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The African mole-rats (Bathyergidae) are a family of rodents

highly adapted for life underground. Previous research has

shown that chisel-tooth digging mole-rats (which use their

incisors to dig burrows) are clearly distinguishable from scratch

diggers (which only use the forelimbs to tunnel) on the basis

of morphology of the skull, and that the differences are linked

to the production of high bite forces and wide gapes. We

hypothesized that the skull of a chisel-tooth digging mole-rat

would perform better at wider gapes than that of a scratch

digging mole-rat during incisor biting. To test this hypothesis,

we created finite-element models of the cranium of the scratch

digging Bathyergus suillus and the chisel-tooth digging Fukomys

mechowii, and loaded them to simulate incisor bites at different

gapes. Muscle loads were scaled such that the ratio of force

to surface area was the same in both models. We measured

three performance variables: overall stress across the cranium,

mechanical efficiency of biting and degree of deformation

across the skull. The Fukomys model had a more efficient incisor

bite at all gapes, despite having greater average stress across the

skull. In addition, the Fukomys model deformed less at wider

gapes, whereas the Bathyergus model deformed less at narrower

gapes. These properties of the cranial morphology of Fukomys

and Bathyergus are congruent with their respective chisel-tooth

and scratch digging behaviours and, all other factors being

equal, would enable the more efficient production of bite force

at wider gapes in Fukomys. However, in vivo measurements

of muscle forces and activation patterns are needed to fully

understand the complex biomechanics of tooth digging.

2016 The Authors. Published by the Royal Society under the terms of the Creative Commons

Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted

use, provided the original author and source are credited.
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1. Introduction
The African mole-rats, or blesmols, are a family of rodents (Bathyergidae) comprising 25–30 species, all

of which spend a large proportion of their life underground [1]. Of the six extant genera, five are chisel-

tooth diggers, that is, they dig tunnels with their enlarged rodent incisors. Just one genus (Bathyergus) is a

scratch digger, tunnelling with only its forelimbs and claws [2]. Chisel-tooth digging is a specialized form

of tunnel construction that has also evolved independently in several other families of subterranean and

fossorial rodents [3]. It is thought to have evolved in order to exploit harder soils as incisors are covered

in hard enamel and fixed within the cranium and mandible. This is in contrast to the claws, which are

made up of softer keratin and have more flexibility [4].

A number of morphological characteristics in the cranium have been associated with chisel-tooth

digging. These include: more procumbent incisors, wider crania, enlarged zygomatic arches and larger

temporal fossae [5–9]. Chisel-tooth digging mandibles are also convergent across rodents and show

higher coronoid processes, reduced condyle heights and deep incisor roots [6,10,11]. Such traits have

been linked to the requirement for chisel-tooth diggers to produce high bite force at the incisors at wide

gape [5,6,10], and have also been found in carnivorans with similar functional requirements [12–14].

Within chisel-tooth digging species, variation in cranial morphology has been suggested to correlate

with soil type, indicating that digging has a major influence on skull shape [15,16].

To understand how morphological traits can impact biomechanical function in extant and extinct

vertebrates, many researchers have turned to the engineering technique finite-element analysis (FEA)

over the decade or so [17–26]. FEA allows stress, strain and deformation to be predicted in a complex

three-dimensional object subjected to a load, by dividing that object into a large number of smaller,

simpler elements (usually cubes or tetrahedra) connected at nodes [27]. As a modelling technique,

the results of FEA, and the conclusions that can be drawn from them, are necessarily limited by the

accuracy of the model inputs. In particular, parameters such as material properties, constraints and

loads are often unknown or can only be roughly estimated in biological models. Indeed, some validation

studies have indicated that outputs from FEA (e.g. strain values) do not always match ex vivo or in vivo

measurements in absolute terms [18,28,29]. However, these studies also indicate that the relative values

are generally correct (e.g. areas of high strain and low strain predicted by FEA match those measured

in vivo). Thus, while comparisons of absolute values between different unvalidated FE models can be

difficult to interpret, comparisons between different loading scenarios in the same model (i.e. where one

parameter is varied but all others are held constant) are justified.

The aim of this study is to predict the performance of the skull of two bathyergid mole-rats, one

chisel-tooth digger and one scratch digger, when loaded at the incisors over a number of different gapes.

It is hypothesized that the shape of the cranium of the chisel-tooth digging species will lead to improved

performance at the incisors compared with the scratch digging species, particularly at wide gapes. FEA

will be used to simulate masticatory muscle loading at different gape angles, and the patterns of stress

distribution across the cranium will be predicted, as well as bite force at the incisors. By integrating

geometric morphometrics (GMM) with FEA [22,30], it will also be possible to quantify and visualize the

differences in overall deformations of the cranium between the two species. Following Dumont et al.

[20], biomechanical performance will be measured in three ways. We predict that, compared with the

scratch digging species, the chisel-tooth digging cranial model at wide gapes will: (i) exhibit lower stress

(and thus be more resistant to structural failure); (ii) be more efficient at converting muscle forces to bite

forces and (iii) experience less deformation. These predictions are based on the hypothesis that the cranial

morphology of the chisel-tooth digging mole-rat will be adapted to both generate high forces at the

incisors and withstand the reaction forces. It should be noted that this analysis seeks only to understand

the impact of the difference in cranial morphology between Fukomys and Bathyergus. Many other factors

can influence digging biomechanics, such as muscle physiology, muscle activation patterns and bone

material properties, but data on these are scant in mole-rats and they are beyond the focus of this study.

2. Material and methods

2.1. Model construction

Finite-element (FE) models were created from microCT scans of two adult African mole-rat skulls: the

chisel-tooth digging Fukomys mechowii (Muséum National d’Histoire Naturelle, Paris, ZM-MO-1911-664)

and the scratch digging Batherygus suillus (Specimen 631, Professor Nigel Bennett, University of Pretoria).
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(a) (b)

(c) (d)

Figure 1. Attachment sites andvectors of pull of themasticatorymuscles inmodels ofBathyergus suillus, in (a) right lateral and (b) ventral
view and Fukomys mechowii, in (c) right lateral and (d) ventral view. Colours of muscle origins and vectors: temporalis, red; superficial
masseter, cyan; deep masseter, royal blue; infraorbital ZM, green; anterior ZM, purple; posterior ZM, yellow; lateral pterygoid, brown;
medial pterygoid, orange.

The specimens were scanned in an X-Tek Metris microCT scanner at the University of Hull (Medical

and Biological Engineering Research Group). The scans had isometric voxels of 0.0417 mm (Fukomys)

and 0.0532 mm (Bathyergus). Using AVIZO v. 8.0 (FEI, Hillsboro, OR, USA), the scans were resampled to

double their original voxel sizes to ensure a reasonable processing time during FE model creation and

solving stages. Three-dimensional volume reconstructions of the skulls were created by a combination

of automated and manual thresholding of materials. Bone, teeth and incisor pulp cavity were segmented

as separate volumes, with all bone modelled as cortical bone. The reconstructions were then converted

to an 8-noded cubic mesh directly from voxels using VOX-FE, in-house custom-built FEA software [31].

The Fukomys and Bathyergus models comprised 9 481 075 and 6 796 670 elements, respectively.

Based on previous nano-indentation work on rodents [21,32] and other mammals [19], bone and teeth

were assigned Young’s moduli of 17 and 30 GPa, respectively. Pulp was assigned a Young’s modulus of

2 MPa [33]. All materials were modelled as homogeneous and isotropic with a Poisson’s ratio of 0.3 being

assigned to bone and teeth and a ratio of 0.45 to pulp [33]. No data are available for material properties

of bathyergids. However, it was considered appropriate to use these properties as this study is primarily

concerned with the relative digging performance between two species, and therefore is less concerned

with absolute output values.

In order to model chisel-tooth digging, the models were constrained at the point of contact of

the incisor tip with the substrate in the direction of the bite (i.e. orthogonal to the occlusal plane).

Forty nodes were constrained at each temporo-mandibular joint (TMJ) in all three axis. Loads were

added to the model representing the following muscles: temporalis, superficial masseter, deep masseter,

zygomaticomandibularis (ZM: infraorbital, anterior and posterior parts), lateral pterygoid and medial

pterygoid (figure 1). The masseter muscle was divided into three parts (superficial, deep and ZM)

following [34,35]. Muscle attachment sites were assigned based on previously published dissections

[36–38] and virtual muscle reconstructions [39] of bathyergids. Equal loads were applied to each side

of the model as many rodents have demonstrated a bilateral muscle activation pattern when biting at the

incisors [40,41].

The direction of pull of each muscle (i.e. muscle directional vector) was determined by placing

a reconstruction of the specimen’s mandible in a position of incisor occlusion (0°) with the cranial
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Table 1. Muscle loads applied to each side of the FE models of Fukomys mechowii and Bathyergus suillis.

force (N)

muscle Fukomys Bathyergus

temporalis 20.7 24.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

superficial masseter 6.3 7.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

deep masseter 11.7 13.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

anterior ZM 1.5 1.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

posterior ZM 1.5 1.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

infraorbital ZM 3.0 3.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

medial pterygoid 5.1 6.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lateral pterygoid 3.3 3.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

reconstruction using AVIZO. Landmarks were placed at the centroid of each muscle attachment site on

the mandible. These landmarks were then uploaded into VOX-FE to provide endpoints for the muscle

direction vectors. The Bathyergus and Fukomys mandibles were automatically segmented in AVIZO

from microCT scans (0.0481 and 0.0350 mm isometric voxel sizes, respectively). To calculate muscle

magnitudes, physiological cross-sectional area (PCSA) values for F. mechowii were taken from Van Daele

et al. [38], and then multiplied by an intrinsic muscle stress value of 0.3 N mm−2 [42]. No PCSA data

were available for Bathyergus, so the Fukomys muscle forces, scaled to model size, were used instead (the

details and limitations of this are discussed below). Muscle loads for each model are given in table 1. To

replicate different angles of gape, muscle directional vectors were rotated about an axis running between

the left and right TMJ (see [6] for further details of method). Condyle translation has been shown to occur

in the terrestrial rodent, Pedetes capensis during different stages of mastication [40]. However, condyle

movement during digging at the incisors has been shown to be stable in Ctenomys, a South American

subterranean rodent [11]. For this reason, condyle translation has not been included in the model, and

the mandible has been simply rotated around an axis (TMJ).

2.2. Analysis

In this study, von Mises (VM) stress was used as a key indicator of performance. Structures which exhibit

overall lower VM stresses in a comparative context are less likely to fail under a given loading. If two

models of the same shape but of different sizes have equal loads, the larger model will exhibit less stress

(as stress equals force applied over the area of the model). To consider the effect of difference in shape on

stress between two models, the effect of size must be controlled for, which can be achieved by keeping the

ratio of force to surface area constant between the two models [43]. As PCSA values were not available

for Bathyergus, surface areas for both models were calculated in Avizo, and the ratio of the two surface

areas was used to scale forces applied to the Bathyergus model. Thus, the impact of cranial morphology

on VM stress values for each model could be directly compared without the confounding influence of

size. In order to quantify VM stress across the skull, the VM stress of each element from each model

was extracted and the median VM stress for both models was calculated. Using the median, rather than

the mean, to compare VM stress prevents outlying values that can arise from modelling artefacts from

exaggerating the average stress value.

The mechanical efficiency of incisor biting in each model was also calculated to assess the performance

of both models. Mechanical efficiency is the ratio of predicted bite force to total muscle input force

and provides a single value, independent of size, to assess the efficiency of the masticatory system in

transforming muscle to bite force [20,21]. Absolute bite force was not reported in this study as the muscle

forces and geometry of the Fukomys model were gleaned from separate specimens. Therefore, there is no

expectation that the bite force will be biologically accurate. However, dividing bite force by input muscle

force to produce mechanical efficiency produces a meaningful performance parameter for comparison

between FE models.

GMM was used to analyse variation in deformations between the FE models, following

[22,23,26,30,31,44]. A set of three-dimensional landmarks (figure 2 and electronic supplementary
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Figure 2. Landmark configuration represented on Fukomys mechowii in (a) dorsal, (b) ventral and (c) left lateral view. Text definitions
of landmarks given in the electronic supplementary material, table S1.

material, table S1) were recorded from the unloaded and loaded models. The landmarks were then

subjected to a generalized Procrustes analysis and scaled to centroid size. The residual differences

between the loaded and unloaded models were then added to the mean landmark configuration of

the unloaded Fukomys and Bathyergus models. The mean and loaded configurations were subjected to

a second Procrustes analysis without scaling or tangent projection [44], to represent the multivariate

data on a graph. Cranial deformations were visualized via surface rendering of a hybrid of the two

unloaded models warped along the vectors of deformation. Deformations were magnified 500 times to

aid visual interpretation of transformation grids. All GMM analyses were carried out using the EVAN

toolbox (www.evan-society.org). Further details of the GMM methods and the theory underlying them

are given in the electronic supplementary material, text S1.

It should be noted that because no muscle PCSA data was available for the individuals from which

the model geometries were constructed, the resulting data should not be treated as reflecting biological

reality. The scaling of the muscle forces instead allows us to draw conclusions on the relative impact of

changing muscle orientations in species with different cranial morphologies.

3. Results
Figure 3 shows the distribution of VM stress across the crania of the two models. As might be expected,

at occlusion both models show areas of high stress around the constraints (glenoid fossae and incisor

tips), and some of the muscle attachment sites (zygomatic arch and pterygoid fossa). Beyond these areas,

both models also show high stresses in the postero-ventral part of the rostrum. In addition, the Fukomys

cranium has high stresses in the dorsal rostrum and in the incisor itself. As gape increases, stress tends to

decrease in the rostrum and anterior zygomatic arch, and increase in the temporal region and posterior
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0 MPa >10 MPa
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Figure 3. Predicted vonMises stress distributions across the skulls of Fukomys (a) andBathyergus (b) during incisor biting at four different
gape angles.

Table 2. Median von Mises stress and mechanical efficiency of biting in Fukomys mechowii and Bathyergus suillis at increasing gape.

median VM (MPa) mechanical efficiency

gape angle (°) Fukomys Bathyergus Fukomys Bathyergus

0 1.06 0.88 0.18 0.13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 1.04 0.76 0.15 0.08
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60 0.85 0.52 0.09 0.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

90 0.63 0.59 0.02 −0.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

orbital region. Studying median VM stresses (table 2) shows that increasing gape reduces the overall

stress in the cranium, and that Fukomys experiences higher VM stress in the cranium at each pairwise

gape compared with Bathyergus.

The mechanical efficiency of biting (the ratio of predicted bite force to input muscle force) at each gape

in the two species is given in table 2. Fukomys is more efficient than Bathyergus at converting input forces

to output forces at all gape angles. As gape increases, mechanical efficiency decreases in both specimens,

but at different rates. Specifically, Fukomys is half as efficient at 60° as at 0°, whereas the mechanical

efficiency of Bathyergus at 60° is only a quarter of its efficiency at occlusion. It should be noted that the

mechanical efficiency (and thus bite force) of Bathyergus at 90° gape is negative. This is a result of many

of the muscle vectors rotating so far around that they now exert an upward rather than downward force

on the skull model and is clearly a biologically unrealistic situation.
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Figure 4. Principal component analysis (PCA) plot representing the differences of deformations between the two models scaled to
force : area ratio. Cross,mean unloadedmodel; blue shapes, Fukomysmodels; red shapes, Bathyergusmodels; circles, occlusion; triangles,
30° gape; squares, 60° gape; diamonds, 90° gape.

(a)

(b)

(c)
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Figure 5. Transformation grids and surface warps associated with PCA plot (figure 4) representing the differences of deformation
between the two models scaled to force : area ratio. Arrows represent the change in size and shape between unloaded mean model
and target. (a) Unloadedmeanmodel, (b) size and shape change from unloadedmodel to Fukomysmodel in occlusion, (c) size and shape
change from unloaded model to Bathyergus model in occlusion, (d) size and shape change from unloaded model to Fukomys model
at 90° gape and (e) size and shape change from unloaded model to Bathyergusmodel at 90° gape.

Figure 4 shows the size and shape deformations between the two model types at varying degrees

of gape. PC1 represents 76.27% variance and PC2 13.33%. PC1 is dominated by the differences between

the loaded models at differing angles of gape while PC2 shows the difference between the unloaded

mean and the loaded models. Bathyergus in occlusion and Fukomys at 90° gape are the least deformed

from the mean unloaded model; whereas Bathyergus at 90° gape and Fukomys in occlusion are the

most deformed from the mean unloaded model. Figure 5a–c shows the deformation between the mean

unloaded model and the two models at occlusion using thin plate splines. The main difference between

the mean unloaded model and the loaded models at occlusion is the ventral deflection of the zygomatic

arch. Figure 5d,e shows cranial deformations from unloaded mean to 90° gape in both models. The

deformations between the two models are shown to be rather similar, with increasing gapes being

associated with dorsoventral bending.
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4. Discussion

4.1. Von Mises stress

The results of the FEA allow us to compare the biomechanical performance of the skull between gapes

within each model. Three performance metrics were studied: median VM stress across the model, the

ratio of predicted bite force to total input adductor muscle force and overall deformation of the model

(following [20]). In both models, average VM stress decreases as gape increases (table 2). In particular,

VM stress is reduced in the anterior part of the skull (figure 3), probably as a result of the muscle

vectors being oriented in a more posterior, rather than ventral, direction. At each gape, the Bathyergus

model experiences a lower median stress than the Fukomys model, suggesting that the morphology of

the Bathyergus cranium is better able to resist the forces applied to it in this analysis. This is counter

to the first hypothesis that suggested the chisel-tooth digging species would exhibit lower stresses at

wider gapes. However, we urge caution in interpreting this result as, although the muscle forces were

scaled to surface area to enable direct comparisons of stress values [43], it only indicates how the cranial

morphology responds to forces. In reality, there are likely to be large differences in the muscle force to

surface area ratio, as well as potential differences in the relative proportions of the muscles and the bone

material properties between the two taxa.

It is unclear whether VM stress values really matter in an evolutionary context, as long as they

are below the yield strength of bone, and there is little evidence of cranial bone naturally loading to

failure [20]. Thus, assuming cranial stress is within a suitable safety factor, its precise value may not be

important. Previous work has suggested that bats adapt their crania in favour of mechanical efficiency

of biting, whereas adaptation to cranial strength (i.e. low VM stress) is not as strongly selected for [45].

4.2. Mechanical efficiency of biting

From table 2, it can be seen that the Fukomys model has a greater mechanical efficiency of biting than the

Bathyergus model at all simulated gapes, not just at wider gapes as predicted in our second hypothesis.

As would be expected from simple mechanics, bite force (and thus mechanical efficiency) decreased

with increasing gape in both models [46–49]. However, the relative decrease with increasing gape was

much greater in the Bathyergus model. That is, the cranial morphology of Fukomys is better able to

maintain mechanical efficiency as the muscle forces rotate posteriorly. A higher mechanical efficiency

can be partly achieved by having masticatory muscles that have increased moment arms around the

TMJ. Previous work has indicated that the temporalis muscles of chisel-tooth digging bathyergids have

increased moment arms compared with Bathyergus [6], and therefore this could be the muscle driving

improved mechanical efficiency at increased gapes in the Fukomys model presented here.

4.3. Cranial deformation

The GMM analysis shows that the relative deformation of the models at different gapes follows an almost

symmetrical pattern (figure 4). The main difference between the two models is that, as gape increases, the

Fukomys model deforms less (plots closer to the unloaded model) and the Bathyergus model deforms more

(plots further from the unloaded model). This result is as predicted by the third hypothesis and fits with

the digging behaviour of these two species. It appears that in Fukomys the morphology of the cranium

leads to reduced deformation at the wide gapes necessary for chisel-tooth digging [6,10]. Bathyergus, as

a scratch digger [2], does not employ such wide gapes as frequently, and thus its cranial morphology

deforms least at narrower gapes.

When comparing the two models at occlusion, it can be seen that the main difference in deformation

occurs at the zygomatic arch, which is more ventrally deflected in Fukomys than Bathyergus (figure 5b,c).

As the models have been scaled to the same muscle force : surface area ratio, it is unlikely that the greater

zygomatic deformation is a product of greater muscle force in Fukomys; rather, it is differences in the

direction of muscle pull that appear to be leading to this result. It can be seen in figure 1 that the deep

masseter of Bathyergus has a greater posterior component to its line of action than does that of Fukomys.

Thus, the forces acting on the zygomatic arch of Fukomys are likely to produce a greater ventral deflection

than is seen in Bathyergus.

Figure 5d,e represents how the models deform at large gape angles. Both models seem to experience

dorsoventral bending of the cranium. As gape increases, the arrangement of the most dominant muscles

(figure 1), the temporalis (which attaches to the posterior area of the cranium) and masseters (which
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attach to the zygoma), will cause dorsoventral bending of the cranium around the TMJ constraints.

Less bending will occur at the incisor as the muscle vectors rotate with the mandible as gape increases.

This results in the muscle vectors directing more force towards the posterior part of the skull, and less

force towards the anterior portion (this is also demonstrated by VM stress patterns in figure 3 where

cranial stress is concentrated at the posterior areas of the cranium as gape increases). Interestingly, the

Fukomys model does not experience as much deformation or dorsoventral bending at 90° gape compared

with Bathyergus (figures 4 and 5d,e). This implies that the Fukomys cranium is stiffer than the Bathyergus

cranium, which is to be expected from a cranium that has higher mechanical efficiency (table 2). The

stiffer the cranium is during mastication, the less energy it will waste in deforming, making it more

efficient at converting muscle forces into bite forces.

4.4. Conclusion

The results here demonstrate that the cranial morphology of Fukomys performs better during incisor

biting at wide gapes than does Bathyergus. That is, the Fukomys model had a greater mechanical

efficiency of biting than Bathyergus and was able to maintain it to a greater degree as gape increased. In

addition, deformations of the Fukomys cranial model were smaller at larger gapes, whereas in Bathyergus

deformations were smaller at narrower gapes. The relative performance of the models is congruent

with the known digging behaviour of the two species under study here, i.e. chisel-tooth digging in

Fukomys and scratch digging in Bathyergus [2]. Previous studies of subterranean rodents have indicated

that digging behaviour has a major impact on cranial morphology [15,16] and that chisel-tooth digging

species have adaptations for high bite force and wide gape [6,10]. The cranial morphology of the chisel-

tooth digger in this analysis is clearly able to function well at wide gapes, and, although absolute bite

force cannot be predicted with any degree of confidence by our unvalidated models, increasing the

efficiency of the masticatory system would necessarily increase bite force. It should be emphasized

that the conclusions drawn here relate only to the morphology of the cranium. To understand the

biomechanics of digging more thoroughly would require a much more complex model incorporating

data on muscle physiology, bone material properties, behaviour and many other factors, which we feel

would be a very fruitful avenue of research.
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