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Abstract 

A linear dynamic model of water droplet deformation in the presence of an electric field has been 

developed. Analytical solutions of the differential equation of motion are provided with different 

waveforms as forcing terms, namely in the case of half-sinusoidal, square and sawtooth waves. The 

main dimensionless groups are identified as a result of this analysis. The predictions of the model are 

compared with some data of droplet deformation available in the literature. The calculations based 

on this model show that the waveform affects the response of the droplet to the electric field stimulus. 

Resonance is possible only when the droplets are sufficiently large (i.e. for Ohnesorge number less 

than 1). The oscillation amplitude decreases rapidly with the electric field frequency. A qualitative 

comparison with some experiments of droplet-interface coalescence available in the literature has 

also been addressed, suggesting a correlation between the formation of secondary droplets and the 

amplitude of oscillation of the mother droplet. The outcomes of this analysis can be useful for the 

selection of the best operating conditions to improve the electrocoalescence process efficiency, as 

they can provide guidelines to the choice of the most suitable electric field parameters.  

Keywords: Electrocoalescence; Partial coalescence; Modelling; Water-in-oi emulsions; Phase 

separation. 
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1. Introduction 

The application of an external electric field has been used in the petroleum industry to promote 

water droplet coalescence and facilitate separation of water-in-oil emulsions for many decades 

(Mhatre et al., 2015). The presence of an externally applied electric field increases the rate of drainage 

of the oil film between two coalescing droplets (Mhatre et al., 2015). However, incomplete 

coalescence can occur when the field strength is excessively high (Mousavi et al., 2014; 

Mousavichoubeh et al., 2011a; 2011b). Also, Taylor cones can form, causing electro-spraying 

(atomisation) of water droplets. The production of small progeny droplets adversely affects the 

separation efficiency as the removal of the water phase from the oil becomes more difficult. It would 

therefore be highly beneficial to know the operating conditions under which the onset of partial 

coalescence or atomisation is prevented. In this regard, Mousavichoubeh et al. (2011a) have shown 

that the formation of secondary droplets can be correlated with a dimensionless number, which is the 

product of the Weber and Ohnesorge numbers. In the light of their observation, they concluded that 

the phenomenon of partial coalescence is the result of two simultaneous actions: (i) pumping, driven 

by capillary pressure and resisted by the viscous drag, and (ii) the deformation and break-up due to 

the electrostatic pressure induced on the droplets by the application of the electric field. The electric 

field type also affects the pattern of coalescence, with the application of pulsed DC fields being 

beneficial to the enhancement of the process efficiency (Bailes and Larkai, 1981, Mousavi et al., 2014; 

Vivacqua et al., 2015). With respect to the mitigation of incomplete coalescence, Mousavi et al. (2014) 

report that the volume of the secondary droplets formed in the process decreases if pulse DC fields 

are employed, instead of constant fields. The electric field waveform and frequency also cause 

differences in behaviour. Mousavi et al. (2014), applied square, sawtooth and half-sinusoidal waves 

and obtained practically total suppression of partial coalescence with an applied field frequency in the 

range 1-100 Hz for the range of droplet size studied. Also, they showed that the half-sinusoidal and 

sawtooth waves are more effective in suppressing partial coalescence than the square waves.  

The findings described above can have an important impact on the development of 

electrocoalescers. However, to define the optimum operational window for the properties of the 

liquids under consideration and the electric field configuration, it is necessary to analyse the 

phenomenon with a mathematical description of the electrocoalescence process. The functional 

dependence of the process performance on the wave type and frequency suggests that the analysis 

of the droplet dynamics is crucial for the description of the phenomenon, as the electrostatically-

induced deformation is responsible for the occurrence of partial coalescence. The deformation of 
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single liquid droplets in another immiscible liquid under the application of an electric field has 

previously been studied extensively, as detailed below. The classical analytical theory of Taylor (1966), 

valid for small quasi-static deformations and constant fields, was extended later to AC fields by Torza 

et al. (1971). Subsequent studies were aimed Ăƚ ŵŽĚŝĨǇŝŶŐ ƚŚĞ ďĂƐŝĐ TĂǇůŽƌ͛Ɛ ĞůĞĐƚƌŽŚǇĚƌŽĚǇŶĂŵŝĐ 

theory in order to address the discrepancies between experiments and model predictions (Ajayi, 1978; 

Baygents and Saville, 1989; Feng and Scott, 1996). In these studies, tŚĞ ŽƌŝŐŝŶĂů TĂǇůŽƌ͛Ɛ ĂƉƉƌŽĂĐŚ ǁĂƐ 

extended in order to obtain a complete and accurate theoretical description of the behavior of 

electrified water droplets. A more simplified approach has recently been undertaken by Gong et al. 

(2015) and Yan et al. (2015), where non-linear dynamic models of droplets deformation were 

developed to describe droplet deformation in the presence of time-varying fields. Gong et al. (2015) 

predict resonance frequencies for a 2 mm water droplet in sunflower oil under pulsed square fields. 

They suggested that the resonance frequencies represent the optimum frequency values in terms of 

efficiency for electrostatic demulsification. However, the existence of resonance for much smaller 

droplets, which are usually present in practical applications, was not discussed. Yan et al. (2015) 

applied their model for the prediction of water droplet oscillations in oil under AC and DC electric 

fields before Taylor cone break-up, with some level of disagreement between model predictions and 

experiments. For their analysis, a non-linear model was necessary to describe the droplet shape 

variation at high deformation.  The transient oscillations of droplet deformation and breakup in the 

creeping flow under the presence of an electric field was theoretically studied by Sherwood (1988). 

He concluded that different modes of breakup are possible depending on the physical properties of 

the two fluids. According to the theoretical analysis of Basaran et al. (1995) the droplet would oscillate 

under small field strength, whereas at large field strengths, they do not oscillate any more but become 

unstable and issue jets of tiny droplets from their tips. Yeo et al. (2004) showed a pendant drop can 

exhibit resonance under AC electric field and droplets are ejected from the resonating meniscus.  

The above-mentioned modelling attempts have not provided any indication of the selection of the 

most suitable electric field parameters for the optimisation of the process efficiency. For instance, no 

justification for the adoption of kHz frequencies in most available commercial electrocoalescers 

(Mhatre et al., 2015) has been provided. In this paper, a linear model of droplet dynamics is applied 

to the case where a droplet is deforming under a pulsatile electric field. The effect of frequency and 

waveform is assessed by solving analytically the equation of motion of the droplet under the 

application of an electric field. The governing dimensionless group have been identified and the model 

predictions are compared with the behaviour observed in the literature. 
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2. Model 

A linear model for droplet deformation under pulsatile electric fields is developed in this section. 

The model is based on a number of assumptions which are listed as follows: (i) the dynamic behaviour 

is described at small droplet deformation; (ii) the electrostatic pressure induced in the droplet is 

proportional to the square of the electric field intensity; (iii) the viscous damping is proportional to 

the velocity of deformation; (iv) gravity and buoyancy fully counteract each other and the added mass 

effect is neglected; (v) the water permittivity is much higher than that of the oil and both are 

independent of frequency; (vi) the interfacial tension is constant and independent of deformation; 

(vii) the dynamics of charge relaxation is neglected; (viii) the hydrodynamic and surface tension 

ƐƚƌĞƐƐĞƐ ďĂƐĞĚ ŽŶ ƚŚĞ TŽƌǌĂ Ğƚ Ăů͘ ;ϭϵϳϭͿ͛Ɛ ƐŽůƵƚŝŽŶ ƵŶĚĞƌ ƐŝŶƵƐŽŝĚĂů ǁaves are linearized and assumed 

to be approximately valid with a generic waveform. The effect of the waveform is considered in the 

electrostatic stress expression. 

With reference to Figure 1a, we define a dimensionless displacement and a reduced time as: 

ߜ ൌ οܴݎ                                                                                      ሺͳሻ 

߬ ൌ ா߱ݐ                                                                                        ሺϮͿ 

where ߱ா is the frequency of the applied electric field.  The stresses acting on the surface of the 

deformed droplet are illustrated in Figure 1b. The normal component of the electric stress is provided 

by Torza (1971) for a sinusoidal electric waveform. In the direction parallel to the field and considering 

the water as a perfect conductor, it reduces to (Yan et al., 2015):  

ாߪ ൌ ͻͶ  ܧ଴ଶሺͳ െ ሻݐʹݏ݋ܿ ൌ  ͻͶ  ܧ଴ଶ݊݅ݏଶݐ                                                     ሺ͵ሻ 

It is now assumed that the effect of the electric field for a generic waveform can be captured by 

expressing the electric stress as: 

ாߪ ൌ ͻͶ  ܧ଴ଶܧ෠ଶ                                                                             ሺͶሻ 

where ܧ෠  is the normalized waveform, E0 is the peak value of the field strength. 

During deformation, the droplet experiences a resistance to flow due to the hydrodynamic stresses at 

the droplet surface. Yan et al. (2015) ƐŝŵƉůŝĨŝĞĚ TŽƌǌĂ͛Ɛ ƐŽůƵƚŝŽŶ ƵŶĚĞƌ ƚŚĞ ĂƐƐƵŵptions listed above.  

Using Eqs 1 and 2, the resulting equation can be rewritten as: 
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ఓߪ ൌ െʹߜߤ߉ᇱ                                                                           ሺͷሻ 

߉ ൌ  ሺͳͻߣ ൅ ͳ͸ሻ ሺʹߣ ൅ ͵ሻ   ʹͲሺߣ ൅ ͳሻ                                                       ሺ͸ሻ 

where  is the ratio between the viscosity of the water and oil, and  is the oil viscosity.  

Yan et al. (2015) also provided the following equation for the difference in capillary pressure resulting: 

ߪ ൌ ߛܴʹ െ ߛܴ ͺሺͳ ൅ ሻ െ ͸ሺͳ ൅ ሻଶ                                                                ሺ͹ሻ 

As the purpose of this study is to describe the phenomenon at small deformations, a first order 

approximation of the previous expression will be used: 

 ଴ߪ ൌ หఋୀ଴ߪ ൅ ఊᇱߪ หఋୀ଴ߜ ൌ െ Ͷܴߛ  ሺͺሻ                                                               ߜ

  We shall now carry out a simplified force balance on the whole droplet. The force due to surface 

tension and electric field can be calculated multiplying the difference in capillary and electrostatic 

pressure by the drop cross sectional area (R2)  while the viscous stress, assumed to be constant, will 

be multiplied by the drop external surface (4R2Ϳ͘ NĞǁƚŽŶ͛Ɛ ƐĞĐŽŶĚ ůĂǁ ŽĨ ŵŽƚŝŽŶ ŝƐ ƚŚĞŶ ĂƉƉůŝĞĚ ƚŽ 

obtain: Ͷ͵
ܴସ߱ߩாଶߜᇱᇱ ൌ െͺȦܴߨߤଶ߱ாߜᇱ െ Ͷ߱ߛܴߨாߜ ൅ ͻͶ  ෠ଶ                              ሺͻሻܧ଴ଶܧ ଶܴߨ

whereas Yan et al. (2015) used the coefficient of the second derivative as an adjustable parameter. 

Eq. 9 can also be rewritten as:                                               
ᇱᇱߜ ൅ ͸Ȧܴ݁ ᇱߜ ൅ ͵ܹ݁ ߜ ൌ ʹ͹ͳ͸ݎܨ  ෠ଶ                                               ሺͳͲሻܧ

where ܴ݁ ൌ ଶ߱ாܴߩ Τߤ , ܹ݁ ൌ ଷ߱ாଶܴߩ Τߛ  and ݎܨ ൌ ଶ߱ாଶܴߩ ሺܧߝ଴ଶሻ Τ are the Reynolds, Weber and 

electrical Froude number, respectively. From Eq. 10, it is straightforward to obtain the steady state 

deformation, ߜ௦௦, when a constant electric field is applied ൫ܧ෠ ൌ ͳ൯: 

௦௦ߜ ൌ ͻͳ͸ ݎܨܹ݁ ൌ ͻͳ͸ ܹ݁௘௟                                                             ሺͳͳሻ 

where ܹ݁௘௟ ൌ ଴ଶܧߝܴ Τߛ  is the electrical Weber number. According to Eq. 11, the deformation is 

proportional to the Weel number, in agreement with TĂǇůŽƌ͛Ɛ ĂŶĂůǇƐŝƐ according to which a linear 

dependence is obtained at very small deformations. It is now possible to define a new normalized 

instantaneous  deformation, ߜҧ, as: 
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ҧߜ ൌ ௦௦ߜߜ                                                                                      ሺͳʹሻ 

Eq. 10 can now be expressed as Eq. 13:  

ҧᇱᇱߜ ൅ ͸Ȧܴ݁ ҧᇱߜ ൅ ͵ܹ݁ ҧߜ ൌ ͵ܹ݁  ෠ଶ                                                          ሺͳ͵ሻܧ

It is interesting to observe that Eq. 13 is mathematically equivalent to the equation of motion of a 

damped harmonic oscillator with a forcing term: ߜҧᇱᇱ ൅ ҧᇱߜ௡߱ߞʹ ൅ ߱௡ଶߜҧ ൌ ߱௡ଶܧ෠ଶ                                                             ሺͳͶሻ 

with a dimensionless natural frequency ߱௡ and damping ratio ߞ equal to: 

߱௡ ൌ ඨ ͵ܹ݁                                                                              ሺͳͷሻ 

ߞ ൌ Ȧ ξ͵ܹܴ݁݁ ൌ Ȧξ͵ ܱ݄                                                                  ሺͳ͸ሻ 

where ܱ ݄ ൌ ߤ ඥܴߛߩΤ   is the Ohnesorge number. Equation 14 can be solved analytically with the initial 

conditions: ߜȁఛୀ଴ ൌ Ԣȁఛୀ଴ߜ ൌ Ͳ                                                                    ሺͳ͹ሻ 

The basic steps for obtaining a solution through Laplace transformation are as follows. The transform 

of Eq.14 with the initial conditions given by Eqs 17 provides an algebraic expression in the Laplace 

domain: 

ሻݏҧሺߜ ൌ ߱௡ଶ ଶݏሻݏ෠ଶሺܧ ൅ ݏ௡߱ߞʹ ൅ ߱௡ଶ                                                           ሺͳͺሻ 

  The s-transform of ܧ෠ଶሺݏሻ for one period depends on the waveform as given in Table 1. For periodic 

functions the transform of the forcing function can be calculated from Eq. 19: 

ሻݏ෠ଶሺܧ ൌ ͳሺͳ െ ݁ି௦ሻ න ݁ି௦ఛܧ෠ଵଶሺ߬ሻ݀߬ଵ
଴                                                 ሺͳͻሻ 

where ܧ෠ଵሺ߬ሻ is the time function of the dimensionless electric field in one period. 

After substitution of Eq. 19 into Eq. 18, the solution in the time domain can be obtain by applying the 

well-known technique of decomposition into partial fractions with the exponential terms becoming 

step functions in the time domain.  
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The algebraic equation describing droplet deformation will now be derived for different 

waveforms, namely for half-sinusoidal, square and sawtooth waves applied as forcing functions. These 

solutions will be given in terms of ߞ and n, so that, as far as a linear model can be applied, the results 

are valid independently of the accuracy of the numerical coefficients in the force terms. 

      2.1   Half- Sinusoidal waves 

This type of waveform can be expressed mathematically as: ܧ෠ ൌ ȁ݊݅ݏሺ߬ߨሻȁ                                                                               ሺʹͲሻ 

The solution of Eq. 14 for a half-sinusoidal electric field input is for ߞ ൏ ͳ: 

ҧ௦௜௡ߜ ൌ ͳʹ ሼͳ െ ሾܭଵܿݏ݋ሺʹ߬ߨሻ ൅ ሻሿሽ߬ߨʹሺ݊݅ݏଶܭ ൅ ݁ି఍ఠ೙ఛ ൤ܭଷܿݏ݋ሺ߱଴߬ሻ ൅ ߞସܭ ߱௡߱଴  ሺ߱଴߬ሻ൨    ሺʹͳሻ݊݅ݏ

whereas for ߞ ൐ ͳ: 

ҧ௦௜௡ߜ ൌ ͳʹ ሼͳ െ ሾܭଵܿݏ݋ሺʹ߬ߨሻ ൅ ሻሿሽ߬ߨʹሺ݊݅ݏଶܭ ൅ ݁ି఍ఠ೙ఛ ൤ܭଷ݄ܿݏ݋ሺ߱଴߬ሻ ൅ ߞସܭ ߱௡߱଴  ሺ߱଴߬ሻ൨   ሺʹʹሻ݄݊݅ݏ

where: 

߱଴ ൌ ߱௡ඥȁߞଶ െ ͳȁ ൌ ͵ʹ ඨȁܱ݄ଶ െ ͳ ͵Τ ȁܹ݁                                                 ሺʹ͵ሻ 

It is noteworthy that Eqs 21 and 22 are formally identical, apart from the substitution of trigonometric 

functions by their respective hyperbolic functions. Hyperbolic functions have been used to highlight 

the similarity of the solutions; however, simplification of the exponential terms can be more 

convenient for numerical evaluation of the response, in order to avoid the computation of very large 

number associated with the hyperbolic operations. 

The constants in Eqs 21 and 22 are calculated by the following relationships: 

ଵܭ ൌ ߱௡ଶ߱ڿ௡ଶ െ ሺʹߨሻଶۀሾ߱௡ଶ െ ሺʹߨሻଶሿଶ ൅ ሺͶ߱ߨ௡ߞሻଶ                                                         ሺʹͶሻ 

ଶܭ ൌ Ͷ߱ߞߨ௡ଷሾ߱௡ଶ െ ሺʹߨሻଶሿଶ ൅ ሺͶ߱ߨ௡ߞሻଶ                                                         ሺʹͷሻ 

ଷܭ ൌ ଶ ሾ߱௡ଶߨʹ െ Ͷߞଶ߱௡ଶ െ ሺʹߨሻଶሿሾ߱௡ଶ െ ሺʹߨሻଶሿଶ ൅ ሺͶ߱ߨ௡ߞሻଶ                                                         ሺʹ͸ሻ 

ସܭ ൌ ଶ ሾ߱௡ଶߨʹ െ Ͷߞଶ߱௡ଶ െ ሺʹߨሻଶሿሾ߱௡ଶ െ ሺʹߨሻଶሿଶ ൅ ሺͶ߱ߨ௡ߞሻଶ                                                        ሺʹ͹ሻ 
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After a sufficiently long time, the exponential terms in Eqs 21 and 22 can be neglected and the 

amplitude of the response can be calculated as: 

ܣ ൌ ߱௡ଶඥሾ߱௡ଶ െ ሺʹߨሻଶሿଶ ൅ ሺͶ߱ߨ௡ߞሻଶ                                                       ሺʹͺሻ 

 

     2.2 Square waves 

Pulsed square waves can be defined as: 

෠ܧ ൌ ൜ͳ               ݇ ൑ ߬ ൑ ݇ ൅ ͳ ʹΤͲ       ݇ ൅ ͳ ʹΤ ൏ ߬ ൑ ݇ ൅ ͳ             ݇ ൌ Ͳǡͳǡʹ ǥ                             ሺʹͻሻ 

The solution of Eq. 14 can be expressed as a combination of Heaviside functions and the response to 

a unit step change in the electric fields. For a step change ൫ܧ෠ ൌ ͳ൯, the dynamic response in terms of 

droplet deformation is given by: 

ҧ௦௧௘௣ߜ ൌ ͳ െ ݁ି఍ఠ೙ఛ ൤ܿݏ݋ሺ߱଴߬ሻ ൅ ߞ ߱௡߱଴  ሺ߱଴߬ሻ൨                                          ሺ͵Ͳሻ݊݅ݏ 

for the underdamped case ሺߞ ൏ ͳሻ, whereas for the overdamped case ሺߞ ൐ ͳሻ we have: 

ҧ௦௧௘௣ߜ ൌ ͳ െ ݁ି఍ఠ೙ఛ ൤݄ܿݏ݋ሺ߱଴߬ሻ ൅ ߞ ߱௡߱଴  ሺ߱଴߬ሻ൨                                       ሺ͵ͳሻ݄݊݅ݏ 

The solution for pulsed square waves can be formulated making use of the previous results as: 

ҧ௦௤௨௔௥௘ߜ ൌ ෍ ሺ߬ߠ െ ݊ሻߜҧ௦௧௘௣ሺ߬ െ ݊ሻ െ ሺ߬ߠ െ ݊ െ ͲǤͷሻߜҧ௦௧௘௣ሺ߬ െ ݊ െ ͲǤͷሻ     ஶ
௡ୀ଴                   ሺ͵ʹሻ 

where ߠሺ߬ െ ݊ሻ and ߠሺ߬ െ ݊ െ ͲǤͷሻ are the Heaviside functions; the step change occurs at ߬ ൌ ݊ and ߬ ൌ ݊ ൅ ͲǤͷ, respectively. It should be noted that the parenthesis following the response to a step 

change in the electric field denotes a substitution of the time variable (e.g. ߬ is replaced by  ߬ െ ݊ in 

the first term of Eq. (31) when evaluating ߜҧ௦௧௘௣). For the sake of a simpler notation, we will consider 

that the Heaviside function also brings about this variable substitution, i.e. Eq. 32 can be rewritten as: 

ҧ௦௤௨௔௥௘ߜ ൌ ෍ ሺ߬ߠ െ ݊ሻߜҧ௦௧௘௣ െ ሺ߬ߠ െ ݊ െ ͲǤͷሻߜҧ௦௧௘௣     ஶ
௡ୀ଴                              ሺ͵͵ሻ 

2.3 Sawtooth waves 

The sawtooth wave can be defined as: 
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෠ܧ ൌ ൜                                   Ͳ ൑ ߬ ൑ ͳܧ෠ሺ߬ሻ ൌ ෠ሺ߬ܧ െ ͳሻ     ߬ ൐ ͳ                                                     ሺ͵Ͷሻ  
The solution of Eq. 14 considering sawtooth waves can be obtained by superimposing the effect of 

simpler forcing functions. For an underdamped system ሺߞ ൏ ͳሻ, a quadratic change in the electric field ൫ܧ෠ଶ ൌ ߬ଶ൯ and a ramp input ൫ܧ෠ଶ ൌ ߬൯ bring about the following responses, respectively: 

ҧ௤௨௔ௗߜ ൌ ͳʹ ߬ଶ െ ʹ ௡ߞ߱ ߬ ൅ ሺͶߞଶ െ ͳሻ߱௡ଶ ቊͳ െ ݁ି఍ఠ೙ఛ ቈܿݏ݋ሺ߱଴߬ሻ ൅ ߞ ߱௡߱଴ ሺͶߞଶ െ ͵ሻሺͶߞଶ െ ͳሻ  ሺ߱଴߬ሻ቉ቋ ሺ͵ͷሻ݊݅ݏ

 

ҧ௥௔௠௣ߜ ൌ ߬ െ ʹ ௡ߞ߱ ൅ ݁ି఍ఠ೙ఛ߱௡ଶ ቈʹ߱ߞ௡ܿݏ݋ሺ߱଴߬ሻ ൅ ଶ߱௡ଶߞ ൅ ߱଴ଶ߱଴  ሺ߱଴߬ሻ቉                        ሺ͵͸ሻ݊݅ݏ

The solutions for the overdamped case are ሺߞ ൐ ͳሻ: 

ҧ௤௨௔ௗߜ ൌ ͳʹ ߬ଶ െ ʹ ௡ߞ߱ ߬ ൅ ሺͶߞଶ െ ͳሻ߱௡ଶ ቊͳ െ ݁ି఍ఠ೙ఛ ቈ݄ܿݏ݋ሺ߱଴߬ሻ ൅ ߞ ߱௡߱଴ ሺͶߞଶ െ ͵ሻሺͶߞଶ െ ͳሻ  ሺ߱଴߬ሻ቉ቋ   ሺ͵͹ሻ݄݊݅ݏ

ҧ௥௔௠௣ߜ ൌ ߬ െ ʹ ௡ߞ߱ ൅ ݁ି఍ఠ೙ఛ߱௡ଶ ቈʹ߱ߞ௡݄ܿݏ݋ሺ߱଴߬ሻ ൅ ଶ߱௡ଶߞ െ ߱଴ଶ߱଴  ሺ߱଴߬ሻ቉                        ሺ͵ͺሻ݄݊݅ݏ

The solution for sawtooth waves can then be obtained combining the above results, yielding: 

ҧ௦௔௪ߜ ൌ ෍ ሺ߬ߠʹ െ ݊ሻߜҧ௤௨௔ௗ െ ሺ߬ߠ െ ݊ െ ͳሻൣߜҧ௦௧௘௣ ൅ ҧ௥௔௠௣ߜʹ ൅ ҧ௤௨௔ௗ൧       ஶߜʹ
௡ୀ଴                       ሺ͵ͻሻ 

 

 

3 Results 

The amplitude of the oscillatory response as a function of the dimensionless frequency and 

damping factor can now be assessed by making use of the relationships derived in the previous 

section, in order to compare the results obtained with different waveforms. For half-sinusoidal waves, 

the amplitude of the deformation can be calculated directly from Eq. 28 and the computed values are 

shown in Figures 2 and 3 for the underdamped and overdamped case, respectively. In Figure 2 it is 

shown that, for a given value of ߞ, the amplitude reaches a maximum at a certain frequency. The locus 

of maxima tends to a vertical asymptote, where the amplitude becomes unbounded when ߞ  0 (or 

equivalently Oh  0) and ߱௡ ൌ  This finding is remarkable as it is in agreement with the generally .ߨʹ

accepted criterion that incomplete coalescence is more likely when Oh<<1 (e.g. Blanchette and 
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Bigioni, 2006).  In Figure 3, the same analysis is carried out for the overdamped system. In this case, 

the amplitude is always lower than the steady state deformation under constant fields, i.e. unity; it 

decreases with ߞ and increases with the dimensionless frequency ߱௡. Recalling the definition of ߱௡ in 

Eq. 15, these results show that if the electrical frequency ߱ா increases, the oscillation amplitude 

reduces accordingly, in accord with the experimental observation of Eow and Ghadiri (2003). 

The dependence of the amplitude on the model parameters for the square waves is reported in Figure 

4. For overdamped systems, the behaviour is similar to that described for half-sinusoidal waves. 

Interestingly, when ߞ becomes small, the trend of the amplitude becomes oscillatory with the 

presence of several maxima along the frequency axis. For ߞ  0, the amplitude tends to approach 

unbounded values at cyclic frequency levels, instead of a single frequency value. However, the 

amplitude increases faster with reducing the damping ratio at ߱ ௡ ൎ  as compared to half-sinusoidal ߨʹ

waves, which is the frequency value at which half-sinusoidal waves produce an infinite amplitude for ߞ  0. This can be seen clearly when comparing the amplitude for 0.1=ߞ in Figures 2 and 3. The other 

maxima in the amplitude versus frequency curve occur approximately at frequencies 2+4k with 

k=0,1,2.. 

Finally, the response obtained with sawtooth waves is described in Figure 5. The variation of the 

amplitude with frequency and damping ratio is similar to the previous case. However, the amplitude 

attains lower values at the same frequency and damping ratio. Also, the distance between consecutive 

amplitude peaks is shorter, as maxima are calculated at frequencies approximately equal to 2+2k 

with k=0,1,2.. 

 

4 Discussion 

The results presented in the previous section reveal that the response of a conductive droplet in 

a dielectric oil to the electric field stimulus is strongly affected by the waveform and frequency of the 

field. Also, it is clearly shown that high amplitudes of oscillation can be obtained only for underdamped 

systems, which implies low Ohnesorge numbers (or, equivalently ) , i.e. for large droplets.  High 

oscillations could be beneficial for coalescence as they lead to a decrease in the stability of the 

interfacial film. The instability could be promoted by mechanical (undulating wave propagation over 

the thin film) as well as chemical means by surface tension gradients, developing due to local 

surfactant concentration non-uniformity caused by oscillations. The attainment of resonance has also 

been related to the presence of an optimum electric field frequency in terms of process efficiency 

(Brown and Hanson, 1965; Gong et al., 2015). For underdamped systems (i.e. for large drops), the 
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proposed model predicts amplitudes which tend to infinite values when the Ohnesorge number tends 

to zero: this occurs at a single frequency level for half-sinusoidal waves and at periodic frequency 

values for sawtooth and square waves. However, as the droplets formed during the extraction process 

are relatively small (1-100 m), the conditions for vigorous oscillations or resonance are probably 

hardly met. Also, the amplitude rapidly decreases with increasing applied electric field frequency; 

nonetheless many commercial electrocoalescers employ field frequencies in the kHz region (Mhatre 

et al., 2015), with benefits not immediately obvious. The temporal variations of surface tension 

gradients, developing due to oscillations, is also unlikely to be responsive to frequencies in the kHz 

region. However, this topic is worthy of study to establish the most effective frequency range for this 

mechanism to be operative. 

The trends of some literature data can now be compared with the predictions of the linear model. 

For this purpose, the properties of the two liquids which correspond to the sunflower oil/water system 

investigated by Mousavichoubeh et al. (2011b) are reported in Table 2. The interfacial tension has 

been measured as 25 mN mm-1. In Figure 6, the experimental data of Eow and Ghadiri (2003) are 

compared with the model predictions in the form of the normalised amplitude versus electric field 

frequency for a 3 mm distilled water droplet in sunflower oil, using square waves voltage with 8 kV 

peak value. For the sunflower oil/water system, Eqs 15 and 16 give: 

߱௡ ൌ ͳǤ͹͵ξܹ݁                                                                              ሺͶͲሻ 

ߞ ൌ ͶǤʹ͵ O݄                                                                             ሺͶͳሻ 

It is evident that the difference between experiments and predictions is significant. This is 

probably due to small deformations approximation under which the model has been derived. 

However, in Figure 6, the calculated curve, obtained by modifying Eqs 40 and 41 as follows, is also 

reported: 

߱௡ ൌ ͳǤ͵͹ξܹ݁                                                                              ሺͶʹሻ 

ߞ ൌ ͶǤͻ O݄                                                                             ሺͶ͵ሻ 

The agreement between experiments and predictions improves substantially by using Eqs 42 and 

43, revealing that tuning of the numerical coefficients in the relationships for ߱௡ and ߞ can effectively 

extend the validity of the model to systems where larger deformations occur. In Figure 7, the 

calculated droplet deformation is reported as a function of the electric field frequency for the square 

waveform. At a low frequency, namely 1 Hz, the droplet deformation follows the square field change. 
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However, increasing the frequency to 20 Hz leads to a significant reduction of the droplet shape 

oscillation. By further increasing the frequency, the oscillation amplitude becomes smaller and smaller 

and at 100 Hz the droplet shape remains almost stationary. 

Assuming the coefficients in Eqs 42 and 43 remain the same for different waveforms and initial 

droplet sizes, the droplet deformation for the system studied by Mousavichoubeh et al. (2011b), for 

R=0.492 mm and different waveforms can now be predicted. This is shown in Figure 8. At the same 

value of frequency, the amplitude is the highest with square waves and the lowest with sawtooth 

waves. With all the waveforms, the amplitude of oscillation gradually decreases with frequency and is 

practically zero at 500 Hz. Also, it is interesting to observe that a value equal to half the steady-state 

deformation under a constant field is obtained with half-sinusoidal and square waves at 500 Hz, 

whereas the steady-state deformation is around 0.35 with sawtooth waves at the same frequency. 

The outcomes of this analysis therefore reveal notable differences in the behaviour between different 

waveforms in terms of the response of the oscillation amplitude to the electric field frequency.  The 

weakening mechanism of the interfacial film due to an ever-changing droplet shape is therefore lost 

when the electric field frequency is too high.  

The type of the applied waveform affects the electrocoalescence behaviour, as previously 

observed (Mhatre et al., 2015).  The experimental data of Mousavi et al. (2011b) show that the volume 

fraction of secondary droplets formed due to partial (incomplete) coalescence decreases as the 

electric field frequency is increased and the most effective waveforms are in the order: half-sinusoidal, 

sawtooth and square waves. The volume of secondary droplet ejected is usually the highest with 

square waves and the lowest with sawtooth waves. For square waves the almost total suppression of 

incomplete coalescence occurs at higher frequencies compared to the other two waveforms, 

specifically at frequencies around 50 Hz. For sawtooth waves, this threshold frequency is around 10 

Hz, whereas incomplete coalescence practically disappears at 20 Hz for half-sinusoidal waves. These 

experimental observations are well-correlated with the results of the dynamic model of electric field 

induced droplet deformation developed here. The calculated amplitude of oscillation is plotted as a 

function of frequency and waveform in Figure 9, in which a qualitative correspondence between the 

experimental values of secondary volume ratio, reported by Mousavi et al. (2011b), and the calculated 

amplitude is shown. The highest amplitude is calculated with square waves, while half-sinusoidal and 

sawtooth waves provide a lower amplitude of oscillation. Ranking the waveforms in terms of the 

frequency values at which the amplitude and volume of the secondary droplet start to decrease 

appreciably, the same correspondence is obtained.    
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The qualitative agreement between experiments and theoretical analysis is notable. Further 

improved quantitative agreement could be obtained by tuning the coefficients of the surface tension 

and drag force in Eqs 42 and 43, which have some uncertainty. However, even without carrying out 

such an exercise, this study shows that the occurrence of incomplete coalescence is probably related 

to the amplitude of deformation. On the other hand, high oscillations amplitude are also most likely 

to promote coalescence as the interfacial film is weakened by cyclic surface deformations. The 

selection of the most suitable electric field parameters for the optimisation of the process efficiency 

therefore depends on a trade-off between enhancing the coalescence kinetics and preventing 

secondary droplet formation. However, the occurrence of partial coalescence it is likely to be also 

dependent on other factors, such as the mechanism of charge relaxation (Vivacqua et al., 2016). 

 

Conclusions 

A linear dynamics model of droplet deformation due to an oscillating electric field has been 

developed. The dynamics of droplet deformation is described by the equation of motion of a driven 

damped harmonic oscillator, with the damping ratio corresponding to the Ohnesorge number and the 

dimensionless natural frequency depending on the Weber number. The amplitude of oscillations can 

increase significantly when the system is underdamped, i.e. for the Ohnesorge number tending to zero 

or, equivalently, for large droplets. The amplitude of shape oscillation is constant at low frequencies 

but it decreases rapidly at high frequencies. The model predictions are in agreement with some 

literature data with a slight tuning of the model parameters. The calculations based on the analytical 

solutions of this model show that the waveform affects the droplet dynamic response in terms of 

amplitude and resonance frequencies. At a given frequency, square waves generally provide higher 

amplitudes of oscillation, probably due to larger inertial effects associated with a rapidly varying 

electric field as compared to the other two waveforms. Furthermore, for half-sinusoidal waves it is 

possible to get resonance at a single frequency value, whilst for the other two waveforms resonance 

occurs cyclically when the damping factor ߞ (or, equivalently the Ohnesorge number, Oh) tends to 

zero. The model predictions corroborate qualitatively the trend observed for the frequency 

dependent behaviour reported in the literature; the formation of the secondary droplets is coincident 

with the amplitude of oscillation of the mother droplet, with the likelihood of occurrence of partial 

coalescence increasing with the oscillation amplitude.  

 

 



  

14 

 

Nomenclature 

a drop interface acceleration [m/s2] 

A dimensionless amplitude [-] 

r radial coordinate [mm] ܧ෠  dimensionless waveform [-] ܧ଴ electric field strength, peak value [NC-1] 

Fr Froude number ܴߩଶ߱ாଶ ሺܧߝ଴ଶሻ Τ [-] 

kE constant in the electric field force expression [-] 

Oh Ohnesorge number ߤ ඥܴߛߩΤ  [-] 

R drop radius [mm] 

Re Reynolds number, ܴߩଶ߱ா Τߤ  [-] 

s Laplace domain variable [-]  

We Weber number ܴߩଷ߱ாଶ Τߛ  [-] 

Weel electrical Weber number  [-] 

Greek symbols ߛ oil/water surface tension [Nm-1] ߜ dimensionless instantaneous drop deformation [-] ߜҧ normalized drop deformation  ߜ ௦௦Τߜ  [-] Heaviside function ߠ [-] damping ratio ߞ oil permittivity [Fm-1] ߝ [-] ௦௦ steady state dimensionless drop deformation under constant fieldߜ [-] 

  water/oil viscosity ratio [-] 

  function of the water/oil viscosity ratio [-] 
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 [-] ఓ hydrodynamic stress [N/m2] ߬ dimensionless time [-] ߱ா electric field frequency [s-1] ߱௡ dimensionless natural frequency [-] ߱଴ dimensionless frequency defined in Eq. 22ߪ ா stress due to electrostatic pressure [N/m2]ߪ ଴ stress due to difference in capillary pressure after linearisation  [N/m2]ߪ  stress due to difference in capillary pressure [N/m2]ߪ water drop density [kg m3] ߩ oil viscosity [Pas] ߤ
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Figure 1: (a) Schematic representation of drop deformation. (b) Stresses acting on the drop. 
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Figure 2: Amplitude of the oscillatory response as a function of the dimensionless frequency and 

damping factor (half-sinusoidal waves, underdamped case). 

 

 

 

 

Figure 3: Amplitude of the oscillatory response as a function of the dimensionless frequency and 

damping factor (half-sinusoidal waves, overdamped case). 
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Figure 4: Amplitude of the oscillatory response as a function of the dimensionless frequency and 

damping factor (square waves). 

 

 

 

Figure 5: Amplitude of the oscillatory response as a function of the dimensionless frequency and 

damping factor (sawtooth waves). 
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Figure 6: Comparison between model predictions and experimental values from Eow & Ghadiri 

(2003).  

 

 Figure 7: Predicted droplet deformation as a function of frequency for a 3 mm drop in sunflower oil 

under square waves.  
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Figure 8: Droplet deformation as a function of frequency for the system studied by Mousavichoubeh 

et al. (2011b). (a) Square waves, (b) Half-sinusoidal waves, (c) Sawtooth waves.  

(a) 

(b) 

(c) 
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Figure 9: Amplitude of the oscillatory response as a function of frequency and waveform obtained 

from the dynamics model for the system investigated by Mousavi et al. (2014). 

 

 

Table 1: Laplace transforms of the forcing functions in Eq. 18. 

 Half-sinusoidal Square Sawtooth ࡱ෡૚૛ሺ࢙ሻ ʹߨଶݏሺݏଶ ൅ Ͷߨଶሻ 
ͳݏሺͳ ൅ ݁ି଴Ǥହ௦ሻ 

ʹ െ ʹሺݏ ൅ ͳሻ݁ି௦ െ ଷሺͳݏଶ݁ି௦ݏ െ ݁ି௦ሻ  

 

 

 

Table 2: Properties of the experimental liquids (after Mousavichoubeh et al., 2011b). 

Liquid Conductivity 

S m-1 ( 5%) 

Viscosity 

mPa s 

Density 

kg m-3 

Dielectric constant 

- 

Distilled water 5.49    1.00 1000 80 

Sunflower oil 7.62  10-5 46.5 922 4.9 
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