynamic adap-
tation of the depth-limit although a hard, Koza-style depth-limit still has to be specified.
Pre-determining the maximum tree depth constitutes inductive bias.

Similarly, the tailoring of the genetic operators has proved problematic. Soule et al. [23]
found that targeting the redundant code held to be responsible for bloat did not prevent
excessive tree growth. Stevens et al. [24] have reported some useful results on controlling
bloat by varying the application of disruptive crossover but note that the effectiveness of
the method can depend critically on the threshold parameters. Despite showing promise,
adapting genetic operators remains an under-developed approach to bloat control.

Parsimony methods have proved popular with a number of authors. Luke and Panait [2]
have compared a large number of parsimony pressure methods (in conjunction with depth-
limiting). Parsimony pressure methods usually take one of three forms: First, some multiple
of a measure of tree complexity – typically the tree node count – is added to a problem-
specific error measure to form a solution fitness which favors small, low error trees and
tends to penalize large trees. This is effectively aregularizationframework but suffers from
the same drawback as conventional regularization, namely how to weight the relative con-
tributions of error and complexity to obtain the optimal solution [2]. In practice, this usually
involves experimentation.

Luke and Panait [19] have proposed a lexicographic parsimony pressure method which
principally favors fitness; if individuals have the same fitness, they are then ranked according
to size. The drawback with this method is that where few members of the population share
the same fitness, tree size is largely ignored [2].

The third parsimony pressure approach is to use a multiobjective method in which the
(strictly) non-commensurable objectives of problem-specific error and tree complexity are
handled in a Pareto optimization framework [8]. Here, given two solutions of, say, equal
error, the solution with the smaller number of nodes is said todominatethe larger solution,
is more highly ranked and is thus assigned a better fitness value. It is hence more likely to
be selected for subsequent breeding. What results from the Pareto framework is not a single
unique solution but a set of equivalent solutions which lie on a Pareto front (or surface) in
objective space and which delineate the fundamental trade-offs in the problem; no point on
the Pareto front can be modified to improve one objective without simultaneously degrading
another. Multiobjective GP (MOGP) has a number of advantages: As well as controlling
bloat very effectively, it does not require a pre-determined depth-limit parameter and the
tree depth is free to adjust to suit the problem at hand. We have successfully used MOGP for
a range of optimizations connected with pattern recognition problems [27–29]. Rodrı́guez-
Vázquez et al. [21] have also reported using MOGP on a systems identification problem in
control engineering.

Although the MOGP approach appears to be successful at controlling bloat, one of the
question marks that has been placed over the method is the issue of the (typically very
rapid) collapseof the whole population to all single-node trees. Our initial motivation for
the present work arose from the comments from a number of anonymous reviewers of other
papers we have submitted for publication that multiobjective methods are not “appropriate”
for controlling bloat. In fact, we have even been told by one reviewer – quite contrary to
all the experience we have gathered over several years – that MO methods “do not work”
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and lead to population collapse. Most of these anonymous reviewers have cited the work
of de Jong and Pollack [15] as justification for their view. Thus our primary motivator has
been to investigate the role of population collapse in MOGP with a view to reconciling
these opposing observations: In essence, we set-out to answer the question “what are we
(and other adherents of the MO approach) doing that prevents population collapse and that
de Jong and Pollack are not (or vice versa)?” We have previously presented preliminary
results from this work [4]; the present paper expands that research to a larger and wider set
of circumstances and offers an alternative but complementary analysis of the broader case
of population dynamics in multiobjective genetic programming (MOGP).

In the remainder of this paper we will first set-out in Section 2 our methodology and
describe the datasets used in this study. In Section 3 we approach our principal question
concerning population collapse by reviewing the results of de Jong and Pollack [15]. Here
we identify the key difference between our formulation and that of de Jong and Pollack that
causes these authors to observe population collapse, namely the pivotal role ofmutation. We
then go on in Section 4 to compare the influence of generational and steady-state evolution-
ary approaches. Additional experiments performed to further confirm our conclusions are
presented in Section 5. In Section 6, we discuss the broader implications of this work and
offer some concluding remarks.

2 Methodology and Datasets

2.1 Baseline Algorithm

Unless indicated to the contrary, we have used a baseline MOGP formulation throughout
this work; this has been deliberately formulated to reproduce the canonical evolutionary
method in [15] with which we want to make direct comparison. Our two objectives to be
simultaneously minimized are: i) Tree node count which is a simple-to-calculate measure
of complexity of the induced mapping, and ii) A problem-specific error calculated over the
training set. We have used a fixed population size of 100 individuals, each of which uses a
tree representation of the mapping in question.

The initial population was generated with 50% of the trees of fixed depth 7, and the
remaining 50% of uniformly distributed depth in the range[1. . .7]; all initial trees were
full trees, that is, the depth of all leaves were identical in any given tree. Thereafter, tree
depth (and symmetry) were allowed to vary without limit, determined only by the selective
pressures.

Selection for breeding followed the scheme of Fonseca and Fleming [13]. Individuals in
each generation were ranked according to their Pareto dominance. Thereafter, the rank was
mapped to a scalar,si such that:

si = 1−
Rank(i)

max(Rank)

whereRank(i) is the rank of thei-th individual andmax(Rank) is the maximum rank in the
sorted population. These scalar values,si were then used in a conventional roulette wheel
selection strategy. See [13] for further details.
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2.2 Crossover Operators

We have used one of two possible crossover operators: Depth-fair crossover [14] or conven-
tional Koza-style sub-tree crossover. Thedepth-fair crossover operator of Ito et al. [14]
has been employed since we have found this to be a very effective search strategy. In
depth-fair crossover, first a depth in a given parent tree is selected by assigning each depth
d ∈ [0. . .dmax] in the tree aselection ratiogiven by:

rd =
1
2d where d ∈ [0. . .dmax]

whered= 0 indicates the root node of the tree.
The depth at which crossover is to take place is then selected in a conventional roulette

wheel manner where the size of each segment of the ‘roulette wheel’ is proportional tord

and the constant of proportionality is given by the normalization condition on the probability
of selection. Having selected a depth,dxover at which to perform crossover, we then select
one of then possible sub-trees at depthdxover, again using roulette wheel selection. Here
the size of each segment is proportional to the node count of each of then sub-trees; the
normalizing constant of proportionality is the sum of the node counts over then sub-trees.
Depth-fair crossover thus tends to select the larger sub-trees at a given depth. Finally, the
two selected sub-trees in each parent are exchanged.

Conventional Koza-style sub-tree crossover [1] assigns an equal probability of crossover
to each node in a given parent tree. (In this work we have not used the version of sub-tree
crossover which biases the selection 90/10 against leaf nodes [20].)

This baseline algorithm has been varied, as described below, to explore specific facets of
the problem. In particular, the two crossover operators – depth-fair and sub-tree crossover –
have rather different characteristics. Depth-fair crossover tends to select nodes near the top
of the tree and therefore tends to be more disruptive. Sub-tree crossover, on the other hand,
has a greater tendency to exchange sub-trees towards the bottom of a tree. We explore the
influence of both operators on collapse in the rest of this paper.

2.3 Mutation Operators

One of two possible mutation operators was employed:

– Depth-fair mutation [29] which used the same means of determining the locus of muta-
tion as the depth-faircrossoveroperation [14] – see Section 2.2.

– Conventional Koza-style sub-tree mutation.

In the depth-fair version of mutation, the tree depth,dmut is selected in exactly the same
manner as described for depth-fair crossover in Section 2.2. Similarly, one of then sub-trees
at depthdmut is selected, again in the same way as described in Section 2.2. Having selected
a node in a tree according to the depth-fair procedure, in depth-fair mutation the selected
sub-tree is replaced with a new randomly created full sub-tree of depthNmut. (The value of
Nmut is varied in different experiments – see the following sections for precise values.) On
the other hand, if the root node is selected, the whole tree is replaced by a new, randomly
created full tree of depth 7. Notice that in depth-fair mutation, the root node of the tree is
selected∼50% of the time, so under normal circumstances, about half the time mutation
results in a completely new tree.
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In sub-tree mutation, the sub-tree to be replaced is chosen by selecting each node in
the tree with equal probability. Here, the probability of selecting the root node (and thereby
generating a completely new tree) is 1/N, whereN is the number of nodes in the tree. As
with depth-fair mutation, the sub-tree selected for mutation is replaced by a new, randomly
generated full tree of depthNmut.

In the same way as with the two crossover operations employed, the two mutation oper-
ators have different characteristics, tending either to select near the top of a tree or near the
bottom.

In both cases, when mutation was used it wasalwaysapplied to the offspring resulting
from a crossover operation. That is, the probability of mutation was set to unity. As a result
of our preliminary experiments, our principal motivation has been to explore the role of
mutation and so when we mutate, we always mutate. We consider mutation probabilities
less than one in Section 5 of this paper.

2.4 Evolutionary Approach

We have investigated both generational and steady-state evolutionary paradigms. In the gen-
erational approach, the top ranked 34 (∼ one third of the) members of the population are
copied unaltered to the next generation. The remaining 66 members of the new generation
are produced by selection and the genetic operations of crossover and (optionally) muta-
tion. This is the same elitist approach used by de Jong and Pollack [15] and based on our
observations in this work, appears necessary to obtain convergence.

The steady-state strategy we have used is a(μ+2) scheme in which two parents produce
a pair of children which are appended to the population; the population is then re-ranked and
the two weakest individuals discarded. This is a straightforward GP adaptation of the Pareto
Converging Genetic Algorithm (PCGA) of Kumar and Rockett [16]. We have found this
approach to be a very effective multiobjective genetic algorithm (GA) method [16] as well
as for MOGP [25,26].

2.5 Datasets

We have studied two types of dataset in this work. Since our primary objective is to re-
examine the results of de Jong and Pollack [15], we have considered the simple 6-parity
boolean problem. For this problem, we have employed the functions: AND, OR, NAND
and XOR and continued evolution for a fixed number of 10,000 tree evaluations (i.e.∼100
generations for the generational algorithm). Here the training data comprised the exhaustive
set of possibilities of the boolean function and the aim was to reduce the number of mapping
errors to zero.

We have also studied four well-known machine learning (ML) problems from the UCI
Repository [5]: BUPA Liver Disorders (BUPA), Pima Indians Diabetes (PID), Glass (GLASS)
reduced to a two-class problem to differentiate between float and non-float glass types, and
Wisconsin Breast Cancer (WBC). For each of the machine learning datasets, the task was
to project the real-valued raw pattern attributes into real 1D decision space such that the
two classes are maximally separated by a simple threshold [29]: the objective was to min-
imize the number of misclassified patterns (0/1 loss). For the ML problems, we have used
the binary functions:+, −, × and protected division. Protected division returns zero if the
divisor is zero; otherwise it returns the normal dividend.) In addition, we have employed
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constants drawn from the set[0.1,0.2, . . . ,0.9,1.0]. Each run was continued for 20,000 tree
evaluations (equivalent to∼200 generations of the generational algorithm). Each ML dataset
was repeatedly split into two with one half used as the training set and the other as the test
set. The statistical differences between trained performance were gauged using Alpaydin’s
modification [3] of Dietterich’s 5× 2 cv test [10].

3 Population Collapse

De Jong and Pollack [15] have observed that the population in MOGP can rapidly collapse
to all trees of a single-node (1-node). According to these authors, when faced with two ob-
jectives – an error measure and a tree size – an MOGP algorithm will find it harder to reduce
the error measure since this requires sophisticated exploration of the search space and the
discovery of better solutions. Reducing the size of the trees, on the other hand, is fairly easy
since this can be achieved simply by selecting the smaller individuals. De Jong and Pollack
concluded that it was necessary to incorporateexplicit diversity-preserving mechanisms to
prevent population collapse. Contrary to this, we (and other workers) have not previously
needed to use any diversity-preserving mechanisms: resolving the reasons for this contra-
diction is the principal motivating factor in this work.

Our starting point was to carefully analyze the work in [15]. These authors conducted
a set of three experiments which variously comprised: mutation, a phenotype diversity-
preserving mechanism and a genotype diversity-preserving mechanism although the latter
is only readily applicable to discrete optimization problems; crossover was applied in all of
de Jong and Pollack’s experiments.

Quite how single-node trees can arise in GP can be seen from Figure 1. If crossover
selects the root node of one parent tree and a leaf node from the other, then one of the
offspring will be a single-node tree. (The tendency to select a root node will be particularly
strong in depth-fair crossover at∼50% whereas sub-tree mutation tends to select leaf nodes.)
Indeed Dignum and Poli [11] have shown that sub-tree crossover has a strong tendency to
create short – including presumably 1-node – trees.

Once 1-node trees are present in the population they will tend to be be highly ranked due
to their small size and hence likely to be selected for breeding. Clearly, any 1-node tree par-
ticipating in crossover with another 1-node tree will produce only more 1-node trees. Single
node trees will therefore tend to accumulate. In the absence of any mechanism to ensure
diversity, the population can rapidly degenerate to all 1-node trees and effective evolution-
ary search ceases – in most problems it is unlikely that a 1-node trees will provide a useful
solution. This situation is in intriguing contrast to single-objective GP. Given that crossover
appears to have a strong predisposition to create 1-node trees [11] which are highly ranked
in MOGP due to their size, collapse may ensue. In single-objective GP, however, the single
fitness measure can lead to bloat. Thus the crossover bias theory of Dignum and Poli [11]
might offer further insight into how multiobjective GP combats bloat.)

3.1 Analysis of de Jong and Pollack’s Work [15]

Although the potential mechanism by which population collapse takes place is quite clear
and highly plausible, the principal motivation behind this paper has been to reconcile the
findings of de Jong and Pollack with our own experience (and that of others) that explicit
diversity preservation is not necessary to prevent collapse. As an initial step, we carefully
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Fig. 1 Illustration of how crossover can produce single-node trees

analyzed the experiments in [15]. These basically comprised three series of experiments
which can be summarized in Table 1. In the first series, crossover alone was used and rapid
population collapse was observed. In the second series, crossover, mutation and a diversity-
preserving mechanism in phenotype space was used; no collapse was seen. The third and
final series of experiments used crossover, mutation and a diversity-preserving mechanisms
in both phenotypic and genotypic spaces; again no collapse was observed. When viewed in
the form of Table 1, an immediate concern is the simultaneous introduction of both mutation
and phenotype diversity preservation in the second series of experiments. Nonetheless, we
have conducted a series of initial experiments to systematically address the key question of
this paper.

Table 1 Summary of the experiments of de Jong and Pollack[15]

Expt. Crossover Mutation Phenotype
Diversity

Genotype
Diversity

Collapse?

#1 � – – – Yes
#2 � � � – No
#3 � � � � No
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3.2 Initial Experiments

As an initial series of experiments, we have used MOGP to evolve solutions to the boolean 6-
parity problem, an approach which mirrors the initial experiments in [15]. Using crossover
alone (no mutation or diversity preservation) resulted in rapid collapse. This is illustrated
in the two upper curves of Figure 2 which show the percentages of 1-node trees in the
population as functions of the number of tree evaluations, under a range of experimental
conditions. For both sub-tree crossover/no mutation and depth-fair crossover/no mutation
collapse to all single-node individuals is rapid; in the case of depth-fair crossover, collapse
occurs within∼10 generations of this generational algorithm (see Section 2.4). Although
we omit the corresponding plot, the steady-state algorithm produced an essentially identical
outcome. We conclude that the evolutionary paradigm is not a factor in collapse. Further,
repeating these experiments many tens of timesalwaysleads to rapid collapse. These first
observations are in complete accord with [15].

Fig. 2 Percentage of single-node trees in the population as a function of the number of tree evaluations.
Boolean 6-parity problem. (Generational algorithm;Nmut= 3.) All four of the lower plots including mutation
are coincident on the scale of this graph

As a second experiment, we repeated the above procedure but this time including either
sub-tree or depth-fair mutation after each crossover (but still no explicit diversity-preserving
mechanism).Nmut, the fixed depth of replacement sub-trees, was set to 3. The results for the
generational algorithm can be seen in the lower plots in Figure 2. It is apparent that the use of
mutationaloneis sufficient to prevent population collapse in this situation. (On the scale of
the graph in Figure 2, all four plots with mutation are coincident. The minor differences here
are not of concern – the key point is that including mutation prevents collapse.) Again the
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result is not shown here but using the steady-state evolutionary procedure described in Sec-
tion 2.4 with mutation produces an outcome identical to that of the generational algorithm –
there is no collapse. We have investigated all eight permutations of generational/steady-state
algorithms, depth-fair and sub-tree crossover and depth-fair/sub-tree mutation. The picture
is consistent: Mutation – depth-fair or sub-tree – is all that is required to prevent collapse.
None of many tens of repetitions of each GP configuration showed any evidence of popula-
tion collapse.

Repeating the above set of experiments with the machine learning (ML) tasks produced
completely consistent results. Figure 3 shows the plot corresponding to Figure 2 but for the
BUPA Liver Disorders dataset. (The results from the other three ML datasets are little dif-
ferent and so are omitted.) The same conclusions would be drawn from Figure 3 as Figure 2,
indeed from any of the ML problems. As with Figure 2, the four plots at the bottom of Fig-
ure 3 which include mutation are intertwined and not separable on this scale but clearly none
shows any evidence of collapse; even on a larger scale it is not clear whether any significance
can currently be drawn from these data. What is significant and of far greater interest here
is that if mutation is omitted, rapid collapse ensues (the upper two plots), again depth-fair
crossover collapsing somewhat more rapidly than sub-tree crossover.

(It is clear from the lower plots in Figures 2 and 3 that the percentage of 1-node trees
never falls to exactly zero. As explained in Section 2.1, half the trees in the initial population
are generated with random depth in the range[1. . .Nmut]. Therefore the initial population
contains a small number of 1-node trees typically of rank 1 and because of the elitist nature
of the algorithm, they are retained in the population. Hence a small number of 1-node trees
persist in the population.)

Fig. 3 Percentage of single-node trees in the population as a function of the number of tree evaluations.
BUPA Liver Disorders problem. (Generational algorithm;Nmut= 3.)
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The results in Figures 2 and 3 lead to the first tentative conclusion in this paper: That
mutation alone is all that is required to prevent population collapse in MOGP. No explicit
diversity preservation operators are needed, a finding which is diametrically opposed to the
conclusions in [15]. Indeed, considering Table 1, we speculate that had de Jong and Pollack
added just mutation after their first series of experiments, they would not have observed
population collapse rendering their subsequent experiments redundant. Whether phenotype
diversity preservation acting without mutation would also prevent collapse would seem to
be a side-issue: We suggest mutation is the preferable operation since it introducesnew
diversity into the population and thus enhances the efficacy of the evolutionary search. An
explicit diversity preservation mechanism, on the other hand, would seem only to preserve
such diversity as already exists in the population. The additional computational burden of
calculating an explicit diversity measure would also seem unwarranted.

Quite why mutation acts in this way potentially offers new insights into the operation
of genetic programming. Presumably by direct transference from genetic algorithms (GAs),
mutation seems hitherto to have been regarded by the GP community as playing a fairly
minor role in evolutionary search. Crossover seems to have been regarded as the princi-
pal mechanism for prosecuting the search. This is interesting because Chellapilla [7] has
successfully obtained GP solutions without crossover while Langdon and Poli [17] have
demonstrated that mutation alone can cause bloat. (More generally, of course, bloat can be
caused by crossover and mutation acting in concert with fitness-based selection [17].) At the
other extreme, population collapse is really a collapse of genetic diversity and therefore the
end of meaningful search. Mutation would therefore seem to have a pivotal role in main-
taining sufficient diversity to advance the search but unless its effects are carefully kept in
check, bloat ensues [17]. Providing a selective pressure within a multiobjective environment
which favors smaller solutions counteracts the bloating tendency of mutation. The nature of
this balance can be seen from Figure 4. Although Figures 2 and 3 show the percentages of
1-node trees, this is (obviously) a limited view of the population dynamics. From the upper
curve in Figure 4 it is clear that apart from an initial transient phase, the mean numbers
of nodes in the population remain essentially constant when mutation is applied. The ten-
dency of mutation to bloat the population appears to be inequilibrium with the tendency
of the parsimony objective to collapse the population. (The lower curve in Figure 4 shows
the expected collapse to 1-node trees in the absence of mutation.) In the remainder of this
paper we explore the role of mutation, the balance between bloat/maintenance of sufficient
diversity to avert population collapse and therefore yield successful search.

(Throughout this paper we take a deliberately limited view of diversity. Measuring diver-
sity has been the subject of a great deal of work, much of it associated with single objective
GP – see [6], for example – although in multiobjective GP, diversity has a more intuitive
interpretation as a uniform sampling of the Pareto front. In this paper we are only concerned
with zero diversity (i.e. population collapse) as opposed to sufficient diversity to obtain a
solution. We do not address the issue ofdegreesof diversity within a population.)

4 Exploration of the Evolutionary Configuration

The vehicle we have used to explore the influence of evolutionary configurations is the set
of UCI machine learning (ML) problems described in Section 2.3. These involve induc-
tion/generalization (as opposed to rote learning in the boolean 6-parity problem) and there-
fore appear more challenging search tasks. As mentioned above, we show only results for the
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Fig. 4 Average population tree size as a function of the number of tree evaluations. BUPA Liver Disorders
problem. (Generational algorithm / depth-fair crossover / depth-fair mutation;Nmut= 3

BUPA dataset since the results from all four problems would lead to identical conclusions.
We have varied:

– The evolutionary approach: Generational or steady-state (Section 2.4)
– The crossover mechanism: Depth-fair or sub-tree crossover (Section 2.2)
– The mutation mechanism: Depth-fair or sub-tree mutation (Section 2.3)
– The (fixed) depth of the new, randomly-generated sub-tree used to replace the sub-tree

selected from mutation. This depth is theNmut parameter.

The first three variations – evolutionary approach, crossover and mutation method –
should alter the population dynamics and thus expose any factors which affect the bloat-
collapse balance. In addition,Nmut will increase the rate at which new nodes are introduced
into the population. In particular, we are interested in knowing whether there is some lower
value ofNmut below which collapse occurs. Similarly, is there some value ofNmut above
which the MO parsimony objective can no longer control the growth in tree sizes and bloat
ensues?

All the data from these experiments are summarized in Tables 3 to 10 for the BUPA Liver
Disorders dataset. (Again, we reiterate that identical conclusions would be drawn from any
of the other ML datasets: we (rather arbitrarily) include only results for the BUPA dataset for
brevity.) Table 2 shows a summary of the permutations and combinations of: evolutionary
approaches, and crossover and mutation operators considered in this section, together with
cross-references to detailed results tables and representative plots. Tables 3 to 10 contain
the results for varyingNmut between 2 and 10. Each row contains the average for the ten
runs performed by repeatedly splitting the dataset into a training set and a test set; the fact
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that we have performed 10 repetitions has been dictated by the statistical test for differences
between error rates [3,10]. All the entries in Tables 3 to 10 are averages over these 10 runs.
(We have restrictedNmut to ≤ 10 due to the purely practical limits of the computing time
required to perform ten repetitions for largerNmut values. For example, a single set of ten
repetitions for the steady-state/depth-fair pairing andNmut= 10 took around 8150 seconds
(∼ 136 minutes). There is thus an eminently practical reason for minimizingNmut.)

Table 2 Summary of experimental results for Section4.

Evolutionary Approach Crossover Method MutationMethod
Table No. Figure No. Steady-state Generational Depth-fair Sub-tree Depth-fairSub-tree
3 5 � � �
4 6 � � �
5 7 � � �
6 8 � � �
7 9 � � �
8 10 � � �
9 11 � � �
10 12 � � �

Since we are evolving classifiers, we are interested in the best 0/1 loss performance
so in Tables 3 to 10, the Training and Test data are the averages from ten runs for the
best performing individuals over the Training and Test subsets, respectively. As would be
expected, the test errors are slightly larger than the training errors. Training and Test sizes
are the mean numbers of nodes in the best solutions identified in each of the ten runs. The
timings shown in the sixth columns are the average run-times. The mean tree sizes shown
at the extreme right of the tables (“Size”) are the average population sizes taken over all ten
runs at termination.

Table 3 Results for steady-state/depth-fair crossover/ depth-fair mutation pairing: BUPA dataset. All entries
are averages over 10runs.

Training Test Population
Nmut Error Size Error Size Time (S) Size
2 0.2504 9.4 0.2768 7.2 9.5 3.23
3 0.2427 11.4 0.2663 6.4 15.8 3.81
4 0.2435 13.2 0.2673 10.2 27.4 4.18
5 0.2370 24.0 0.2572 18.0 52.8 5.11
6 0.2342 35.6 0.2568 16.8 131.2 6.56
7 0.2304 55.2 0.2515 16.0 225.9 8.75
10 0.2285 69.6 0.2683 12.2 815.7 14.28

Comparing the data in Tables 3 to 10 and Figures 5 to 12, a number of patterns emerge.
First, as to whether there is some value ofNmut below which collapse ensues, the answer
would appear not. Even reducing the depth of the replacement sub-tree to 2 does not lead to
any evidence of collapse.

Second, although we see no evidence of bloating (i.e. uncontrolled growth within a given
run), increasingNmut does lead to an increase in both the average size of the best performing
individuals discovered and to an increase in the mean population sizes. For a given evo-
lutionary approach (steady-state or generational), sub-tree mutation tends to produce both
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Table 4 Results for steady-state/depth-fair crossover/sub-tree mutation pairing: BUPA dataset. All entries
are averages over 10runs.

Training Test Population
Nmut Error Size Error Size Time (S) Size
2 0.2384 22.2 0.2674 16.2 16.6 4.23
3 0.2321 13.8 0.2667 8.0 20.8 4.96
4 0.2254 25.0 0.2607 14.0 39.6 7.09
5 0.2253 31.2 0.2567 20.4 57.1 8.51
6 0.2206 31.2 0.2569 19.0 100.7 9.64
7 0.2157 64.8 0.2585 26.2 171.4 13.97
10 0.2100 43.60 0.2700 19.80 264.9 21.35

Table 5 Results for steady-state/sub-tree crossover/sub-tree mutation pairing: BUPA dataset. All entries are
averages over 10runs.

Training Test Population
Nmut Error Size Error Size Time (S) Size
2 0.2105 46.4 0.2662 24.2 29.2 15.98
3 0.2116 38.8 0.2679 18.2 29.5 16.92
4 0.2122 37.8 0.2724 14.8 33.0 17.9
5 0.2107 37.0 0.2754 18.8 37.7 18.77
6 0.2088 52.2 0.2631 23.6 54.2 19.25
7 0.2113 39.4 0.2682 18.0 65.8 20.6
10 0.2150 43.8 0.2717 21.2 332.4 23.25

Table 6 Results for steady-state/sub-tree crossover/depth-fair mutation pairing: BUPA dataset. All entries
are averages over 10runs.

Training Test Population
Nmut Error Size Error Size Time (S) Size
2 0.2398 17.8 0.2855 11.6 11.0 6.02
3 0.2346 14.8 0.2661 14.8 18.4 10.13
4 0.2304 24.6 0.2644 16.4 24.2 13.16
5 0.2298 26.0 0.2673 17.4 36.7 14.04
6 0.2248 34.0 0.2666 17.0 66.6 14.26
7 0.2297 25.2 0.2682 15.6 112.1 15.51
10 0.2294 45.6 0.2720 17.6 896.3 16.42

Table 7 Results for generational/depth-fair crossover/depth-fair mutation pairing: BUPA dataset. All entries
are averages over 10runs.

Training Test Population
Nmut Error Size Error Size Time (S) Size
2 0.2603 12.4 0.2796 8 9.5 3.52
3 0.2449 14.8 0.2707 13.6 18.2 6.14
4 0.2448 15.8 0.2737 8.6 32.6 10.42
5 0.2358 23.0 0.2632 13.2 60.5 18.97
6 0.2345 36.6 0.2647 24.4 108.9 35.21
7 0.2358 49.8 0.2567 29.6 205.9 66.69
10 0.2321 30.2 0.2607 16.6 491.4 411.6
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Table 8 Results for generational/depth-fair crossover/sub-tree mutation pairing: BUPA dataset. All entries
are averages over 10runs.

Training Test Population
Nmut Error Size Error Size Time (S) Size
2 0.2436 17.4 0.2693 16.0 17.9 4.44
3 0.2290 24.2 0.2659 11.2 34.2 9.39
4 0.2155 52.0 0.2529 34.4 57.3 18.74
5 0.2238 38.8 0.2575 23.0 91.9 24.63
6 0.2152 57.8 0.2563 52.8 113.5 41.86
7 0.2193 73.6 0.2462 59.0 192.7 70.52
10 0.2135 56.2 0.2486 28.2 284.8 122.81

Table 9 Results for generational/sub-tree crossover/sub-tree mutation pairing: BUPA dataset. All entries are
averages over 10runs.

Training Test Population
Nmut Error Size Error Size Time (S) Size
2 0.2140 40.2 0.2452 24.4 32.2 16.71
3 0.2182 34.8 0.2462 21.2 35.2 19.15
4 0.2142 35.4 0.2478 27.0 38.5 22.97
5 0.2145 38.6 0.2510 28.6 41.9 25.54
6 0.2122 61.2 0.2493 34.2 57.9 31.6
7 0.2189 47.2 0.2474 32 71.7 36.76
10 0.2156 44.4 0.2513 21.4 264.8 128.92

Table 10 Results for generational/sub-tree crossover/depth-fair mutation pairing: BUPA dataset. All entries
are averages over 10runs.

Training Test Population
Nmut Error Size Error Size Time (S) Size
2 0.2468 18.8 0.2669 16.8 11.9 5.58
3 0.2375 23.6 0.2545 18.4 15.4 9.81
4 0.2293 19.2 0.2562 17 22.7 13.54
5 0.2280 25.2 0.2591 19.6 45.4 21.52
6 0.2295 24.4 0.2573 13.4 66.8 33.76
7 0.2350 31 0.2524 25.4 148.5 60.98
10 0.2311 97.6 0.2555 16 862.2 425.79

larger mean population sizes and larger best-performing individuals. Both mutation mech-
anisms replace a selected sub-tree with a new sub-tree of fixed depthNmut but whereas
depth-fair mutation tends to select nodes for replacement which are near the top of a tree,
sub-tree mutation selects all nodes with equal probability, regardless of their depth. Since
there is a greater density of nodes at the bottom of a tree than the top, sub-tree mutation
will tend to replace sub-trees towards the bottom a tree and will therefore tend to produce a
greater increase in tree depth, and therefore node count.

The mean population sizes as a function of the number of tree evaluations are shown in
Figures 5 to 12 for various experimental configurations from which there is no evidence of
uncontrolled code growth.

After a transient period, the plots in Figures 5 and 8 (steady-state algorithm) all set-
tle to values of mean population size which are not greatly influenced byNmut. The mean
population sizes for the generational algorithm, on the other hand, (Figures 9 to 12) are
significantly affected byNmut; this is a consequence of the fact that the generational evo-
lutionary strategy includes every offspring in the next generation whereas the steady-state
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Fig. 5 Average population size versus the number of tree evaluations. Steady-state algorithm depth-fair
crossover / depth-fair mutation.

algorithm only admits into the new population individuals of sufficiently high performance.
Regardless of the mean population size, the mutation mechanism and the evolutionary ap-
proach employed, the selective pressure imposed by the MO parsimony objective appears
able to equilibrate with whatever rate of tree growth is imposed by the mutation mechanism.
Consequently we see neither bloat nor collapse, rather the establishment of an equilibrium.
We suggest this is a property of the ranking nature of Pareto comparison. Rather than pre-
ferring an individual on the basis of itsabsolutenode count, the ranking procedure makes
relative judgments over the instantaneous population. Whatever the mean node count in the
population, the Pareto-based selection process tends to select thesmaller individuals in the
population. In a population of larger individuals, these selected individuals will also tend to
be large in absolute terms but smaller relative to the population from which they are drawn.
The net effect appears to be the maintenance of an equilibrium.

The third factor which emerges from Tables 3 to 10 concerns the run-times. There is a
general and very clear trend that increasingNmut increases the run-time. This is not surpris-
ing since fitness evaluation is usually the dominant factor in the run-time of all evolutionary
algorithms, not just GP. Larger values ofNmut tend to generate larger trees which take longer
to evaluate. Also, for a given mutation mechanism and value ofNmut, there is a not a great
deal of difference between the mean run-times of generational and steady-state algorithms
despite the fact that steady-state algorithms tend to maintain populations of much smaller
mean tree size. The reason for this is thatbothapproaches generate large trees (for a given
mutation set-up). The difference is that a generational algorithm evaluates the tree and then
always places it into its next generation. A steady-state algorithms still evaluates the tree but
typically discards it since only trees which out-perform the worst-performing member of the
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Fig. 6 Average population size versus the number of tree evaluations. Steady-state algorithm / depth-fair
crossover / sub-tree mutation.

current population are admitted into the updated population. In our experiments, the steady-
state algorithms discard up to 85% of generated trees. As a result there is no great difference
in run-times between the two evolutionary approaches; the only benefit of the steady-state
algorithm is its reduced memory requirements which with modern general-purpose comput-
ers would seem a fairly modest advantage.

Where there is a systematic and noticeable difference in run-times is between depth-fair
and sub-tree mutation. Again, this is understandable since sub-tree mutation will tend to
generate trees with larger node counts for the reasons discussed above. For a given value of
Nmut, sub-tree mutation will lead to longer run-times than depth-fair mutation.

The final conclusion is that on the basis of Alpaydin’sF-test [3] at the 95% confidence
level, we can detect no statistically significant differences between any of the experimen-
tal configurations shown in Tables 3-10. Therefore test errors alone do not appear to offer
any compelling reason to favor one evolutionary configuration over another; factors such
as run time and final tree size would seem to be key. Further, this implies that much of the
debate about the merits and demerits of particular evolutionary approaches producing better
or worse solutions may be misdirected. On the strength of the observations in this section,
the only thing appearing to favor one of the two evolutionary approaches over the other is
that steady-state algorithms with depth-fair mutation seem to produce more compact solu-
tions more quickly than generational algorithms, although generational algorithms tend to
produce solutions of similar quality eventually.
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Fig. 7 Average population size versus the number of tree evaluations. Steady-state algorithm / sub-tree
crossover / sub-tree mutation. Note the suppressed ordinate origin.

5 Additional Experiments

To further confirm our conclusions we performed additional experiments to investigate
which part of the mutation process is responsible for moderating the numbers of single-
node trees and preventing population collapse. In this series of experiments crossover was
carried-out normally but we varied the scope of the mutation operator. First, we only al-
lowed the mutation operation if the root node was selected; if other nodes were selected,
the mutation operation was skipped. In the second of these experiments, mutation of the
root node was skipped but mutation of any other tree node was allowed. Typical results are
shown in Figure 13. It can be seen from the upper curve that without root node mutation,
collapse rapidly ensues. Allowing mutation at the root node alone, however, is sufficient
to prevent collapse, as shown by the lower curve. It is clear that root node mutation is the
principal factor responsible for preventing collapse. Any 1-node trees which are produced
by crossover will always be replaced during mutation by something larger; consequently,
1-node trees will not be allowed to build-up in the population.

A second experiment we performed was to select mutation with some probability less
than one. (Up to this point we have generally used a mutation probability of unity since
our initial experiments directed us to focus our attention on mutation.) The objective of
this second confirmatory experiment was to see what happens as the mutation probability
is decreased to zero (which, in the limit, is no mutation at all). We wished to address the
question: At what point does collapse set in? Do we see gradual collapse for very small
mutation probabilities? The results from a series of experiments with mutation probabilities
of 0.25, 0.50 and 0.75 are shown in Figure 14. As shown above, a mutation probability of
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Fig. 8 Average population size versus the number of tree evaluations. Steady-state algorithm / sub-tree
crossover / depth-fair mutation.

zero (i.e. no mutation) obviously leads to total collapse of the population to single-node
trees. Increasing the probability of mutation decreases the percentage of collapse although
there is still apartial collapse of the population until we reach a mutation probability of 1.
At this level of mutation, there is a very low percentage of collapse to single-node trees (not
more than 10% of the population and due to the 1-node trees in the initial population). Thus
by varying the mutation probability, the fraction of 1-node trees can be managed but not
completely eliminated.

From the foregoing, the mechanism by which mutation prevents population collapse
appears clear: Mutation suppresses the accumulation of 1-node trees. It is interesting to con-
sider whether simple culling (or censoring) of the population could achieve the same end
without the need for mutation. Namely, if the outcome of a crossover operation is a single-
node tree, reject it and repeat the crossover operation until an offspring of suitable size is
generated. Figures 15 and 16 show the mean population sizes for a series of experiments
(omitting mutation) in which the minimum tree depth has been limited to some value,Cmin.
Here we treattree depthas the maximum depth of a tree, that is, the largest number of levels
from the root to the deepest possible leaf node, regardless of tree asymmetry. Although the
results from both crossover methods display some complex initial transient behavior, even-
tually the average population size falls toexactly Cmin in every case. So for a depth limit
of Cmin= 5, for example, the final population contains nothing but individuals of depth 5;
this picture is identical across all the values ofCmin investigated. Thus imposing a simple
minimum depth on the population results – in the absence of mutation – in population col-
lapse to exactly that minimum depth and severe loss of diversity. For larger values ofCmin

some of these individuals may well constitute acceptable solutions to the problem but such
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Fig. 9 Average population size versus the number of tree evaluations. Generational algorithm / depth-fair
crossover / depth-fair mutation.

an outcome runs completely counter to the spirit of MO methods in which the aim is to find
the range of solutions which trade-off complexity and error. We have not addressed the issue
here but there must also be a question mark over the efficacy of the search in this situation.
With such rapidly reducing population diversity and a final outcome largely pre-determined
by the choice ofCmin, it is improbable that the search is being conducted in the best way pos-
sible. We conclude that simple culling of small solutions does not prevent collapse: mutation
is essential to prevent collapse.

Although diversity preservation methods are not the principal concern of this paper, it is
instructive to consider the role of mutation within a diversity-preserving scheme; we have
considered the well-known SPEA2 algorithm1 of Zitzler et al. [30]. SPEA2 operates by
maintaining a separate, external archive of non-dominated individuals from which parents
are selected. When the archive is full, SPEA2 uses a proxy density measure, implemented
using Euclidean nearest-neighbor distances in phenotype space, to decide which individuals
to remove from the archive. It attempts to maintain diversity in the filled archive by remov-
ing individuals which are ‘close’ to each other. Since our two objectives of training error and
numbers of tree nodes present on very different scales, we have normalized the node count
to the range zero to one at every generation so that the distance measures are not dominated
by the node count objective. (The training error naturally presents on the scale of 0 to 1.)
We have used both archive and population sizes of 100. The percentages of 1-node trees in
the archive for typical runs for various permutations and combinations of crossover and mu-
tation operators are shown in Figure 17. The outcome is consistent with the previous results

1 We are indebted to an anonymous reviewer for suggesting this experiment.
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Fig. 10 Average population size versus the number of tree evaluations. Generational algorithm / depth-fair
crossover / sub-tree mutation.

Fig. 11 Average population size versus the number of tree evaluations. Generational algorithm / sub-tree
crossover / sub-tree mutation.
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Fig. 12 Average population size versus the number of tree evaluations. Generational algorithm / sub-tree
crossover / depth-fair mutation.

in that adding mutation keeps the percentage of 1-node trees at low levels. Omitting muta-
tion, on the other hand, initially results in a rapid increase (within∼10 generations) in the
numbers of 1-node trees in the archive similar to that seen earlier. When the archive is full
the SPEA2 algorithm begins removing trees from the archive on the basis of their mutual
proximity. Sub-tree crossover settles quickly to around 55% single-node trees; depth-fair
crossover initially performs much worse but finally stabilizes at around 48% single-node
trees. Thus collapse within SPEA2 is only partial although the results for 1-node trees mask
a deeper problem: Without mutation the final archive typically contains only around five
unique but small and frequently duplicated trees out of an archive of 100. Archives obtained
with mutation do not exhibit this extreme loss of variation. It thus appears that even in the
presence of a diversity-preserving mechanism such as that in SPEA2, mutation has a key
role in maintaining diversity. We believe this behavior is a consequence of what is funda-
mentally areactivediversity mechanism in SPEA2 (and also in NSGA-II [9]) in that these
algorithms passively allow an archive to be filled with whatever arises in reproduction and
only concerns itself with diversityafter the archive is filled. Thus if the archive mainly fills
with frequent duplications of 1-node trees in the initial phases, then there is little diversity to
be salvaged. The duplication of 1-node trees is, of course, exacerbated by highly-ranked 1-
node trees being preferentially selected for breeding in the initial stages. It would thus seem
that aproactivediversity strategy would be more helpful, namely one which seeks to main-
tain diversity from the very beginning rather than trying to restore diversity from whatever
chance has thrown-up in the initial stages. This will be the subject of future research.
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Fig. 13 Percentage of single-node trees in the population as a function of the number of tree evaluations
for allowing/disallowing root node mutation. BUPA Liver Disorders problem. (Generational algorithm and
depth-fair mutation;Nmut= 3.)

6 Discussion and Conclusions

It would appear that mutation is a type of diversity operator which creates individuals with
new genetic material – this appears to have the invaluable effect of advancing the evolution-
ary search. Mutation seems a preferable method for maintaining diversity in the population
compared to explicit diversity operations.

In particular, ensuring phenotype diversity in real-valued domains has the disadvantage
of requiring a ‘scale’ for the phenotype space – if two individuals decode to phenotype val-
ues closer than the characteristic scale then they can be considered identical. This is illus-
trated in Figure 18: Should points A and B be grouped together and regarded as ‘identical’
or does this metric space contain three distinct points, A, B and C? In other words, is the
characteristic scale of this space comparable to distance between A/B and C, or less than
the distance between A and B? (A trivial but very practical example is a change of mea-
surement units of one of the objectives which changes the ‘distance’ between the points –
logically this cannot be allowed to influence the grouping decision.) More generally, setting
a suitable scale is a difficult problem which occurs in a number of diverse areas, for exam-
ple, data clustering [12], and is usually intractable without prior knowledge. In addition, the
mapping from genotype-to-phenotype is a many-to-one mapping and so individuals with
widely varying genetic material may be suppressed because they map to similar points in
phenotype space. Explicit phenotype diversity preservation may well inhibit search.

Similarly, preserving genotype diversity involves defining some ‘edit distance’ between
genotypes, which for GP trees is not unique and therefore problematic and time-consuming
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Fig. 14 Percentage of single-node trees in the population as a function of the number of tree evaluations for
varying probability of a mutation event. BUPA Liver Disorders problem. (Generational algorithm and depth
-fair mutation;Nmut= 3.)

to compute. Due to these practical problems, we suggest explicit diversity approaches are a
method of last resort rather than a primary method.

We have shown in this paper that the selection of a root node and a leaf node for
crossover can create single-node trees which in turn can create other duplicate single-node
trees. This introduction into the population of single-node trees can, in combination with a
tree complexity objective to control bloat, lead to population collapse and a consequent near-
complete loss of population diversity. We have demonstrated that following crossover with
mutation plays an important role in suppressing single-node trees and providing a counter-
balance to the parsimony pressure imposed by the tree complexity objective without leading
to tree bloat. Mutation alone is therefore able to maintain population diversity by introducing
new genetic material without the need for phenotype/genotype diversity preservation tech-
niques. (Whether mutation in tandem with an explicit diversity-preserving mechanism offers
the advantage of maintainingbetterpopulation diversity and therefore improved search is
outside the scope of this paper; this is an area for future research.)

Limiting the number of 1-node individuals could also be achieved in the absence of
mutation simply by discarding any 1-node individuals produced by the crossover operation.
We have investigated this approach of censoring 1-node offspring and have confirmed that
this just results in equally rapid collapse of the population to all 2-node individuals. More
generally, suppressing offspring smaller thann nodes results in collapse to a population of
all n-node individuals; simple suppression of small offspring does not produce the required
result. Moreover, population collapse to some minimum size generally does not necessarily
produce any useful solutions to the problem at hand.
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Fig. 15 Average population size versus number of tree evaluations for a range of minimum tree depths,Cmin.
BUPA dataset; Sub-tree crossover; no mutation;Nmut= 3.

In [4] we offered an analysis of the collapse mechanism in terms of the establishment of
an equilibrium between the tendency of mutation to bloat the population and the tendency
of the parsimony objective to collapse it. The entirely complementary analysis presented
here is of mutation as a diversity-generating mechanism. We suggest it may be more helpful
to effective search to have aproactivemechanism which generates diversity than areac-
tive diversity-preserving mechanism which seeks only to maintain such diversity as already
exists within the population; a more detailed comparison of mutation and explicit diversity
preservation is clearly an area for future work. Nonetheless, we believe this work clarifies the
principal effect of mutation on the dynamics of population evolution in MOGP and also un-
derscores the fundamental role of mutation in (MO)GP as more than the minor, fine-tuning
mechanism which it is commonly perceived to be in GAs.

Also, and predictably, it is clear from our experiments that fitness evaluation of newly
generated individuals is the most time-consuming part of the whole evolutionary process.
We have therefore explored the effect of mutation parameters with both depth-fair and sub-
tree mutation, on the size of population individuals in both steady-state and generational
evolutionary approaches. We have shown that, since they determine the size of offspring,
mutation parameters play a major role in deciding the time complexity of a GP algorithm.

How mutation affects the average population size, however, depends on the evolutionary
approach. In both the generational and steady-state paradigms, large offspring can still be
produced which need to be evaluated. The run-time differences are therefore not significant.
In the steady-state paradigm, however, large individuals will only be accepted into the popu-
lation if their performance warrants it; in practice, most large offspring are simply discarded
meaning that the average size of individuals in the population is not greatly affected by the
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Fig. 16 Average population size versus number of tree evaluations for a range of minimum tree depths,Cmin.
BUPA dataset; Depth-fair crossover; no mutation;Nmut= 3.

depth of the new tree inserted during mutation. In the generational paradigm, on the other
hand, large offspring are unconditionally accepted into the next generation and hence mu-
tating by inserting deeper sub-trees leads to an increase in the average size of individuals in
the population.

Finally, we return to the original question posed in the introduction to this paper “what
are we (and other adherents of the MO approach) doing that prevents population collapse and
that de Jong and Pollack are not (or vice versa)?” The concise answer is that we are using the
conventional mutation operator. Whether explicit diversity preservation is a help, hinders or
has no effect on population diversity, and by implication, search, remains to be established
in future work. What we can state is that explicit diversity preservation mechanisms are not
essential to prevent population collapse in multiobjective genetic programming.
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