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Abstract

The notion of a Carleson measure was introduced by Lennart Car-
leson in his proof of the Corona Theorem for H∞(D). In this paper we
will define it for certain type of reproducing kernel Hilbert spaces of an-
alytic functions of the complex half-plane, C+, which will include Hardy,
Bergman and Dirichlet spaces. We will obtain several necessary or suffi-
cient conditions for a positive Borel measure to be Carleson by preforming
tests on reproducing kernels, weighted Bergman kernels, and studying the
tree model obtained from a decomposition of the complex half-plane. The
Dirichlet space will be investigated in detail as a special case. Finally, we
will present a control theory application of Carleson measures in deter-
mining admissibility of controls in well-posed linear evolution equations.
Mathematics Subject Classification (2010). Primary 30H25, 93B28;
Secondary 28E99, 30H10, 30H20, 46C15, 93B05.
Keywords. Carleson measures; reproducing kernel Hilbert spaces; Dirich-
let space; control operators; admissibility; Laplace transform

1 Introduction

Let µ be a positive Borel measure on a set Ω ⊆ C, and let H be a Hilbert space
of complex-valued functions on Ω. If there exists a constant C(µ), depending
on µ only, such that for all h ∈ H we have

∫

Ω

|h|2 dµ ≤ C(µ)‖h‖2H, (1)

then µ is called a Carleson measure for H and we shall refer to (1) as the Car-
leson criterion. The set of Carleson measures for H will be denoted by CM(H).
The notion of a Carleson measure was introduced by Lennart Carleson in his
proof of the Corona Theorem for H∞(D) in [5], where a complete characteri-
sation of Carleson measures for Hp(D), (1 ≤ p < ∞) was given. In 1967 Lars

1



Hörmander extended Carleson’s result to the unit ball of C
n [17], and since

then many other generalisations and variants of this idea have been studied (we
mention in particular the characterisation of Carleson measures for the weighted
Bergman spaces on D by J. Cima and W. Wogen in [6] and on the unit ball of
C

n by D. Luecking in [22], and for the weighted Dirichlet space on D by D.
Stegenga in [25]). The popularity of this area of research is a consequence of
wide applicability of Carleson embeddings, going far beyond Carleson’s original
formulation of this concept, and in particular their usefulness in the study of
certain classes of operators acting on H (for example multiplication operators
[21], [25]). However, this area of research is usually limited to the case of Ω = D

or the unit ball of Cn, and other domains are rarely considered.
In this paper we shall consider

Ω = C+ := {z = x+ iy ∈ C : x > 0} ,

the open right complex half-plane. This choice of domain is not arbitrary and
its motivation is drawn from two main reasons. First of all, for some of the
most well-known Hilbert spaces of analytic functions on the open unit disk of
the complex place, such as the Hardy space H2 [8], [23], the Bergman space B2

[9], [15] or the Dirichlet space D [3], [12], there exists a fundamental relation
between the norm on each of this spaces and the norm of some weighted sequence
space ℓ2, namely

‖f‖2H2 := sup
0<r<1

1

2π

∫ 2π

0

∣

∣f(reiθ)
∣

∣

2
dθ =

∞
∑

n=0

|an|2
(

∀f(z) =
∞
∑

n=0

anz
n ∈ H2

)

,

‖f‖2B2 :=
1

π

∫

D

|f(z)|2 dz =

∞
∑

n=0

|an|2
n+ 1

(

∀f(z) =
∞
∑

n=0

anz
n ∈ B2

)

,

‖f‖2D := ‖f‖2H2 + ‖f ′‖2B2 =

∞
∑

n=0

(n+ 1)|an|2
(

∀f(z) =
∞
∑

n=0

anz
n ∈ D

)

.

But of course for some problems it is more natural to consider the continuous
version of the weighted sequence space ℓ2, that is the weighted L2(0, ∞) space.
It follows from the Plancherel’s Theorem, that for some class of weights, the
Laplace transform (L) is an isometric map from the weighted space of square-
(Lebesgue)-integrable functions on the positive real half-line to some spaces of
analytic functions defined on the open right complex half-plane (we shall present
this statement rigorously in the next section). And for example, if we denote
by H2(C+), B2(C+) and D(C+) the spaces of Hardy, Bergman and Dirichlet
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(respectively) on the half-plane, we have:

‖F‖2H2(C+) := sup
x>0

∫ ∞

−∞

|F (x+ iy)|2 dy

2π
=

∫ ∞

0

|f(t)|2 dt,

‖F‖2B2(C+) :=

∫

C+

|F (z)|2 dz

π
=

∫ ∞

0

|f(t)|2 dt

t
,

‖F‖2D(C+) := ‖F‖2H2(C+) + ‖F ′‖2B2(C+) =

∫ ∞

0

|f(t)|2(t+ 1) dt,

for all F = L[f ] in H2(C+), or in B2(C+), or in D(C+) and f in an appropriate
weighted L2 space on (0, ∞).

One of the instances where the continuous setting is more suitable, and also
the second reason motivating our research of Carleson measures for these spaces,
is the study of control and observation operators for linear evolution equations.
It has been shown in [20] that the admissibility criterion for these operators
is equivalent to the Carleson criterion. We shall explain it in the concluding
section of this paper.

In Section 2 we will introduce the definition of spaces which will be studied
in this paper and present their relation to the weighted L2 spaces on (0, ∞)
via the isometric map defined by the Laplace transform. In Section 3 we will
perform some tests on reproducing and weighted Bergman kernels in order to
obtain sufficient as well as necessary conditions to satisfy the Carleson criterion.
Carleson measures for the Dirichlet space will be characterised in Section 4.
Following that, in Section 5, we will introduce some techniques of analysis on
trees to produce a sufficient condition for a measure to be Carleson for spaces
which are generalisations of the Dirichlet space. Finally, an application of these
results to control theory will be given in Section 6.

2 Preliminaries

Let us now present some essential definitions and results. Let ν̃ be a positive
regular Borel measure on [0, ∞) satisfying the so-called ∆2-condition:

sup
r>0

ν̃[0, 2r)

ν̃[0, r)
< ∞, (∆2)

and let λ denote the Lebesgue measure on iR. We define ν := ν̃ ⊗ λ to
be a positive regular Borel measure on the closed right complex half-plane
C+ := [0, ∞) × iR. For this measure and 1 ≤ p < ∞ a Zen space [19] is
defined to be:

Ap
ν :=

{

F : C+ −→ C analytic : ‖F‖pAp
ν
:= sup

ε>0

∫

C+

|F (z + ε)|p dν < ∞
}

.

The Zen space definition naturally extends the definition of weighted Bergman
spaces, Bp

α(C+). Indeed, if dν̃(r) = rαdr/π, for some α > −1, thenAp
ν = Bp

α(C+)
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(the fact that both Zen and Bergman spaces are usually denoted by the letter
A justifies why we chose to label the latter with B, avoiding potential con-
fusions). Also, if 2πν̃ = δ0, the Dirac measure with point mass at 0, then
Ap

ν = Hp(C+), which we may also identify with B2
−1(C+). If we now assume

that (νn)
m
n=0 = (ν̃n ⊗ λ)mn=0, m ∈ N ∪ {∞}, is a sequence of positive regular

Borel measures on C+, each of which satisfies (∆2)-condition, we can define
a new space of functions, further extending the definition of Zen spaces (and
consequently weighted Bergman spaces), by setting

Ap (C+, (νn)
m
n=0) :=

{

F : C+ −→ C analytic : ‖F‖pAp
ν
:=

m
∑

n=0

∥

∥

∥F (n)
∥

∥

∥

p

Ap
νn

< ∞
}

.

In case of p = 2, the relation between these spaces and the weighted L2 spaces
on (0, ∞) has been introduced in [21] and we will quote some of the results here.

Theorem 1. The Laplace transform defines an isometric map

L : L2
w(m)

(0, ∞) −→ A2 (C+, (νn)
m
n=0) ,

where

w(m) :=
m
∑

n=0

wn(t) and wn(t) := 2πt2n
∫ ∞

0

e−2rt dν̃n(r) (t > 0).

(2)
Here by L2

w(m)
(0, ∞) we mean the Hilbert space of functions f : (0, ∞) −→ C

such that

‖f‖2L2
w(m)

(0,∞) :=

∫ ∞

0

|f(t)|2w(m)(t) dt < ∞.

For m = 0, this result was proved in [19], with some partial results appearing
earlier in [13], [14], and also in [7], [10]. Allowing m > 0 enables us to consider
L2 spaces with non-decreasing weights, such as w(1)(t) = 1 + t, which by the
virtue of the above theorem, applied to ν̃0 = δ0/2π and ν̃1 being the weighted
(with weight 1/π) Lebesgue measure on [0, ∞), corresponds to the Dirichlet
space on C+.

If the choice of (νn)
m
n=0 is implicit and unambiguous, we shall adopt the

notation
A2

(m) = L

(

L2
w(m)

(0, ∞)
)

.

This is a reproducing kernel Hilbert space (RKHS), with the kernel given by

k
A2

(m)
z (ζ) =

∫ ∞

0

e−t(z+ζ)

w(m)(t)
dt (∀(z, ζ) ∈ C+), (3)

for details see again [21].
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3 Kernel conditions

Since the space A2
(m) is a generalisation of the Dirichlet space, some of the

methods used to characterise the Carleson measures for the latter space, can also
be employed here. The classical Dirichlet space, D, is defined on the open unit
disk of the complex plane (with some obvious extensions to the n-dimensional
case). The Carleson measures for D have been completely classified by D.
Stegenga in [25], using the notion of so-called logarithmic capacity. A number
of other characterisations has been obtained later, and although none of them
is particularly simple, we feel obliged to at least mention a paper [1] by Arcozzi,
Rochberg and Sawyer since some of the results given there have their half-
plane counterparts which are proven in Section 5 of this article. Many of these
characterisations however rely heavily on the fact that D is bounded, and the
Dirichlet spaces defined on unbounded domains are virtually never considered.
For example, Stegenga’s logarithmic capacity classification of Carleson measures
is altogether unsuitable. But yet, some weaker results may be adopted to the
C+ case. Let us consider the following adaptations of Theorem 5.2.2 (p. 76)
from [12].

Lemma 1. Let µ be a positive Borel measure on C+, then

sup
‖F‖

A2
(m)

≤1

∫

C+

|F (z)|2 dµ(z) = sup
‖G‖

L2(C+, µ)
≤1

∣

∣

∣

∣

∣

∫

C+

∫

C+

k
A2

(m)
z (ζ)G(ζ)G(z) dµ(z) dµ(ζ)

∣

∣

∣

∣

∣

.

(4)

Proof. If the LHS of (4) is finite (i.e. µ is a Carleson measure for A2
(m)), then

the proof is essentially the same as the proof of Theorem 5.2.2 from [12]. If it
is not finite, let

Ωr =

{

x+ iy ∈ C+ :
1

r
≤ x ≤ r, −r ≤ y ≤ r

}

⊂ C+ (r > 0).

Then
∫

C+

|F |2 dµ|Ωr
≤ µ(Ωr) sup

z∈Ωr

∥

∥

∥

∥

k
A2

(m)
z

∥

∥

∥

∥

2

‖F‖2A2
(m)

(F ∈ A2
(m)),

and hence µ|Ωr
(i.e. the restriction of µ to Ωr) is a Carleson measure for A2

(m),

so we can use the first part of the proof, that is we are given that (4), to get

sup
‖F‖

A2
(m)

≤1

∫

C+

|F (z)|2 dµ|Ωr
(z)

= sup
‖G‖L2(C+, µ)≤1

∣

∣

∣

∣

∣

∫

C+

∫

C+

k
A2

(m)
z (ζ)G(ζ)G(z) dµ|Ωr

(z) dµ|Ωr
(ζ)

∣

∣

∣

∣

∣

,

where the RHS is at most equal to the RHS of (4) and the LHS tends to infinity
as r approaches infinity.
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Proposition 1. If

sup
z∈C+

∫

C+

∣

∣

∣

∣

k
A2

(m)
z

∣

∣

∣

∣

dµ < ∞, (5)

then µ is a Carleson measure for A2
(m).

Proof. Let

M := sup
z∈C+

∫

C+

∣

∣

∣

∣

k
A2

(m)
z

∣

∣

∣

∣

dµ. (6)

Then for all G ∈ L2(C+, µ)

∣

∣

∣

∣

∣

∫

C+

∫

C+

k
A2

(m)
z (ζ)G(ζ)G(z) dµ(z) dµ(ζ)

∣

∣

∣

∣

∣

Hölder’s
≤

(

∫

C+

∫

C+

∣

∣

∣

∣

k
A2

(m)

ζ (z)

∣

∣

∣

∣

|G(ζ)|2 dµ(z) dµ(ζ)
)1/2

×
(

∫

C+

∫

C+

∣

∣

∣

∣

k
A2

(m)
z (ζ)

∣

∣

∣

∣

|G(z)|2 dµ(z) dµ(ζ)
)1/2

(6)

≤ M‖G‖2L2(C+, µ).

(7)

Therefore

∫

C+

(

|H(z)|
‖H‖A2

(m)

)2

dµ(z)

≤ sup
‖F‖

A2
(m)

≤1

∫

C+

|F (z)|2 dµ(z)

(4)
= sup

‖G‖L2(C+, µ)≤1

∣

∣

∣

∣

∣

∫

C+

∫

C+

k
A2

(m)
z (ζ)G(ζ)G(z) dµ(z) dµ(ζ)

∣

∣

∣

∣

∣

(7)

≤ M,

for all H ∈ A2
(m), as required.

In the RKHS case, in order to obtain necessary conditions for a measure
to be Carleson, it is also a fairly standard practice to test Carleson criterion
on reproducing kernels. However, in A2

(m) it often brings rather disappointing

results, as the reproducing kernels of A2
(m) are seldom expressible as elementary

functions (recall formulae (2) and (3)). This can be overcome if the rôle of
reproducing kernels of A2

(m) is assumed by the reproducing kernels of weighted
Bergman spaces. Recall that the weighted Bergman space on the right complex
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half-plane, Bp
α(C+), α ≥ − 1, is the Banach space of analytic functions

F : C+ −→ C, such that

‖F‖p
Bp

α
:=

1

π

∫ ∞

−∞

∫ ∞

0

|F (x+ iy)|pxα dxdy < ∞ (α > −1),

and Bp
−1(C+) := Hp(C+), [11]. If p = 2, then B2

α(C+) is a RKHS, and

k
B2

−1(C+)
z (ζ)

defn
= k

H2(C+)
ζ (z)

(3)
=

1

z + ζ
and k

B2
α(C+)

z (ζ)
(3)
=

2α(1 + α)

(z + ζ)2+α
, α > −1,

for all (z, ζ) ∈ C
2
+. We shall call all the functions of the form

Kα(z, ζ) := (z + ζ)−2−α, (z, ζ) ∈ C
2
+, α ≥ −1,

the Bergman kernels for the right complex half-plane.

Lemma 2. Suppose that m ∈ N0. Then there exists α0 ≥ −1 such that for all
(z, ζ) ∈ C

2
+ and α ≥ α0, Kα(z, ζ) is in A2

(m) (viewed as an analytic function in

ζ).

Proof. For each 0 ≤ n ≤ m, let

Rn := sup
r>0

ν̃n[0, 2r)

ν̃n[0, r)
. (8)

Clearly, for all r > 0

ν̃n[0, r) + ν̃n[r, 2r) = ν̃n[0, 2r)
(8)

≤ Rnν̃n[0, r),

so
ν̃n[r, 2r) ≤ (Rn − 1)ν̃n[0, r). (9)

Choose q > 0 such that
2q > sup

0≤n≤m
Rn.

Define g : [0,∞) −→ (0,∞) to be a step function such that g(r) = Re(z)−q, if
0 ≤ r < 1, and g(r) = (2j +Re(z))−q, if r ∈ [2j , 2j+1), for all j ∈ N0.

∫ ∞

0

g(r) dν̃n(r) =
ν̃n[0, 1)

Re(z)q
+

∞
∑

j=0

∫

[2j , 2j+1)

dν̃n(r)

(2j +Re(z))q

defn
=

ν̃n[0, 1)

Re(z)q
+

∞
∑

j=0

ν̃n[2
j , 2j+1)

(2j +Re(z))q

(9)

≤ ν̃n[0, 1)

Re(z)q
+ (Rn − 1)

∞
∑

j=0

ν̃n[0, 2
j)

(2j +Re(z))q

(8)

≤ ν̃n[0, 1)





1

Re(z)q
+ (Rn − 1)

∞
∑

j=0

(

Rn

2q

)j


 < ∞,
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for all 0 ≤ n ≤ m. It follows that
∫ ∞

0

∣

∣tα+1e−tz
∣

∣

2
wn(t) dt = 2π

∫ ∞

0

∫ ∞

0

t2(α+n+1)e−2t(r+Re(z)) dt dν̃n(r)

=
πΓ(2α+ 2n+ 3)

22α+2n+2

∫ ∞

0

dν̃n(r)

(r +Re(z))2α+2n+3

≤ πΓ(2α+ 2n+ 3)

22α+2n+2

∫ ∞

0

g(r) dν̃n(r) < ∞,

whenever α ≥ α0 := (q − 3)/2. And consequently, by Theorem 1, we have

L

[

tα+1e−tz

Γ(α+ 2)

]

(ζ) =
1

(z + ζ)α+2
= Kα(z, ζ) ∈ A2

(m).

Definition 1. Let a ∈ C+. A Carleson square centred at a is defined to be the
subset

Q(a) := {z = x+ iy : 0 < x ≤ 2Re(a), |y − Im(a)| ≤ Re(a)} (10)

of the open right complex half-plane.

Theorem 2. Suppose that m ∈ N0. If µ is a Carleson measure for the space
A2(C+, (νn)

m
n=0), then there exists a constant C(µ) > 0 such that

µ(Q(a)) ≤ C(µ)

m
∑

n=0

νn

(

Q(a)
)

Re(a)2n
, (11)

for all a ∈ C+. Here Q(a) denotes the closure of Q(a) in C.

Proof. Given a ∈ C+, we have that for each z ∈ Q(a),

|z + a| def
n

=
√

(Re(z) + Re(a))2 + (Im(z)− Im(a)2)
(10)

≤
√
10Re(a). (12)

We also know, by Lemma 2, that there exists β ≥ 0 such that
tβe−ta ∈ L2

w(m)
(0, ∞), and

∥

∥L[tβe−ta]
∥

∥

2

L2(C+, µ)
≥ (Γ(β + 1))2

∫

Q(a)

dµ(z)

|z + a|2(β+1)

(12)

≥ (Γ(β + 1))2µ(Q(a))

10β+1 Re(a)2(β+1)
.

(13)
On the other hand

∥

∥L[tβe−ta]
∥

∥

2

A2(C+, (νn)mn=0)

Thm 1
=

∥

∥tβe−ta
∥

∥

2

L2
w(m)(0,∞)

=

∫ ∞

0

t2βe−2Re(a)tw(m)(t) dt

(2)
= 2π

m
∑

n=0

∫ ∞

0

∫ ∞

0

t2(β+n)e−2(r+Re(a))t dt dν̃n(r)

= 2π

m
∑

n=0

Γ(2β + 2n+ 1)

22β+2n+1

∫ ∞

0

dν̃n(r)

(r +Re(a))2β+2n+1
.

8



And again, letting Rn be defined like in (8), for all 0 ≤ n ≤ m, and using
essentially the same method as that in the proof of Lemma 2 (with ν̃n[0,Re(a))
instead of ν̃n[0, 1), for each 0 ≤ n ≤ m), we get that the last expression is less
or equal to:

2π

m
∑

n=0

Γ(2β + 2n+ 1)ν̃n[0,Re(a))

(2Re(a))2β+2n+1



1 + (Rn − 1)
∞
∑

j=0

Rj
n

(1 + 2j)2β+2n+1



 ,

and the series converges for β sufficiently large. Therefore, combining this with
(13), we get

µ (Q(a)) ≤ C(µ)

m
∑

n=0

2Re(a)2(β+1)ν̃n[0,Re(a))

Re(a)2β+2n+1
≤ C(µ)

m
∑

n=0

νn

(

Q(a)
)

Re(a)2n
,

where

C(µ) :=
10β+1πΓ(2β + 2m+ 1)

22β−1(Γ(β + 1))2

[

1 + max
0≤n≤m

(

(Rn − 1)

∞
∑

j=0

Rj
n

(1 + 2j)2β+2n+1

)]

C,

and C > 0 is a Carleson constant from the embedding

A2(C+, (νn)
m
n=0) →֒ L2(C+, µ).

In [19] the condition (11) was proved to be equivalent to the Carleson cri-
terion, if m = 0 (i.e. for Zen spaces). It is not clear if this remains true for
m > 1.

4 The Dirichlet space(s)

Let us now consider a particularly well-known example of A2
(1), correspond-

ing to measures ν̃0 = δ0/2π and ν̃1 being the weighted Lebesgue measure on
[0, ∞) (with weight 1/π), or alternatively to the Laplace image of L2

1+t(0, ∞).
That is the Dirichlet space D(C+). The previous section provides us with some
information about the set of Carleson measures for D(C+).

Proposition 2. Let µ be a positive Borel measure on C+. Then

1. If for each a ∈ C+

µ(Q(a)) = O(Re(a)), (14)

then µ is a Carleson measure for D(C+).

2. If µ is a Carleson measure for D(C+), then

µ(Q(a)) = O(Re(a) + 1)

for each a ∈ C+.

9



Proof. If (14) holds, then µ is a Carleson measure for the Hardy space H2(C+),
so it must also be a Carleson measure for D(C+). Conversely, if it is a Carleson
measure for D(C+), then, by the previous theorem, there exists a constant
C(µ) > 0 such that

µ(Q(a))
(11)

≤ C(µ)



ν0

(

Q(a)
)

+
ν1

(

Q(a)
)

Re(a)2



 ≤ 2C(µ) (Re(a) + 2) .

On the open unit disk of the complex plane the Dirichlet space, D, is defined
to be the Banach space of analytic functions with derivatives in the (unweighted)
Bergman space, B. The quantity

∫

D

|f ′(z)|2 dz (f ∈ D) (15)

is a seminorm on D. A norm on D can be defined by adding an absolute value
of the evaluation of f at a constant to (15) or by adding to it the Hardy norm,
‖ · ‖2, (it is always possible, since D ⊂ H2). On the disk these two norms are
equivalent [3], [12]. On the complex half-plane, however, it not the case.

Let us consider the following variant of the Dirichlet space on the right
complex half-plane: given α ∈ C+, let

Dα(C+) :=

{

F : C+ −→ C analytic : ‖F ′‖2B2
0(C+)

defn
=

∫

C+

|F ′(z)|2 dz

π
< ∞

}

,

with the inner product given by

〈F, G〉Dα(C+) := 〈F ′, G′〉B2
0(C+) + F (α)G(α).

It is a reproducing kernel Hilbert space and we can find its reproducing kernel,

k
Dα(C+)
z , using the following method. Let F ∈ Dα(C+) be such that F ′ = L

′[f ]
for some f ∈ L2

1/t(0, ∞). Then

F ′(z) =
〈

F ′, k
B2

0(C+)
z

〉

B2
0(C+)

=
d

dz

〈

F, kD
α(C+)

z

〉

Dα(C+)
.

So by the Fundamental Theorem of Calculus,

F (z) =

∫

C+

F ′(ζ)

∫ z

α

dξ

π(ξ + ζ)2
dζ + F (α)

=

〈

F ′,
(

kD
α(C+)

z

)′
〉

B2
0(C+)

+ F (α)kD
α(C+)

z (α).

And by the uniqueness property of reproducing kernels ([4], [24]),

(

kD
α(C+)

z

)′

(ζ) =

∫ z

α

dξ

π(ξ + ζ)2
=

1

π

(

1

α+ ζ
− 1

z + ζ

)

and kD
α(C+)

z (α) = 1.
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And thus

kD
α(C+)

z (ζ) =

∫ ζ

α

(

1

α+ ξ
− 1

z + ξ

)

dξ

π
+ 1 = ln

(

(α+ ζ)(α+ z)

2πRe(α)(z + ζ)

)

+ 1.

For any β ∈ C+, ‖ · ‖Dβ(C+) is an equivalent norm on Dα(C+), i.e. for all
F ∈ Dα(C+),

‖F‖2Dα(C+)
defn
= ‖F ′‖2B0(C+) + |F (α)|2

defn
= ‖F ′‖2B0(C+) +

∣

∣

∣

∣

〈

F, kD
β(C+)

α

〉

Dβ(C+)

∣

∣

∣

∣

2

Cauchy-Schwarz

≤ ‖F ′‖2B0(C+) + ‖F‖2Dβ(C+)

∥

∥

∥kD
β(C+)

α

∥

∥

∥

2

Dβ(C+)

≤
(

1 +
∥

∥

∥kD
β(C+)

α

∥

∥

∥

2

Dβ(C+)

)

‖F‖2Dβ(C+) .

The set Dα(C+) properly contains D(C+), since

‖L[f ]‖2Dα(C+)
defn
=

∫ ∞

0

|f(t)|2t dt+
∣

∣

∣

∣

∫ ∞

0

f(t)e−αt dt

∣

∣

∣

∣

2

≤ max

{

1,
1

2Re(α)

}∫ ∞

0

|f(t)|2(1 + t) dt,

(16)

and all the constant functions belong toDα(C+), while they cannot be inD(C+),
because they are not in H2(C+). Moreover D(C+) ⊂ Dα(C+) \ C, since for
example (z + 1)1/2 ∈ Dα(C+) \

(

H2(C+) ∪ C
)

.

Proposition 3. For all α ∈ C+ we have that CM(Dα(C+)) ⊂ CM(D(C+)),
and the inclusion is proper.

Proof. The inclusion CM(Dα(C+)) ⊆ CM(D(C+)) is obvious by (16). It is
proper, since whenever µ ∈ CM(Dα(C+)), then

µ(Ω) ≤
∫

C+

|1|2 dµ ≤ C(µ)‖1‖2Dα(C+) = C(µ),

for all Ω ⊂ C+ and some C(µ) > 0, not depending on Ω. That is, µ must be
bounded, whereas δ0 ⊗ λ is clearly an unbounded measure, which belongs to
CM(D(C+)).

Theorem 3. Let µ be a positive Borel measure on C+.

1. The measure µ is a Carleson measure for Dα(C+) if and only if there
exists a constant C(α, µ) > 0 such that

∫

C+

∣

∣

∣

∣

∣

∫

C+

G(ζ)
ζ − α

(z + α)(z + ζ)
dµ(ζ)

∣

∣

∣

∣

∣

2

dz ≤ C(α, µ)

∫

C+

|G|2 dµ−(lnπ−1)2

∣

∣

∣

∣

∣

∫

C+

Gdµ

∣

∣

∣

∣

∣

2

,

for all G ∈ L2(C+, µ).
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2. The measure µ is a Carleson measure for D(C+) if and only if there exists
a constant D(µ) > 0 such that

∫

C+

∣

∣

∣

∣

∣

∫

C+

G(ζ)

z + ζ
dµ(ζ)

∣

∣

∣

∣

∣

2
dz

πe2Re(z)
≤ D(µ)

∫

C+

|G|2 dµ,

for all G ∈ L2(C+, µ).

Proof.

1. A positive Borel measure µ on C+ is a Carleson measure for Dα(C+) if
and only if the adjoint of the inclusion map ι∗ : L2(C+, µ) →֒ Dα(C+)
is bounded, that is there exists C(α, µ) > 0 such that

‖ι∗G‖2Dα(C+) ≤ C(α, µ)‖G‖2L2(C+, µ), (17)

for all G ∈ L2(C+, µ). Also

ι∗G(z)
defn
=
〈

ι∗G, kD
α(C+)

z

〉

Dα(C+)

defn
=
〈

G, kD
α(C+)

z

〉

L2(C+, µ)

defn
=

∫

C+

G(ζ)

(

ln

(

(α+ ζ)(α+ z)

2πRe(α)(z + ζ)

)

+ 1

)

dµ(ζ),
(18)

for all z ∈ C+. And so

C(α, µ)‖G‖2L2(C+, µ)

(17), (18)

≥

∫

C+

∣

∣

∣

∣

∣

∫

C+

G(ζ)
ζ − α

(z + α)(z + ζ)
dµ(ζ)

∣

∣

∣

∣

∣

2

dz+(lnπ−1)2

∣

∣

∣

∣

∣

∫

C+

Gdµ

∣

∣

∣

∣

∣

2

,

as required.

2. By the equation (3) we know that

kD(C+)
z (ζ) =

∫ ∞

0

e−t(z+ζ)

1 + t
dt (∀(z, ζ) ∈ C+).

And then, similarly as in 1. we have

D(µ)‖G‖2L2(C+, µ) ≥

∥

∥

∥

∥

〈

G, k
D(C+)
·

〉

L2(C+, µ)

∥

∥

∥

∥

2

D(C+)

−

∫ ∞

0

∣

∣

∣

∣

∣

L
−1

[

∫

C+

G(ζ)

∫ ∞

0

e−τ(z+ζ)

1 + τ
dτ dµ(ζ)

]

(t)

∣

∣

∣

∣

∣

2

(1 + t) dt

=

∫ ∞

0

∣

∣

∣

∣

∣

∫

C+

G(ζ)e−tζ
dµ(ζ)

∣

∣

∣

∣

∣

2
dt

1 + t
.

Now,
1

1 + t
= 2

∫ ∞

0

e−2r(t+1) dr = 2π

∫ ∞

0

e−2rt dr

πe2r
,
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hence by Theorem 1

D‖G‖2L2(C+, µ) ≥
∫

C+

∣

∣

∣

∣

∣

∫ ∞

0

∫

C+

G(ζ)e−tζ dµ(ζ)etz

∣

∣

∣

∣

∣

2
dz

πe2Re(z)

=

∫

C+

∣

∣

∣

∣

∣

∫

C+

G(ζ)

z + ζ
dµ(ζ)

∣

∣

∣

∣

∣

2
dz

πe2Re(z)
.

Corollary 1. If µ is a Carleson measure for D(C+), then there exists a constant
C(µ) > 0 such that for all a ∈ C+ we have

∫

C+

(

µ(Q(a) ∩Q(z))

eRe(z) Re(z)

)2

dz ≤ C(µ)µ(Q(a)).

Proof. By the previous theorem, applied with G = χQ(a), we get

µ(Q(a)) '

∫

C+

∣

∣

∣

∣

∣

∫

Q(a)

dµ(ζ)

z + ζ

∣

∣

∣

∣

∣

2
dz

e2Re(z)
.

Now

Re

(

1

z + ζ

)

=
Re(z) + Re(ζ)

|z + ζ|2
≥ 0, (19)

so for any z ∈ C+,

∣

∣

∣

∣

∣

∫

Q(a)

dµ(ζ)

z + ζ

∣

∣

∣

∣

∣

≥ Re

(

∫

Q(a)

dµ(ζ)

z + ζ

)

(19)

≥
∫

Q(a)∩Q(z)

Re(z) + Re(ζ)

(Re(z) + Re(ζ))2 + | Im(z)− Im(ζ)|2 dµ(ζ)

(10)

≥
∫

Q(a)∩Q(z)

Re(z)

10(Re(z))2
dµ(ζ) =

µ(Q(a) ∩Q(z))

10Re(z)
,

and the result follows.

5 Carleson embeddings for trees

To investigate sufficient conditions for a measure to be Carleson for the Dirichlet
space and similar spaces, let us now turn our attention to trees. This approach
was introduced in [1] to classify Carleson measures for analytic Besov spaces on
the unit disk of the complex plane and in [2] for Drury-Averson Hardy space
and Besov-Sobolev spaces on complex n-balls.

Consider a tree T with a partial order relation ”≤” defined on the set of its
vertices. We will write v ∈ T to denote that v is a vertex of T , and in general
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associate T with the set of its vertices only. Let x, y be two distinct elements
(vertices) of T . If for all c ∈ T such that x ≤ c ≤ y we have x = c or y = c,
then we call y the predecessor of x and write y := x−. For any ϕ : T −→ C we
define the primitive I of ϕ at x ∈ T to be

Iϕ(x) :=
∑

y≤x

ϕ(y).

And finally, we let

S(x) := {y ∈ T : y ≥ x} and S(−∞) := T.

The following two lemmata appear in [1] in a similar form. The first of them is,
however, only stated for rooted trees. This would cause a problem in Lemma
4, because if we decide to decompose a half-plane into subsets, each of them
corresponding to a vertex of some tree, and we let one of this sets correspond to
the root of the tree, then we would only restrict our consideration of Carleson
measures to those which are bounded on C+. In order to avoid this, we shall
rephrase the statement of Lemma 3 (part of Theorem 3 in [1], p. 447) in order
to incorporate rootless trees as well, and amend the proof where necessary.

Lemma 3. Let T be a tree with a partial order defined on it, let 1 < p ≤ q < ∞,
and let p′ = p/(p − 1), q′ := q/(q − 1) be the adjoint indices of p and q. Let
also ρ be a weight on T , and µ be a non-negative function on T . If there exists
a constant C(µ, ρ) > 0 such that for all r ∈ T ∪ {−∞},







∑

x∈S(r)





∑

y∈S(x)

µ(y)





p′

ρ(x)1−p′







q′/p′

≤ C(µ, ρ)
∑

x∈S(r)

µ(x), (20)

then there exists a constant C ′(µ, ρ) > 0 such that for all ϕ : T −→ C,

(

∑

x∈T

|Iϕ(x)|qµ(x)
)1/q

≤ C ′(µ, ρ)

(

∑

x∈T

|ϕ(x)|pρ(x)
)1/p

.

Proof. Let g ∈ Lp(T, ρ). To prove this lemma we only need to show that

‖Ig‖Lq(T, µ) ≤ C ′(µ, ρ)‖g‖Lp(T, ρ),

for all g ≥ 0, in which case Ig is non-decreasing with respect to the order
relation on T . Let

Ωk :=
{

x ∈ T : Ig(x) > 2k
}

=
⋃

j

S(rkj ),

where {rkj ∈ T : j = 1, . . . } is the set of minimal points in Ωk with respect to

the partial order on T , if such points exist. Otherwise we define rk1 := −∞ and

Ωk :=
{

x ∈ T : Ig > 2k
} defn

= S(rk1 )
defn
= S(−∞)

defn
= T.
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Let Ek
j = S(rkj ) ∩ (Ωk+1 \ Ωk+2). Then for x ∈ Ek

j we get

I(χS(rkj )
g)(x) =

∑

rkj ≤y≤x

g(y) = Ig(x)− Ig((rkj )−) ≥ 2k,

where we adopt a convention that Ig((rkj )−) := 0, whenever rkj = −∞. Let µ̃ be
a measure on the σ-algebra P(T ) (the power set of T ) defined by µ̃({x}) := µ(x),
for all x ∈ T . Thus we have,

2kµ̃(Ek
j ) = 2k

∑

x∈Ek
j

µ(x)

≤
∑

x∈Ek
j

I(χS(rkj )
g)(x)µ(x)

=
∑

y∈S(rkj )

g(y)
∑

x∈Ek
j , x≥y

µ(x)

=
∑

y∈S(rkj )

g(y)I∗χEj
k
(y)

=
∑

y∈S(rkj )∩(Ωk+2∪Ωc
k+2)

g(y)I∗χEk
j
(y)

=
∑

y∈S(rkj )∩Ωk+2

g(y)I∗χEk
j
(y) +

∑

y∈S(rkj )∩Ωc
k+2

g(y)I∗χEk
j
(y),

where Ωc
k+2 denotes the complement of Ωk+2 in C+. But since I∗χEk

j
(y) = 0

for all y ∈ Ωk+2,

2kµ̃(Ek
j ) ≤

∑

y∈S(rkj )∩Ωc
k+2

g(y)I∗χEk
j
(y). (21)

Now,
∑

x∈T

|Ig(x)|qµ(x) ≤
∑

k∈Z

µ̃
{

x ∈ T : 2k+1 < Ig(x) ≤ 2k+2
}

2(k+2)q

= 22q
∑

k∈Z

2kqµ̃ (Ωk+1 \ Ωk+2)

≤ 22q
∑

k∈Z, j

µ̃(Ek
j )2

kq

= 22q





∑

(k,j)∈E

µ̃(Ek
j )2

kq +
∑

(k,j)∈F

µ̃(Ek
j )2

kq



 ,

where

E :=
{

(k, j) : µ̃(Ek
j ) ≤ βµ̃(S(rjk))

}

, (22)

F :=
{

(k, j) : µ̃(Ek
j ) > βµ̃(S(rjk))

}

, (23)

15



for some 0 < β < 1−2−q

2 . Let {xn
k}k,n ⊆ T ∪ {∅} be a collection of distinct

elements of this set, such that
{

xk
n

}

k,n
= Ωk \ Ωk+1, for all k ∈ Z \ {0}. Then

∑

(k,j),k≥1

µ̃(S(rkj ))2
kq =

∞
∑

k=1

µ̃(Ωk)2
kq =

∞
∑

k=1

µ̃(Ωk \ Ωk+1)

k
∑

l=1

2lq

=

∞
∑

k=0

µ̃({xk
n}n)

k−1
∑

l=0

2(k−l)q ≤
∞
∑

k=0

∑

n

µ(xk
n)|Ig(xk

n)|q
k−1
∑

l=0

2−lq

≤ 1

1− 2−q

∑

x∈T

|Ig(x)|qµ(x) def
n

=
1

1− 2−q
‖Ig‖qLq(T, µ).

Similarly,

∑

(k,j),k<1

µ̃(S(rjk))2
kq =

0
∑

k=−∞

µ̃(Ωk)2
kq

=

(

∞
∑

l=0

2−lq

)(

µ̃(Ω0) +

∞
∑

k=1

µ̃(Ω−k \ Ω−k+1)2
−kq

)

≤ 1

1− 2−q





∑

j

µ(r0j )|Ig(r0j )|q +
∞
∑

k=1

µ(x−k
n )|Ig(x−k

n )|q




≤ 1

1− 2−q

∑

x∈T

|Ig(x)|qµ(x) def
n

=
1

1− 2−q
‖Ig‖qLq(T, µ).

So

22q
∑

(k,j)∈E

µ̃(Ek
j )2

kq
(22)

≤ 22q+1

1− 2−q
β‖Ig‖qLq(T, µ).

For the sum indexed by F we have

∑

(k,j)∈F

µ̃(Ek
j )2

kq
(21)

≤
∑

(k,j)∈F

µ̃(Ek
j )

∣

∣

∣

∣

∣

∣

µ̃(Ek
j )

−1
∑

y∈S(rkj )∩Ωc
k+2

g(y)I∗χEk
j
(y)

∣

∣

∣

∣

∣

∣

q

(23)

≤ β1−q
∑

(k,j)∈F

µ̃(S(rkj ))
1−q

∣

∣

∣

∣

∣

∣

∑

y∈S(rkj )∩Ωc
k+2

g(y)I∗χEk
j
(y)

∣

∣

∣

∣

∣

∣

q

Hölder’s
≤ β1−q

∑

(k,j)∈F

µ̃(S(rkj ))
1−q

×





∑

y∈S(rkj )∩Ωc
k+2

∣

∣

∣I∗χEk
j
(y)
∣

∣

∣

p′

ρ(y)1−p′





q

p′




∑

y∈S(rkj )∩Ωc
k+2

|g(y)|p ρ(y)





q
p
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≤ β1−q
∑

(k,j)∈F





∑

x∈S(rkj )

µ(x)





1−q

×







∑

x∈S(rkj )





∑

y∈S(x)

µ(y)ρ(y)1−p′





p′





q′(q−1)

p′ 



∑

y∈S(rkj )∩Ωc
k+2

|g(y)|p ρ(y)





q
p

(20)

≤ β−qCq−1
∑

(k,j)





∑

y∈S(rkj )∩Ωc
k+2

|g(y)|p ρ(y)





q/p

q≥p

≤ β−qCq−1





∑

(k,j)

∑

y∈S(rkj )∩Ωc
k+2

|g(y)|p ρ(y)





q/p

= Cq−1β−q





∑

k∈Z

∑

y∈Ωk∩Ωc
k+2

|g(y)|p ρ(y)





q/p

= Cq−1β−q





∑

k∈Z

∑

y∈Ωk\Ωk+2

|g(y)|p ρ(y)





q/p

= 2q/pβ−qCq−1

(

∑

x∈T

|g(x)|p ρ(y)
)q/p

defn
= 2q/pCq−1‖g‖qLp(T, ρ).

Therefore we can conclude that

‖Ig‖qLq(T, µ) ≤
22q+1

1− 2−q
β‖Ig‖qLq(µ) + 2q/pCq−1β1−q‖g‖qLp(T (ζ)),

and since

β <
1− 2−q

22q+1
,

we get the desired result.

Given ζ ∈ C+, consider the following decomposition of the right complex
half-plane: for any (k, l) ∈ Z

2 let

R(k,l)(ζ) :=

{

z ∈ C+ : 2k−1 <
Re(z)

Re(ζ)
≤ 2k, 2kl ≤ Im(z)− Im(ζ)

Re ζ
< 2k(l + 1)

}

.
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6Im(z)

r

ζ

R(3,−1)(ζ)

R(3,0)(ζ)

R(2,−1)(ζ)

R(2,0)(ζ)

R(1,−3)(ζ)

R(1,−2)(ζ)

R(1,−1)(ζ)

R(1,0)(ζ)

R(1,1)(ζ)

R(1,2)(ζ)

We can view each element of the set of rectangles {R(k,l)(ζ) : (k, l) ∈ Z
2} as

a vertex of an abstract graph. If we also have that x, y ∈ {R(k,l)(ζ) : (k, l) ∈ Z
2}

and x ∩ y is a vertical segment in C+, then we say there is an edge between x
and y. With this convention, these vertices and edges form an abstract tree,
which we shall denote by T (ζ). Let A(·) a positive function on the set vertices
of T (ζ) assigning to each of them the area of the corresponding rectangle from
{R(k,l)(ζ) : (k, l) ∈ Z

2}. We can define a partial order on T (ζ) by considering
the unique path between each pair x, y ∈ T (ζ). If for each vertex c lying on
this path, A(x) ≥ A(c) ≥ A(y), then x ≤ y. With this setting and the following
definition, we may proceed to prove next lemma, which has a disk counterpart
in [1] (part of Theorem 1, p. 445) using the Whitney decomposition of D.

Definition 2. A positive weight ρ : C+ −→ (0, ∞) is called regular if for all
ε > 0 there exists δ > 0 such that ρ(z1) ≤ δρ(z2), whenever z1 and z2 are within
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(Poincaré) hyperbolic right half-plane distance ε, i.e.

dH(z1, z2)
defn
= cosh−1

(

1 +
(Re(z1)− Re(z2))

2 + (Im(z1)− Im(z2))
2

2Re(z1)Re(z2)

)

≤ ε.

Lemma 4. Let ρ : C+ −→ (0, ∞) be regular, let µ be a positive Borel measure
on C+. If there exists a constant C(µ, ρ) > 0, such that for all a ∈ C+ we have

(

∫

Q(a)

(µ(Q(a) ∩Q(z))p
′

(Re(z))2
ρ(z)1−p′

dz

)q′/p′

≤ C(µ, ρ)µ(Q(a)), (24)

then there exists a constant C ′(µ, ρ) > 0 such that







∑

β≥α





∑

γ≥β

µ(γ)





p′

ρ̃(β)1−p′







q′/p′

≤ C ′
∑

β≥α

µ(β),

for all α ∈ T (ζ). Here ρ̃(β) is defined to be ρ(zβ), for some fixed zβ ∈ β ⊂ C+,
for all β ∈ T (ζ).

Proof. Choose any ζ ∈ C+. Then for all α ∈ T (ζ) there exists a ∈ C+ such that

Q(a) =
⋃

β≥α

β and µ(Q(a)) =
∑

β≥α

µ(β) (25)

(or to be precise: this holds after removing some horizontal lines from some the
sets β ≥ α, to avoid covering the same set twice, and otherwise keeping the tree
model intact). Given β ≥ α, let (k, l) ∈ Z

2 be such that β = R(k, l)(ζ) and let

S(β) :=

{

z ∈ C+ : 2k−1 <
Re(z)

Re(ζ)
≤ 2k,

∣

∣Im(z)− Im(ζ)− 2k
(

l + 1
2

)

Re(ζ)
∣

∣

tan
(

π
4

) < Re(z)− 2k−1

}

,

Now
⋃

γ≥β

γ ⊆ Q(z),

whenever z ∈ S(β) ⊂ β ≥ α, and also

Q(a) ∩Q(z) ⊇
⋃

γ≥β

γ. (26)

We also have that for any z1 and z2 in β

dH(z1, z2) ≤ cosh−1

(

1 +
22k−2 + 22k

22k−2

)

= cosh−1

(

7

2

)

,
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which does not depend on the choice of β ∈ T (ζ), so there exists δ > 0 such
that

C
∑

β≥α

µ(β)
(25)
= Cµ(Q(a))

(24)

≥
(

∫

Q(a)

(µ(Q(a)) ∩Q(z))p
′

(Re(z))2
ρ(z)1−p′

dz

)q′/p′

(25)

≥ δq
′/p′





∑

β≥α

ρ(β)1−p′

∫

β

(µ(Q(a) ∩Q(z)))
p′

(Re(z))2
dz





q′/p′

≥ δq
′/p′





∑

β≥α

ρ(β)1−p′

∫

S(β)

(µ(Q(a) ∩Q(z)))
p′

(Re(z))2
dz





q′/p′

(26)

≥ δq
′/p′





∑

β≥α

ρ(β)1−p′

(µ(
⋃

γ≥β

γ))p
′





q′/p′

= δq
′/p′







∑

β≥α





∑

γ≥β

µ(γ)





p′

ρ(β)1−p′







q′/p′

,

as required.

The following theorem is a half-plane and Hilbertian version of Theorem 1
from [1].

Theorem 4. Let ρ be a regular weight such that ‖F‖2
A2

(m)

≥
∫

C+
|F ′(z)|2ρ(z) dz,

for all F ∈ A2
(m), and let µ be a positive Borel measure on C+. If

∫

Q(a)

(

µ(Q(a) ∩Q(z))

Re(z)

)2
dz

ρ(z)
≤ C(µ, ρ)µ(Q(a)), (27)

for all a ∈ C+, then µ is a Carleson measure for A2
(m).

Proof. Let ζ ∈ C+. Given F ∈ A2
(m), for each α ∈ T (ζ) let wα, zα ∈ α ⊂ C+ be

such that

zα := sup
z∈α

{|F (z)|} and wα := sup
w∈α

{|F ′(w)|}.

Define a weight ρ̃ on T (ζ) by ρ̃(α) := ρ(zα). And also: rα = Re(wα)/4,
Φ(α) := F (zα), ϕ(α) = Φ(α) − Φ(α−), for all α ∈ T (ζ). Note that Iϕ = Φ,
because

lim
α−→−∞

|F (zα)| = lim
α−→−∞

∣

∣

∣

∣

∣

〈

F, k
A2

(m)
z

〉

A2
(m)

∣

∣

∣

∣

∣

Cauchy-Schwarz

≤ ‖F‖A2
(m)

lim
α−→−∞

∫ ∞

0

e−2tRe(zα)

w(m)(t)
dt = 0.
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Since (27) holds, we can apply Lemma 3 to ϕ, ρ̃, µ̃ (where µ̃(α) := µ(α), for all
α ∈ T (ζ)) in the following way

∫

C+

|F |2 dµ =
∑

α∈T (ζ)

∫

α

|F |2 dµ ≤
∑

α∈T (ζ)

|Φ(α)|2µ̃(α)

Lemma 3
≤

∑

α∈T (ζ)

|ϕ(α)|2ρ̃(α) def
n

=
∑

α∈T (ζ)

|Φ(α)− Φ(α−)|2ρ̃(α)

Fundamental Thm

of Calculus
≤

∑

α∈T (ζ)

∣

∣

∣

∣

∣

∫ zα

z
α−

F ′(w) dw

∣

∣

∣

∣

∣

2

ρ̃(α)

/
∑

α∈T (ζ)

diam(α)2|F ′(wα) + F ′(wα−)|2ρ̃(α)

/
∑

α∈T (ζ)

diam(α)2|F ′(wα)|2ρ̃(α)

Mean-Value
Property

≤
∑

α∈T (ζ)

diam(α)2

∣

∣

∣

∣

∣

1

πr2α

∫

B(wα, rα)

F ′(z) dz

∣

∣

∣

∣

∣

2

ρ̃(α)

Hölder’s
≤

∑

α∈T (ζ)

diam(α)2

πr2α

∫

B(wα, rα)

|F ′(z)|2 dzρ̃(α)

/
∑

α∈T (ζ)

∫

⋃
β∈T (ζ) : β∩B(wα, rα) 6=∅

|F ′(z)|2ρ(z) dz

/
∑

α∈T (ζ)

∫

α

|F ′(z)|2ρ(z) dz

≤ ‖F‖2A2
(m)

.

Corollary 2. Let µ be a positive Borel measure on C+. If there exists a constant
C(µ) > 0 such that

∫

Q(a)

(

µ(Q(a) ∩Q(z))

Re(z)

)2

dz ≤ C(µ)µ(Q(a)),

for all a ∈ C+, then µ is a Carleson measure for D(C+).

Note that Theorem 4 cannot be applied to Dα(C+), since the limit of its
functions, as the real part of their arguments approaches infinity, is not neces-
sarily 0.
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6 An application

Let A be an infinitesimal generator of a C0-semigroup (T (t))t≥0 on a Hilbert
space H. Consider the linear system

dx(t)

dt
= Ax(t) +Bu(t), x(0) = x0, t ≥ 0.

Here u(t) ∈ C is the input at time t, and B : C −→ D(A∗)′, the control operator,
where D(A∗)′ denotes the completion of H with respect to the norm

‖x‖D(A∗)′ :=
∥

∥(β −A)−1x
∥

∥

H
,

for any β ∈ ρ(A). To ensure that the state x(t) is inH, we needB ∈ L(C, D(A∗)′)
and

∥

∥

∥

∥

∫ ∞

0

T (t)Bu(t) dt

∥

∥

∥

∥

H

≤ m0‖u‖L2
w(0,∞),

for some m0 ≥ 0. Then we say that the control operator B is L2
w(0,∞)-

admissible. We refer to the survey [18] and the book [26] for the basic back-
ground to admissibility in the context of well-posed systems. The following
theorem appears in [19] and [20] (with weaker results appearing earlier in [16]
and [27] for H2(C+) = L

[

L2(0, ∞)
]

, and [28] for B2
−α(C+) = L

[

L2
tα(0, ∞)

]

,
−1 < α < 0).

Theorem 5. Suppose the semigroup (T (t))t≥0 acts on a Hilbert space X with a
Riesz basis of eigenvectors (φk); that is, T (t)φk = eλktφk, for each k, (λk) are
the eigenvalues of eigenvectors forming a Riesz basis of A, each of which lies
in the open left complex half-plane C−, and (φk) is a Schauder basis of X such
that for some constants c, C > 0 we have

c
∑

|ak|2 ≤
∥

∥

∥

∑

akφk

∥

∥

∥

2

≤ C
∑

|ak|2,

for all sequences (ak) ∈ ℓ2. Suppose also that B is a linear bounded map from
C to D(A∗)′ corresponding to the sequence (bk). Then the control operator B is
L2
w(0,∞)-admissible for (T (t))t≥0 if and only if

µ :=
∑

k

|bk|2δ−λk

is a Carleson measure for L
[

L2
w(0,∞)

]

.

This theorem can also be stated for observation operators (see again [20]).
Combining the above statement with Theorem 1, we get a direct application of
the results established throughout this paper (i.e. if w is of the form (2), then
B is L2

w(0, ∞)-admissible if and only if µ is a Carleson measure for A2
(m)). We

leave the details for the reader.
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