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OPEN

Low-level regulatory T-cell activity is essential
for functional type-2 effector immunity to expel
gastrointestinal helminths
KASmith1,5, KJ Filbey1, LAReynolds1, JPHewitson1, YHarcus1, L Boon2, T Sparwasser3, GHämmerling4

and RM Maizels1

Helminth infection is frequently associated with the expansion of regulatory Tcells (Tregs) and suppression of immune

responses to bystander antigens. We show that infection of mice with the chronic gastrointestinal helminth

Heligmosomoides polygyrus drives rapid polyclonal expansion of Foxp3þHeliosþCD4þ thymic (t)Tregs in the lamina

propria and mesenteric lymph nodes while Foxp3þHelios�CD4þ peripheral (p)Treg expand more slowly. Notably, in

partially resistant BALB/c mice parasite survival positively correlates with Foxp3þHeliosþCD4þ tTreg numbers.

Boosting of Foxp3þHeliosþCD4þ tTreg populations by administration of recombinant interleukin-2 (rIL-2):anti-IL-2

(IL-2C) complex increased worm persistence by diminishing type-2 responsiveness in vivo, including suppression of

alternatively activated macrophage and granulomatous responses at the sites of infection. IL-2C also increased innate

lymphoid cell (ILC) numbers, indicating that Treg functions dominate over ILC effects in this setting. Surprisingly,

complete removal of Tregs in transgenic Foxp3-DTR mice also resulted in increased worm burdens, with

‘‘immunological chaos’’ evident in high levels of the pro-inflammatory cytokines IL-6 and interferon-c. In contrast,

worm clearance could be induced by anti-CD25 antibody–mediated partial depletion of early Treg, alongside

increased T helper type 2 responses and without incurring pathology. These findings highlight the overarching

importance of the early Treg response to infection and the non-linear association between inflammation and the

prevailing Treg frequency.

INTRODUCTION

Foxp3-expressing CD4þ regulatory T cells (Tregs) reside
within the tissue and lymphatics at steady state and have a
fundamental role in the control of immune reactivity and
protection from autoimmune disease1–3 as well as in the
responsiveness to commensals at the mucosa.4–6 Although
Treg functions may decline in many acute inflammatory
settings,7 they frequently appear to be expanded after challenge
with chronic viral andhelminth pathogens.8,9However, inmost
instances it is not clear whether Treg expansion represents a
homeostatic response to control aggravated antipathogen
effector mechanisms or is driven by the pathogens themselves
as a strategy to prolong infection. Importantly, this distinction

determines whether intervention to dampen Treg activity
would promote immunity or exacerbate pathology.

Colonization with the chronic intestinal helminth Heligmo-
somoides polygyrus is associated with the expansion of CD4þ

Foxp3þ T cells within fully susceptible (C57BL/6) and partially
resistant (BALB/c) strains of mice early in response to infection
in the lamina propria (LP) and mesenteric lymph nodes
(MLNs).10,11 Treg expansion appears to be promoted by the
parasite through its release of a transforming growth factor-b-
like ligand12 and depends on the expression of ICOS (inducible
T-cell costimulator) on host T cells.13 Furthermore, our
recent results suggest that aberrant Treg phenotypes early
in infection are associated with enhanced t helper type 2 (Th2)
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responsiveness and increased parasite expulsion in mice
deficient in interleukin (IL)-6.14

Antibody (Ab)-mediated depletion of CD25þ Tregs was
first shown to significantly reduce the number of adult parasites
when administered to infected mice in a permissive model of
filariasis, contingent on co-administration of Abs to GITR
(glucocorticoid-induced tumor necrosis factor receptor–
related) or CTLA-4 (cytotoxic T-lymphocyte-associated
protein 4).15,16 Subsequently, predepletion of thymic Tregs
early in infection was shown to heighten immunity.17 Likewise,
depletion of Tregs during patency of the parasitic trematode
Schistosoma mansoni using anti-CD25 Ab or a genetically
modified mouse model (DEREG) also decreased parasite
egg numbers by elevating the schistosome-specific Th2
response.18,19 However, in infections with specific chronic
isolates of Trichuris muris, Treg depletion using anti-CD25 Ab
primarily exacerbated host pathology rather than elicited
protective immunity,20 although parasite burdenswere reduced
following anti-GITR treatment.20 T. muris parasite burden
was also reduced through early depletion of Foxp3þ T cells in
Foxp3-DTR mice;21 however, it was unaffected through early
depletion of Foxp3þ T cells in DEREG mice.22 It was also
reported that Treg depletion of Foxp3-DTR C57BL/6 DEREG
mice did not alter H. polygyrus worm burden 14 days
postinfection,23 although this time point is before even
genetically resistant SJL mice begin to expel parasites.24

Because the kinetic and genetic contexts of infection are
emerging as key determinants of Treg activity in helminth
infection,21,24 we have investigated the effects of Treg
manipulation on the course of H. polygyrus infection in a
range of settings. We not only make use of recombinant
IL-2:anti-IL-2 complexes (IL-2C) to boost thymic-derived
Treg populations in vivo prior to infection of BALB/c mice
but also adopt two strategies for Treg depletion in both
BALB/c and C57BL/6 genetic backgrounds, through the use of
transgenic DEREG25 and Foxp3.LuciDTR mice.26 These tools
permitted us to assess the impact of Treg depletion to differing
degrees, at different stages of infection, and in contrasting
genetic strains.

As reported below, boosting of thymic-derived Treg
populations in vivo using IL-2C prior to H. polygyrus infection
inhibited innate and adaptive type-2 responses and ablated
adult worm expulsion in more resistant BALB/c mice, despite
also increasing innate lymphoid cell (ILC) numbers. Interest-
ingly, a more complex, mixed inflammatory response
dominated by pro-inflammatory Th1 cytokines emerged in
Treg-depleted transgenic BALB/c Foxp3.LuciDTR mice.
Reflecting this immune-skewing, parasite immunity was
compromised and worm burdens increased. Complete deple-
tion of Treg in both Foxp3.LuciDTR and DEREG mice at
differing time points postinfection resulted in significant
pathology, including weight loss, and reversal of the partial
resistance of BALB/c mice. In contrast, partial but incomplete
early Treg depletion with anti-CD25 Abs in infected BALB/c
mice resulted in increased adaptive type-2 responses and
increased worm expulsion, without significantly altering innate

type-2 immunity. Hence, optimal type 2 immunity requires a
low level of regulatory activity from Foxp3þ T cells.

RESULTS

Expansion of thymic Tregs in H. polygyrus infection

Infection with the intestinal helminth parasite H. polygyrus is
associated with the expansion of regulatory CD4þ T-cell
populations within the MLN and LP as the parasite establishes
a chronic infection.10–12,27,28 Moreover, Tregs from H. poly-
gyrus–infected mice show enhanced regulatory function
in vitro.10,11 As susceptibility to H. polygyrus infection,29,30

and the degree of Treg expansion,24 varies between genetic
backgrounds of mice, we compared Treg populations
in partially resistant BALB/c mice and fully susceptible
C57BL/6mice. As previously reported, by day 28 postinfection,
BALB/c mice harbor far fewer adult worms31 and produce
many less fecal eggs (Figure 1a) than C57BL/6 animals, with
some individuals spontaneously clearing infection. Within the
MLN, infection of BALB/c mice drove increased Foxp3þ Treg
frequency, while C57BL/6 mice had constitutively high levels,
which did not rise significantly following infection (Figure 1b).
Similarly, a significant induction of CD103, considered an
activationmarkerwithin themucosal Treg compartment,32was
observed in BALB/c mice while expression was constitutively
higher in the more susceptible C57BL/6 mouse (Figure 1c).

Helios and Neuropilin-1 expression both serve as specific
markers for thymic-derived natural Treg.33–35 Following
confirmation that Neuropilin-1 expression strongly correlated
with Helios expression in CD4þFoxp3þ T cells (94.8%±1.1%
of Heliosþ cells also expressed Neuropilin-1), we next
compared the relative induction of thymic (tTreg) and
peripheral (pTreg) cells, as indicated by the expression of
transcription factor Helios, Interestingly, Heliosþ tTregs were
markedly expanded in infected BALB/cmice (Figure 1d), while
C57BL/6 mice show much stronger expansion of Helios�

pTregs (Figure 1e). Moreover, in BALB/c mice, the level of
infection measured by adult worm burdens at day 28 positively
correlated with the number of Heliosþ tTregs (Figure 1f) but
not with numbers of Helios� pTregs (data not shown), and
therewas an even stronger positive correlationwith the number
of CD103þHeliosþ tTregs (Figure 1g).

To ascertain whether Treg expansion in mucosal tissues is a
consequence of chronic infection, or is induced soon after
parasite entry, we studied MLN and LP populations at day 5
following infection of BALB/c mice with H. polygyrus. At
this time point, a significant increase in the proportion
of CD4þFoxp3þ T cells was observed at both sites, as well
as an expanded number of CD4þFoxp3þ T cells within the
MLN; moreover, this increment was mirrored in extent
within the Foxp3þHeliosþ and not the Foxp3þHelios�

subset (Figure 2a). We also assessed the proliferation of
CD4þFoxp3þ Treg and CD4þFoxp3� T cell populations in
the MLN and LP at day 5 postinfection (Figure 2b). Most
notably, Treg proliferation was robustly stimulated at both sites
and in the LP was more consistently uplifted than was the case
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for the CD4þFoxp3� subset. These data suggest that tTregs
respond rapidly and are able to predominate at gastrointestinal
mucosal surfaces following H. polygyrus infection.36 In
addition, we profiled the distribution of TCR Vb expression
within Tregs in naive and infected mice; among almost all Vb

types, there was an increase in the proportions of CD4þ T cells
expressing Foxp3 and CD103 following infection (Figure 2c).
Hence, from the early stages of infection there is activation and
preferential expansion of Tregs across a broad polyclonal
spectrum.
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Figure 1 Differential susceptibility to infection and generation of thymic regulatory T cells (tTregs). (a) Female BALB/c andC57BL/6micewere infected
with 200 L3 stage H. polygyrus and adult egg counts were quantified at day 28 postinfection. Single-cell suspensions of mesenteric lymph node were
analyzed in naive (white symbols) and day-28 infected (black symbols) mice for the proportion of CD4þ T cells expressing (b) Foxp3 and (c) the
percentage of CD4þFoxp3þ T cells expressing CD103 by flow cytometry. (d, e) The total numbers of CD4þFoxp3þ tTregs (Heliosþ ) and peripheral
Tregs (Helios� ) were determined in the two strains. (f, g) Significant positive correlations between adult worm burdens and total numbers of tTregs and
CD103þ tTregswere found inBALB/cmice; r¼Spearman r value.Data shown include totals of 10naive and40 infectedmiceof each strain, as previously
detailed.31
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nX4 mice/group (a–c). NS, not significant.
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Enhancement of Treg activation prolongs helminth

infection

To determine whether the initial Treg:Teff balance has a crucial
role in the outcome of infection, we adopted a strategy to
experimentallymodulate this balance in vivo, thereby analyzing
the impact of early expansion of Treg on parasite immunity
and the inflammatory response to infection. Using a complex of
rIL-2–anti-IL-2 (IL-2C), previously shown to selectively
stimulate CD4þ Tregs in vivo,37 the CD4þFoxp3þ Treg

population was boosted immediately before H. polygyrus
infection of partially resistant BALB/c mice. Injection of a
single dose of IL-2C significantly increased the percentage and
number of MLN Foxp3þCD4þ Treg cells in naive mice and
further significantly elevated the percentage of MLN Foxp3þ

CD4þ Treg in day 7 H. polygyrus–infected mice over that
identified in infected mice treated with an isotype control
(Figure 3a,b). This increase in Treg in response to IL-2C
corresponded to an increase inHeliosþ tTregs but notHelios�
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pTregs, whereas H. polygyrus infection elicited a significant
increase in both subsets (Figure 3c,d).

Following administration of IL-2C to BALB/c mice, parasite
immunity was significantly impaired, with enhanced egg and
adult worm burdens in treated mice at days 14 and 28
postinfection, respectively (Figure 3e,f), converting these
animals to a more susceptible status akin to the C57BL/6
strain (Figure 1a,b). Effector CD4þ T-cell proliferation was
significantly reduced in H. polygyrus–infected mice following
administration of IL-2C (Figure 3g), which correlated with a
reduction in antigen-specific IL-10 and IL-13 (Figure 3h,i) and
total IL-4 cytokine production (Figure 3j). Levels of antigen-
specific and total interferon (IFN)-g were not significantly
altered by IL-2C administration (Figure 3k). The major source
of the type-2 cytokines IL-13 and IL-4 inH. polygyrus–infected
mice was CD4þ T cells, which was significantly reduced
following administration of IL-2C (Figure 3l,m).

H. polygyrus stimulates strong innate immune responses,
including ILC expansion in BALB/c mice,24 and extensive
alternative activation ofmacrophages linked to the formation of
granulomas.24,38 Somewhat surprisingly, despite the decreased
resistance of IL-2C-treated mice to H. polygyrus, innate
lymphoid populations were significantly increased in naive
and infected IL-2C-treated mice (Figure 4a), suggesting that
this population cannot influence parasite burden early in
infection. The dominant population of ILCs elicited following
H. polygyrus infection produced IL-5, as determined by
intracellular cytokine staining (Figure 4b). The number of
IL-5þ , IL-13þ , or IL-4þ ILCs was not significantly altered
by IL-2C administration to H. polygyrus–infected mice
(Figure 4b–d). We also noted a marked reduction in
the number of intestinal granulomas present in IL-2C-
treated infected mice (Figure 4e). Analysis of protein
production within the gut tissue and peritoneal lavage (PL)
revealed that IL-2C treatment significantly reduced the levels of
RELM-a and Ym-1, two key products associated with
alternatively activated macrophages (Figure 4f–i). IL-2C
treatment also significantly reduced the proportion of
macrophages within the PL of H. polygyrus–infected mice
(Figure 4j), and completely ablated their proliferation
(Figure 4k). These data demonstrate that early changes in
the proportions of Treg can influence both innate and adaptive
type-2 responses following helminth infection and directly
impact on parasite persistence.

Immune disruption in infected, Treg-depleted BALB/c mice

In a complementary approach to modulate the impact of early
expansion of Treg on parasite immunity, we made use of
transgenic mouse models, in which diphtheria toxin receptor
(DTR) and green fluorescent protein (GFP) are expressed
under the Foxp3 promoter, in order to specifically deplete
GFPþ Tregs at early time points in infection. Transgene-
negative and -positive littermates of BALB/c Foxp3.LuciDTR
mice were injected with 24 ng g� 1 diphtheria toxin (DTx) at
days 1, 3, and 5 in order to completely remove DTR-positive
Foxp3GFPþ Treg populations within the MLN of transgene-

positive (þ ive) littermates, compared with transgene-negative
(� ive) littermates by day 7 postinfection (Figure 5a,b,
see Supplementary Figure S1A online). A breakthrough
population of B3% (B5� 105) CD4þFoxp3þGFP� Tregs
were detectable in the MLN of Treg-depleted mice at this
time point (Figure 5c, see Supplementary Figure S1B).
Surprisingly, in view of the dampened immunity in
IL-2C-treated mice, the parasite egg and worm burdens of
Treg-depleted mice were significantly higher at days 14 and 28
postinfection, respectively (Figure 5d,e). Although Treg
depletion did not affect antigen-specific IL-4 or IL-13
production in the MLN (Figure 5f and data not shown),
the production of antigen-specific IFN-g and IL-6 was greatly
increased compared with DTx-treated transgene-negative
littermates (Figure 5g,h). Treg depletion also increased
the activation status of Teff and breakthrough GFP� Treg
populations, as measured by increased CTLA-4 and
CD25 expression on CD4þFoxp3� and Foxp3þ cells
(see Supplementary Figure S1C–I).

In view of the strong parasite-specific IFN-g response, which
accompanied greater susceptibility to infection in the Treg-
depletedmice, we next administered a neutralizing Ab to IFN-g
at days 2, 4, and 6 postinfection. Although such treatment
effectively reduced antigen-specific IFN-g production in the
MLN (Figure 5i), it failed to restore resistance to infection and
indeed further impaired parasite immunity, as Treg-depleted
mice treated with anti-IFN-g neutralizing Ab had significantly
higher worm burden at day 28 postinfection, compared with
Treg-depleted mice treated with an isotype control (Figure 5j).
IFN-g neutralization resulted in compensatory increases
in antigen-specific IL-4 in Treg-depleted infected mice
(Figure 5k) but also further increased pro-inflammatory
IL-6 (Figure 5l), a factor known to promote H. polygyrus
persistence.14

Interestingly, the development of intestinal granulomas
in response to infection was almost completely ablated in
Treg-depleted mice (Figure 5m) and was not restored by anti-
IFN-g Ab administration, indicating that other mediators
may be able to suppress granuloma formation. Despite the
known role of macrophages within these granulomas,24,38 we
found no evidence that the proportion, proliferation,
and alternative activation of PL macrophages differed
between Treg-sufficient and -depleted mice (see Supple-

mentary Figure S1I).
To test whether the increased susceptibility of BALB/c

Foxp3.LuciDTR mice following Treg depletion could be
reproduced in an independently generated Foxp3-DTR
mouse strain, we evaluated BALB/c DEREG mice given
DTx in the first 10 days of infection as previously described;23

however, this regimen resulted in appreciable weight loss and a
high degree of morbidity so that experiments were discon-
tinued (Figure 5n and data not shown). These data demon-
strate that efficient, almost complete Treg depletion can induce
immunological chaos, pathology, and severe morbidity in
helminth-infected mice, which cannot be reversed by the
homeostatic expansion of breakthrough populations of Treg or
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by administration of neutralizing Abs to inflammatory
cytokines, such as IFN-g.

Treg depletion of C57BL/6 infected mice

Although BALB/c mice expel most parasites within 28 days,
C57BL/6 mice remain susceptible to chronic infection

(Figure 1a,b). To assess the impact of Treg depletion
during the chronic phase of infection, we made use of trans-
genic Foxp3.LuciDTR mice backcrossed to the C57BL/6
background. DTx was administered every 2 days from days
14 to 26, to deplete Treg following establishment of persistent
adult parasites in the murine lumen (Figure 6a). By day 28
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Figure 4 Boosting regulatory T cell populations in vivo modifies innate type-2 immunity following H. polygyrus infection. Naive BALB/c mice were
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postinfection, the Foxp3GFPþ population of Treg was
completely depleted (Figure 6b, see Supplementary Figure

S2A); however, a breakthrough population of Foxp3GFP�

Tregs were detectable in the MLN of Treg-depleted mice
(Figure 6c, see Supplementary Figure S2B). Although Treg
depletion did result in increased parasite-specific production of
the Th2 cytokines IL-4, IL-13, and IL-5, as well as the regulatory
cytokine IL-10, levels of IFN-g and IL-17 remained unchanged
(Figure 6d–f and data not shown). Parasite egg burden was
equivalent in both groups of mice at day 14 infection before
depletion (Figure 6g) and worm burden was similarly
equivalent in Treg-replete and -depleted mice at day 28
postinfection (Figure 6h). There was no impact of Treg

depletion on mortality, although there was an appreciable loss
of body weight in the Treg-depleted group (Figure 6i). These
data demonstrate that depletion of Treg late in infection does
not impact on parasite burden in susceptible strains, suggesting
either or both that Tregs are most critical at early stages and/or
that in chronic infection multiple immunoregulatory popula-
tions such as B regulatory cells39 are at play.

Partial Treg depletion with anti-CD25 Ab permits immunity

to infection

Finally, because of the severe morbidity associated with the full
depletion of Tregs inH. polygyrus–infected transgenic mice, we
made use of a depleting Ab to CD25 (clone PC-61) to partially
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Figure 5 Early depletion of regulatory T cell (Treg) populations in vivo transgenic BALB/c Foxp3.LuciDTRmice. (a) BALB/c Foxp3.LuciDTRmice were
treated with 24 ng g� 1 diphtheria toxin (DTx) following infection with 200 H. polygyrus by gavage. The proportion of (b) Foxp3GFPþ Treg and (c)
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deplete Tregs in infected wild-type BALB/c mice. One single
administration of 1mg depleting Ab immediately before
infection resulted in 70% depletion of CD4þFoxp3þ Tregs
in the blood at steady state and following infection (Figure 7a).
In the MLN, depletion was also around 70% at steady state but
decreased to around 45% following infection (Figure 7b),
which was reflected by a smaller increase in proliferation of
breakthrough Treg populations in Treg-depleted, infectedmice
(50% Ki67þ ) (Figure 7c) compared with BALB/c Luci-DTR
mice (see Supplementary Figure S1B). The number of Treg
was similarly significantly reduced in the MLN of naive andH.
polygyrus–infected mice following administration of anti-
CD25 (see Supplementary Figure S2C). CD4þFoxp3�

proliferation was unaffected by anti-CD25 treatment in
naive and H. polygyrus–infected mice (Figure 7d). This ineffi-
cient Treg depletion resulted in increased production of total
IL-4 and IL-10, as well as antigen-specific IL-4 (Figure 7e and
data not shown). Increased levels of IL-13 in H. polygyrus–
infected mice were not altered by PC-61 administration

(Figure 7f), neither was antigen-specific or total IFN-g produc-
tion (Figure 7g). Treg depletion resulted in the increased
expulsion of adult worms at days 21 (Figure 7h) and
28 (Figure 7i) postinfection. Intestinal granuloma forma-
tion was not affected by Ab depletion of Treg in infected mice
(Figure 7j) nor was the proliferation of PL macrophages
(Figure 7k) or the production of RELM-a and Ym-1 in gut
homogenate (Figure 7l,m). These results demonstrate that
early tTreg expansion in response to chronic parasite infection
is a general determinant of subsequent parasite immunity and
that this response limits inflammation-induced pathology
in vivo.

DISCUSSION

The immune response to infection must evoke both
effector and regulatory mechanisms if the reaction is to be
proportionate and appropriate to the pathogen challenge.
Although the role of Tregs in restraining protective immunity
has been widely discussed,8,9 there are fewer examples of how a
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measured degree of regulatory function may be necessary for
the expression of functional immunity to infection.40–42 Here
we have examined the role of Foxp3þ Treg populations during
chronic infection in mice with the helminth H. polygyrus.

Early Treg expansion is evident following a number of
chronic parasitic helminth infections, Strongyloides ratti,43

Brugia malayi,44 and Litosomoides sigmodontis,17 and an
increase in Treg numbers correlates with increased survival
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Figure 7 Antibody depletion of regulatory T cell (Treg) populations in vivo using anti-CD25 (PC61) increases parasite immunity in more resistant
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NS, not significant.
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of specific T. muris isolates.20 Expanded Treg numbers are also
evident in mice following H. polygyrus infection10,11,24 with, as
we now demonstrate, a marked selectivity for expansion of
HeliosþFoxp3þ Tregs in BALB/c mice. Helios is a marker of
tTregs,36which, while inducible in other T cell populations,45,46

is known to synergize with Foxp3 in silencing the IL-2 locus.47

Our data demonstrate that HeliosþFoxp3þ tTregs are the
predominant population that increases in proportion and
proliferation in response to infection in the more resistant
BALB/c mouse strain, although, as previously demonstrated,
pTreg induction can also occur.12A key question was therefore
to identify whether Treg expansion following H. polygyrus
infection contributed to the parasite immune response and
immune pathology in BALB/c mice.

By making use of a complex of rIL-2:anti-IL-2 (IL-2C),
previously shown to specifically expand Tregs in vivo,37,48,49we
demonstrate that boosting of CD4þHeliosþFoxp3þ tTreg
populations early following chronic helminth infection
can dampen innate and adaptive type-2 responses and
decrease worm expulsion, despite increasing the number
of ILCs in the MLN. Our data contribute to the hypothesis
that early Treg expansion in response to chronic parasite
infection is a general determinant of susceptibility to
infection17,43,50,51 and that by repressing CD4þ T-cell
type-2 cytokine production downstream effector popu-
lations such as alternatively activated macrophages are
inhibited. This pathway would be consistent with a previous
report in which administration of IL-2C induced fully
functional Tregs that suppressed effector CD4þ T-cell
proliferation and IL-5þ and IL-13þ production in airway
inflammation.48 Therefore, tTreg expansion may also limit
early antigen-specific and bystander type-2 responses in a
number of Th2 inflammatory settings.

Administration of IL-2C also inhibited macrophage pro-
liferation, expression of markers of alternative activation, and
granuloma formation in response to H. polygyrus infection,
while simultaneously increasing the proportion of ILC
populations in vivo. Macrophages have previously been shown
to regulate intestinal homeostasis and enhance Treg accumula-
tion in tissues;52,53 however, boosting of Treg populations with
IL-2C reduced macrophage accumulation within lesions in a
murine model of atherosclerosis.54 Macrophage proliferation
and alternative activation in response to helminth infection is
reliant on local production of IL-4 and CSF-1 and requires
macrophage-intrinsic IL-4Ra signaling.55 As IL-4 production
from the adaptive immune system is required to sustain
macrophage accumulation following nematode infection,56 our
results would support the hypothesis that Treg expansion acts
indirectly on macrophage populations by inhibiting adaptive
type-2 cytokine responses.

The complex of rIL-2 and anti-IL-2 (JES6-1) selectively
stimulate cells expressing high levels of CD25þ , including not
only Tregs but also ILC2 cells which were found in greater
numbers in the MLN following IL-2C administration. CD25 is
expressed at high levels by a subset of IL-5þ and IL-13þ ILC2
cells within the lung and mediastinal lymph node of naive

mice.57 Interestingly, despite expanded ILC populations in
IL-2C-treated mice, we noted that infected BALB/c mice had
higher adult worm burdens and were more susceptible to
parasite infection, arguing that ILC-derived cytokine produc-
tion is insufficient to drive immunity. These data add to our
recent findings that IL-25-induced stimulation of ILC popula-
tions in early H. polygyrus infection does not induce worm
expulsion, suggesting that ILC2s do not have a critical role in
determining immunity to this parasite (unpublished data).

We also noted a significant reduction in the proliferation of
CD4þFoxp3� cells in IL-2C-treatedmice, commensuratewith
a reduction in the total levels of regulatory and Th2 cytokines,
suggesting that an increase in activated CD25þCD4þ effector
T cells does not contribute to the phenotype of H. polygyrus–
infected IL-2C-treated mice. As a result of diminished effector
T-cell proliferation following IL-2C treatment, total lymph
node populations are less numerous in these mice, although
numbers of Tregs are similar to the control animals. The greater
susceptibility of IL-2C-treated mice therefore argues that a
higher Treg:Teff ratio and/or the ability of IL-2C to activate
Tregs are more critical to the outcome of infection than the
absolute number of Tregs. The IL-2 complex has also been
reported to selectively expand naive antigen-specific CD8þ T
cells in vitro and in vivo.58However, we recently demonstrated
that immunity toH. polygyrus is not significantly influenced by
CD8þ T cells,24 indicating that any effect of IL-2C on antigen-
specific CD8þ T-cell expansion is unlikely to impact on
helminth immunity in this model.

By making use of transgenic BALB/c Foxp3.LuciDTR mice,
we found that near-complete depletion of Treg during the early
phases of helminth infection caused profound immune
disruption, with increased pro-inflammatory cytokine produc-
tion and the extensive homeostatic expansion and outgrowth of
remaining Treg, similar to a previous report on tumor-bearing
mice with this transgene.59 During the published characteriza-
tion of naive Foxp3.LuciDTR-4 mice, Treg depletion was
accompanied by increased activation of conventional CD4þ

Foxp3� T cells and homeostatic expansion of functional
Tregs, promoted by dendritic cells.26 Treg depletion during
H. polygyrus infection also resulted in significant increases
in CD4þ T-cell activation, as indicated by upregulation of
CTLA-4 and CD25 on CD4þFoxp3� and GFP-negative
Foxp3þ T cells. Depletion also resulted in a significant out-
growth of Foxp3þGFP� Treg and an increase in the
production of the pro-inflammatory cytokines IFN-g and
IL-6 inH. polygyrus–infectedmice.Given the established role of
dendritic cells in driving CD4þ T-cell activation and pro-
inflammatory cytokine production, it is likely that Treg control
of dendritic cell function underlies the subsequent control of
parasite immunity.60 Near-complete depletion of Tregs in an
independently constructed transgenic mouse, the BALB/c
DEREG, at days 1, 3, and 5 following infection with H.
polygyrus and in the BALB/c Foxp3.LuciDTR at days 4, 6, 8, and
10 postinfection (similar to Rausch et al.23) resulted in weight
loss and a high severity score, so that experiments were
discontinued. Interestingly, a previous report suggests that

ARTICLES

438 VOLUME 9 NUMBER 2 | MARCH 2016 | www.nature.com/mi



Tregs returning after depletion in DEREG mice are not func-
tional in an in vitro-suppression assay,61whichmay explain the
pathology we see in these transgenic mice. Heightened
pathology in BALB/c DEREG mice may also be explained
by an increased overall dose of DTx given to thesemice (1 mg vs.
B480 ng for BALB/c Foxp3.LuciDTR), supporting the
conclusions of a recent publication reporting pathology in
DTx-treated wild-type mice following influenza infection.62,63

Furthermore, near-complete depletion of Tregs in more
susceptible C57BL/6 Foxp3.LuciDTR at days 14–26 every 2
days following infection with H. polygyrus resulted in weight
loss but no change to parasite burden, despite increased
antigen-specific Th2 responses in Treg-depleted mice. These
experiments clearly demonstrate a role for Treg in limiting
inflammation-induced pathology following helminth infection,
as well as redundancy for Treg in controlling parasite immunity
during chronicity.

Tregs have a complex role in regulating pathology in
response to helminth infection, inhibiting the development of
colonic granulomas during schistosomiasis64 in response to
Toll-like receptor 2 ligation18 but both diminishing and
promoting pathology following T. muris infection, depending
on early or late depletion, respectively.21 Pathology also
occurred following depletion of Tregs at days 4, 6, 8, and
10 inH. polygyrus–infected C57BL/6 DEREGmice, as the adult
worm emerges into the lumen, which was characterized by
villous blunting and atrophy, crypt hyperplasia and formation,
or cellular infiltrate within the LP.23 This response was
associated with increased antigen-specific IFN-g and Th2
cytokine production in the MLN. IFN-g production has been
associated with increased epithelial cell proliferation and cecal
crypt hyperplasia during T. muris infection65 and, moreover,
with lymphedema in filariasis patients lacking Tregs,66

suggesting that pathology we observed in infected Treg-
depleted BALB/c Foxp3.LuciDTR mice may also involve
IFN-g as well as other factors. Antigen-specific IFN-g
production is dramatically increased in infected Treg-depleted
BALB/c Foxp3.LuciDTR mice; however, adult worm burden,
IL-6, and IL-4 cytokine production is significantly increased on
neutralization of IFN-g in these mice. Neutralization of IFN-g
in Treg-depleted BALB/c Foxp3.LuciDTR had no impact on
granuloma formation, Teff, or Treg activation status; however,
it did heighten the percentage of macrophages, perhaps by
allowing IL-4 to dominate.55 The Th2 cytokine IL-13 also has
an established role in enhancing liver fibrosis and pulmonary
granuloma formation following exposure to S. mansoni
eggs67,68 and is also associated with pathology in patients
with ulcerative colitis.69 Although we found no increase in
antigen-specific IL-13 following depletion of Tregs in H.
polygyrus–infected BALB/c Foxp3.LuciDTRmice, it remains to
be determined whether Treg expansion following chronic
parasite infection can influence IL-13 production from
populations of innate intraepithelial natural killer cells and
LP natural killer T cells, known to have a role in driving
pathology following Trichinella spiralis infection and in human
ulcerative colitis.70,71

Parasite pathology can further be regulated by stimulation of
macrophages, which have a fundamental role in promoting
intestinal tolerance and wound healing.72,73 Although we
observed that boosting Treg populations in vivo can inhibit
macrophage proliferation and alternative activation following
H. polygyrus infection, we do not observe differences in
macrophage proliferation and alternative activation in infected
BALB/c Foxp3.LuciDTR mice depleted or replete of Tregs,
despite a loss of intestinal granulomas in Treg-depleted mice.
Recently, intestinal granulomas were found to form in response
to exposure to commensal flora following S. mansoni infec-
tion.74 Furthermore, colonization of wild-type mice with
Clostridium or Lactobacillus commensal species was able to
promote Treg differentiation or Treg activity in the intes-
tine.75,76H. polygyrus has a profound impact on the microflora
of the host, significantly increasing the abundance of lacto-
bacillaceae family within the ileum of infected mice,77 where
duodenal Lactobacillus/Lactococcus abundance positively
correlated with the total number of Foxp3þCD4þ Tregs
within the MLN of H. polygyrus–infected mice.31 Therefore,
near-complete Treg depletion may alter the host response to
increased Lactobacillus/Lactococcus abundance following
H. polygyrus infection and result in the disrupted granuloma
formation and pro-inflammatory cytokine production seen
here.

Finally, wemade use of Abs toCD25 to partially remove Treg
populations during the early phases of H. polygyrus infection,
which increased antigen-specific and polyclonal Th2 responses
and adult worm expulsion in BALB/c mice, consistent with our
hypothesis that Treg control of CD4þ T-cell cytokine release is
instrumental in inhibiting immunity. Although anti-CD25
could also deplete activated effector populations, loss of such
cells cannot account for heightened immunity we observed
following Ab treatment. Partial depletion of Tregs using CD25
has also been shown to enhance IL-4 production in S. mansoni
egg-induced inflammation78 and increase Th2 responses
followingmuscle infectionwithT. spiralis.79 Further, combined
treatment with CD25 and GITRAbs enhanced antigen-specific
Th2 responses and filarial clearance in L. sigmodontis–infected
mice,15 therefore our data add to the consensus that early Treg
expansion can limit the antiparasite response.

In adult mice, and in the absence of an infectious challenge,
inflammatory disorders such as autoimmunity do not develop
following Treg depletion. However, in the presence of mutated
Foxp3 alleles, such as the Foxp3(GFP)knock-inDEREGmice,80

CNS-1(GFP) knock-in,5 or scurfy�DEREG cross,81 Th2
inflammation and pathology ensue. Given that we observed
severe pathology in Treg-depleted H. polygyrus–infected
DEREG or Foxp3.LuciDTRmice, but not in anti-CD25-treated
mice, a residual level of Tregs expressingwild-type Foxp3 alleles
may be necessary to suppress excessive inflammation-asso-
ciated pathology in this setting. Low levels of Tregs may also
contribute to intestinal homeostasis and control inflammation
by limiting a breach of the intestinal barrier by microbiota.82

Another key cytokine for controlling parasite-related
pathology and regulating Th1 and Th2 inflammatory cytokine
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production is IL-10,83,84 which is upregulated by both CD4þ

Foxp3� and CD4þFoxp3þ subsets following H. polygyrus
infection.13 Our findings of decreased IL-10 following IL-2C
treatment and increased IL-10 following Treg depletion reveal
that it is unlikely that IL-10 from CD4þFoxp3� cells regulates
inflammatory responses following infection with H. polygyrus.
Following T. spiralis, T. muris, or S. mansoni infection,
Foxp3þ IL-10� Tregs can restrain Th2 responses,20,78,79

whereas IL-10þFoxp3þ Treg are thought to have more of
a role in controlling inflammation-induced pathology follow-
ing S. mansoni infection.85,86 Hence, Tregs are unlikely to
repress Th2 cytokine production through IL-10, suggesting that
inhibition is mediated by other suppressive cytokines (such as
transforming growth factor-b) or by contact-dependent
suppression through checkpoint inhibitory receptors.

Treg-derived IL-10 may neverthless be important in
controlling pathology, as the elevation of multiple pro-
inflammatory cytokines following Treg depletion in BALB/c
Foxp3.LuciDTR mice could result from the complete loss of
Treg-derived IL-10 in the intestinal tissues. This hypothesis is
supported by the high mortality rates we see in BALB/c
DEREG mice following Treg depletion during infection
with H. polygyrus or as reported elsewhere for S. mansoni.19

Partial depletion of Foxp3þ IL-10þ Treg following treatment
of H. polygyrus–infected BALB/c mice with anti-CD25,
reported at levels of around 50% at steady state within the
lung tissue,87 would limit this response.

In conclusion, these data demonstrate that the presence of a
low level of functional Tregs is essential not only to constrain
pathology in the response to H. polygyrus infection but also to
maintain sufficient homeostatic control of inflammatory
reactions to permit a coherent protective type-2 response to
evolve (Figure 8). It will be interesting to establish whether a
similar non-linear relationship between the regulatory and
effector T-cell compartments is in play with other helminth
infections and, if so, to develop strategies to modulate Treg

activity in a measured and calibrated manner to boost
protective immunity.

METHODS

Mice. BALB/c and C57BL/6 mice were bred in house under specific
pathogen-free conditions. Foxp3.LuciDTR-4 mice previously
described26,59 were re-derived on a BALB/c and C57BL/6 background
at the University of Edinburgh. BALB/c DEREG mice were also used
as described.88 All protocols were approved by the University of
Edinburgh’s Ethical Review Committee and all animal work was
conducted under UK Home Office licence. DTx was administered
intraperitoneally (i.p.) to Foxp3GFP-negative and -positive littermates
at a dose of 24 ng g� 1 for Foxp3.LuciDTR-4 mice and 1 mg per animal
(approximately 40 ng g� 1) for DEREG mice, unless otherwise
indicated. Mice were monitored for weight loss, physical, and
behavioral changes and were euthanized if they lost 420% body
weight or were otherwise deemed to have developed severe pathology.

Parasites and antigens. H. polygyrus (bakeri) was maintained as
described elsewhere.89H. polygyrus excretory/secretory antigen (HES)
was collected from adult worms as previously detailed.12 Mice were
infected with 200 H. polygyrus L3 larvae using a gavage tube. Parasite
egg burden was calculated per gram of fecal pellet, and intestinal worm
burden was enumerated visually at postmortem.

In vivo Ab depletion and administration of rIL-2:anti-IL-2 (IL-2C).
Mice received 1mg of anti-CD25 mAb (PC-61, in house) or rat
immunoglobulin G (IgG; in house) i.p. immediately before infection.
For rIL-2:anti-IL-2 (IL-2C) administration, mice received 2.5mg rIL-2
(eBioscience, Hatfield, UK) with 25 mg anti-IL-2 (clone JES6-1A12;
eBioscience) or 25mg rat IgG2a alone (eBioscience) i.p. Ab complexwas
incubated at room temperature for 30min and administered
immediately before infection. Neutralizing anti-IFN-g (clone
XMG1.2) or a rat IgG1 isotype control (clone GL113; both in house)
were administered i.p. at 0.5mg per animal.

Abs and reagents. Ab pairs used for cytokine enzyme-linked
immunosorbent assay were as follows: IL-4 (11B11/BVD6-24G2),
IL-10 (JES5–16E3/JES5-2A5), IL-13 (eBio13A/eBio1316H), IL-6
(MP5-20F3/MP5-32C11), IL-17 (eBio17B7/eBio17CK15A5), all
eBioscience; and IFN-g (R4-6A2/XMG1.2; BD Pharmingen, Oxford,
UK). RELMa content wasmeasured using theAb pair clone 22603 and
BAF1523 and Ym-1 using the mouse chitinase 3-like 3/ECF-L Duoset
(both R&D, Abingdon, UK). Biotin detection Abs were used with
ExtrAvadin-alkalinephosphatase conjugate (Sigma-Aldrich, Dorset,UK)
and SIGMAFAST p-Nitrophenyl phosphate substrate (Sigma-
Aldrich). For cell surface flow cytometry, a combination of the
following Abs were applied: CD4 (RM4-5 or GK1.5; Biolegend,
London, UK), CD8 (53-6.7; Biolegend), CD3 (17A2; Biolegend), CD5
(53-7.3; Biolegend), CD11c (N418; Biolegend), CD19 (6D5;
Biolegend), CD25 (7D4 or PC-61; BD Pharmingen), Siglec-F (E50–
2440; BD Pharmingen), CD11b (M1/70; Biolegend), F4/80
(BM8; Biolegend), ICOS (15F9; eBioscience), CD49b (DX-5; Biole-
gend), and CD103 (M290; BD Pharmingen). Vb usage was assessed
using a mouse TCR Vb screening panel (BD Pharmingen). For
intracellular staining, the following Abs were applied using the
eBioscience Foxp3 Permabilization Kit: Ki-67 (B56; BD Pharmingen),
RELMa (226033; R&D, and rabbit IgGAF647 LabelingKit; Invitrogen,
Paisley, UK), Foxp3 (FJK-16s; eBioscience), Helios (22F6; Biolegend),
and CTLA-4 (UC10-4F10–11; BD Pharmingen). Staining was
compared with the relevant isotype control, and acquisition was
performed using an LSR 2 (BD Biosciences, Oxford, UK) and a
FACSCanto (BD Biosciences). Data were analyzed using the Flowjo
software (Treestar, Ashland, OR).

Immunological assays. Treg depletion was monitored by fluores-
cence-activated cell sorting analysis of peripheral (cheek) blood or
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Figure 8 Schematic summarizing the role of regulatory T cell (Treg) in
controlling pathology and inflammatory responses following H. polygyrus
infection. Left: InH. polygyrus infection ofmice, an absence of Treg results
in uncontrolled T helper type 1 (Th1) responses and increased parasite
persistence and pathology, without affecting Th2 development (e.g., in
DEREG and Fop3.LuciDTR mice). Center: A low level of Treg controls
excessive Th1 responses but allows Th2 responses to dominate resulting
in adult worm clearance (e.g., anti-CD25 treatment). Right of the panel: A
high level of Tregs (e.g., following administration of recombinant
interleukin-2 (rIL-2):anti-IL-2) suppresses both Th1 and Th2 responses,
increasing parasite survival and resulting in suppression of immunity to
bystander antigens.
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MLN. Fluorescence-activated cell sorting analysis of Treg proportions
in the LP extracted from the duodenum to the apex of the cecum was
also performed following isolation using liberase digestion. Briefly, the
intestine was removed of Peyer’s Patches and intraepithelial
lymphocytes were stripped by three sequential 30-s washes using
media containing 2mM EDTA. Digest of the LP was then performed
for two 12-min incubations using 1mg Liberase TL (Roche, Burgess
Hill, UK) and 5mg deoxyribonuclease I from bovine pancreas; Sigma-
Aldrich). Single-cell suspensions were recovered following homo-
genization through a 70-and 40-mM cell strainer. Peritoneal exudate
cells were collected by flushing the peritoneal cavity using 2� 5ml
RPMI. Gut homogenate was prepared by homogenization of 1 cm of
the apical duodenum in 1� lysis buffer (Cell Signaling, Hertfordshire,
UK) containing 1/100 phenylmethanesulfonylfluoride (Sigma-
Aldrich) by TissueLyser (Qiagen, Manchester, UK), and the super-
natant was assessed for factors associated with alternative activation by
enzyme-linked immunosorbent assay.
MLN were also used for analysis of intracellular cytokine staining

and antigen-specific restimulation. Briefly, 5� 106 MLN cells were
stimulated with 0.5 mg phorbol 12-myristate 13-acetate and 1 mg
Ionomycin (both Sigma-Aldrich) for 1 h at 37 1C/4% CO2 before
addition of 10 mg Brefeldin A (Sigma-Aldrich) for a further 2.5 h. Cells
were harvested, blocked with 2.5mg rat IgG and stained for cell surface
and intracellular markers using combinations of the Abs listed above.
For antigen-specific restimulation, 5� 105 cells were plated in
duplicate with media or 1 mg HES for 72 h at 37 1C/4% CO2.
Supernatants were harvested and analyzed for cytokine production
by enzyme-linked immunosorbent assay, using the Ab pairs described
above.

Statistics. Data were assessed for normality and equal variance and
were log transformed if required using the GraphPad Prism software
(La Jolla, CA). For comparison between two groups, an unpairedT-test
was used; where more than three groups were being tested, a
parametric one-way analysis of variance with Tukey’s multiple
comparison was used. For correlation analyses on non-parametric
data, a Spearman correlation test was used. The correlation co-efficient
r value was added to graphs where correlations reached significance.
NS on graphs denotes no statistical differences, *Pp0.05, **Pp0.01,
and ***Pp0.001.

SUPPLEMENTARYMATERIAL is linked to the online version of the paper

at http://www.nature.com/mi
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