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Visualization System Requirements for Data
Processing Pipeline Design and Optimization

Tatiana von Landesberger, Dieter W. Fellner and Roy A. Ruddle

Abstract—The rising quantity and complexity of data creates a need to design and optimize data processing pipelines – the set of data

processing steps, parameters and algorithms that perform operations on the data. Visualization can support this process but, although

there are many examples of systems for visual parameter analysis, there remains a need to systematically assess users’ requirements

and match those requirements to exemplar visualization methods. This article presents a new characterization of the requirements for

pipeline design and optimization. This characterization is based on both a review of the literature and first-hand assessment of eight

application case studies. We also match these requirements with exemplar functionality provided by existing visualization tools. Thus,

we provide end-users and visualization developers with a way of identifying functionality that addresses data processing problems in an

application. We also identify seven future challenges for visualization research that are not met by the capabilities of today’s systems.

F

1 INTRODUCTION

Visualization has historically been used to derive new findings

from data, and to communicate those findings to a wider

audience. Today, the rising quantity and complexity of the data

give rise to an important third usage: to design and optimize

data processing pipelines, especially those where scientists are

faced with a large space of pipeline and/or parameter choices.

This is the case in diverse domains such as medical imaging

and business intelligence, chemistry and security.

A pipeline is a sequence of computations, i.e., steps. Each

computation is implemented with certain algorithms and exe-

cuted on input data using specific algorithm parameters. The

computation produces outputs (results) from input data (see

Fig. 1a). When a pipeline has several steps, the initial inputs

are used to compute intermediate outputs, and the intermediate

outputs are used as inputs to the next step of the pipeline. This

is repeated until the final output is produced (see Fig. 1b).

To design a pipeline users choose between different compu-

tation steps, or their execution order. During optimization users

often keep the computation steps fixed but choose different

algorithms or their parameter settings. Note, we use the term

workflow to encompass the whole analytical process, from

data acquisition, through application of the data processing

pipeline, to investigation and explanation of the results.

Both the design and optimization of pipelines can be

performed in various ways, from fully programmatic (e.g.,

programs written in R, Matlab, or other language), via a

combination of programmatic and visualization, to a fully

visual way (e.g., using KNIME, VTK). This paper focuses

on the possibilities and opportunities of visualization support

in designing and optimizing pipelines. Visualization has the

potential to help scientists understand the trade-offs between
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Fig. 1: Data processing pipeline schema.

different models, processing methods (e.g., one algorithm vs.

another), the consequences of choices or assumptions made

during one step in a pipeline on later steps (failing to do

this leads to a phenomenon termed broken workflow [1]), and

assess outputs against objective and subjective criteria. The

net result will be pipelines that are more effective for both

automated and human-in-the-loop processing.

A systematic assessment is needed to show how current

visualization functionality matches user’s requirements for

pipeline design and optimization, and which new functionality

still needs to be developed. Previous research has made steps

in this direction (e.g., Sedlmair et al.’s conceptual framework

[2]), but the focus was on parameter space analysis rather than

pipeline design and optimization.

The present article addresses this need by making four

important contributions. First, through eight case studies we

describe a breadth of application challenges for the design and

optimization of data processing pipelines (see Sec. 4). Second,

by combining those case studies with a thorough review of

literature, we characterize users’ requirements (see Sec. 5).

Third, we match users’ requirements to the functionality that

is provided in exemplar visualization systems (see Sec. 6).

This can help users to define their problems and find ap-

0000–0000/00$00.00 c© 2016 IEEE
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propriate visualization systems, and developers to profit from

proven functionality and solve larger problems by combining

that functionality. Fourth, we identify challenges for future

visualization research (see Sec. 7.2).

2 RELATED WORK

This section is divided into two parts. First, we review the

wide variety of methods that are used to design and optimize

pipelines. Then we briefly summarize existing frameworks

and characterizations that underpin our research. Exemplars

of visualization systems that have been developed to support

pipeline optimization and design are presented in Section 6.

2.1 Methods for Pipeline Design and Optimization

Current methods for pipeline design and optimization range

from fully automatic to methods that require substantial user

input. Fully automatic methods are best suited to problems that

are well-understood, and have established analytical pipelines

and pre-defined outcomes that can be automatically evaluated.

Examples range from single-criterion optimization problems

[3], [4] to problems with multiple criteria that adopt techniques

such as multi-criteria decision analysis [5].

The user-based methods may be subdivided according to

the manner in which users provide input: iteration, parameter

sampling, and whole workflow. In the first of these, users it-

eratively choose pipeline parameters and examine the outputs,

until the solution is satisfactory. Some techniques are primarily

computational, often incorporating data mining methods, and

examples include dimension reduction [6], clustering [7] and

classification [8]. However, visualization is an inherent part

of others approaches, for example, using statistical learning

techniques to make a real-time prediction of the results for

regions of parameter settings [9].

Parameter sampling systems help users to investigate the

outputs for many combinations of parameter settings. The

ability to visualize those outputs brings several important

benefits, which include allowing users to save considerable

time [10], [11], conduct a far more rigorous review of outputs

than is possible with the iteration approach [12], and gain a

high-level understanding of how different parameters interact

to affect the outputs [13], [14].

Whole-workflow systems capture the provenance of data

analysis, and provide visual support for multiple lines of

inquiry that is particularly beneficial when analysis takes place

over an extended period of time or involves multiple end-

users [15], [16]. Visualization brings benefits that include

significantly improving the process of prototyping engineering

designs [17] and comparing flood-control strategies [18].

The pipelines that are used with the above methods in-

volve one or more computation steps (see Fig. 1). Most

applications involve the running of a simulation model or

data processing algorithms, which may be bespoke or utilize

existing packages. In some applications visualization tools

are just used to investigate output from computation steps,

with examples being Vismon for multiple Monte Carlo runs

of a fisheries model [19] and Orchestral for copy number

calculations in genomics [1]). In other applications a user both

runs computations and visualizes output with a single tool,

with examples being World Lines [18] and the visual steering

during design prototyping [17].

2.2 Frameworks and Characterizations

Our research builds on Sedlmair et al.’s conceptual framework

[2], which characterizes data flows, navigation strategies and

analysis tasks that take place during visual parameter space

analysis. Sedlmair et al.’s analysis shows that most users adopt

a global-to-local navigation strategy that is consistent with

Shneiderman’s well-known mantra [20]. At a global level,

users are concerned with acquiring a ‘big picture’ of the data

by understanding trends, outliers, clusters, distributions and

correlations. At a local level users wish to understand the

details of particular parameter choices and outputs.

Sedlmair et al. [2] identify six user tasks: optimization,

model output partitioning, model fitting, finding outliers, as-

sessment of output uncertainty, and model sensitivity. Outliers

are one aspect of the veracity of a pipeline’s inputs, and un-

certainty and sensitivity are included as distinct factors in our

characterization of users’ requirements (see Sec. 5). However,

optimization and model fitting concern the overall purpose of

conducting visual parameter analysis and partitioning involves

understanding outputs in the context of parameter settings.

These tasks complement our characterization.

Our characterization of user’s requirements is concerned

with the factors that influence the construction and optimiza-

tion of data processing pipelines. Our paper takes a different

perspective on visual parameter analysis than that theoretically

summarized by Sedlmair et al. [2] or analyzed in previous

scenarios in the literature (see Table 1). Sedlmair et al. focus

on the tasks performed during data modeling and analyze

types of parameters, inputs and outputs of modeling. They

put focus also on user’s navigation strategies. We focus more

on the burdens and requirements encountered in design and

optimization, for example, users’ comprehension of pipeline

steps or output assessment time (see Sec. 5). Nevertheless,

we note that the basic calculation step, the computation of

derived data, and the analysis of output sensitivity feature in

both works. Therefore, we see our work as complementary

extension of the framework provided by Sedlmair et al. [2].

A number of other studies have characterized the tasks

that users perform with visualization systems. Of particular

relevance to our research is a study that interviewed 35 data an-

alysts from 25 organizations to investigate the challenges and

barriers that analysts face [21]. Common issues were prove-

nance, the validity and consistency of assumptions, and the

sensitivity of findings to choices made during analysis (e.g.,

parameter settings). All of these feature in our requirements

characterization. Other visualization task characterizations are

more abstract (e.g., [22]) and cover the full scope of usage

of visualization systems, from pipeline design/optimization to

deriving/communicating new findings.

3 METHODOLOGY

Our research was divided into four parts. The first part fits

with the first layer of Munzner’s nested model of visualization
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design (characterize the domain problem) [23]. The second

and third parts of our approach fit with the second layer

of Munzner’s model (abstracting the domain problems in a

manner that informs the design of visualization systems).

First, we investigated eight widely diverse application case

studies to gain a first-hand understanding of users’ require-

ments (see Sec. 4). Each case study started with a stakeholder

completing a questionnaire that was designed to capture their

aim, current analysis methods and aspirations (see supple-

mentary material), and the authors reading the responses and

a key paper about the work. Then we conducted a semi-

structured interview with the stakeholder, to probe important

issues, and discuss limitations of today’s tools for designing

and optimizing data processing pipelines.

The second part was to characterize users’ requirements

in a manner that captured the breadth of the case studies

(see Sec. 5). This took place in workshop-type sessions that

involved the paper authors and some colleagues.

To validate and fine-tune the characterization, two of the

authors then independently reviewed a broad set of papers,

selecting 28 representative papers dealing with visualization

techniques for pipeline design and optimization (see Table 1).

Differences between the authors’ characterizations were re-

solved by discussion. The 28 papers include all 21 that were

selected as a core subset in Sedlmair et al.’s review of visual

parameter space analysis [2], as representatives of a much

wider body of visualization research.

The fourth part of our method was to identify exemplar

solutions for certain aspects of the characterization (see Sec. 6)

and future research challenges (see Sec. 7.2). The exemplars

were drawn from visualization systems that were developed to

address some of the challenges identified in the case studies,

or described in the 28 papers or more recent related work.

4 APPLICATION CASE STUDIES

This section describes eight application case studies, highlight-

ing the aim of each and key challenges that users face. These

case studies come from a range of application domains, and al-

lowed us to obtain an in-depth understanding of users’ require-

ments from first-hand experience. In three of the case studies

(4.2, 4.3 & 4.8) users currently employ scientific visualization

techniques, whereas information visualization predominates in

the other case studies. In the first five case studies users need

to design a data processing pipeline, contrasting with previous

work which has primarily involved pipeline optimization (e.g.,

see the studies reviewed by Sedlmair et al. [2]).

4.1 Comparative Genomics

In comparative genomics users wish to identify patterns of

genetic mutation that are characteristic of factors (e.g., disease,

organ and tumor stage) that vary across a collection of

hundreds or thousands of DNA samples [1]. This is one of

two case studies that clearly involve ‘big’ data. In this case it

is due to veracity. Noise masks interesting features in the data,

established processing methods perform aggressive smoothing

that removes noise and some features, and output is sensitive

to small changes in the thresholds used to differentiate normal

regions of DNA from mutated regions. Biologists and bioin-

formaticians want to develop new methods to detect cross-

sample similarities and trends, but the space of possibilities is

large and data processing takes hours for a single pipeline run

on high-performance computing (HPC) facilities. The output

from a single processing run also takes a considerable time to

assess, because hundreds of thousands of DNA regions often

need to be considered individually. Users also need to take

into account the large body of prior research that has identified

DNA regions associated with particular diseases.

4.2 3D Image Segmentation

The aim of 3D image segmentation research is to develop

methods that automatically identify a structure from volumet-

ric data. One example comes from Steger et al. [24], who de-

veloped a pipeline to segment radial-based lymph nodes from a

CT scan for cancer diagnosis. The pipeline has multiple steps,

with dozens of quantitative parameter choices, and several

choices of the used algorithms. The results are assessed via a

set of quantitative criteria, viewing 3D graphical output, and

making comparisons with multiple references (the subjective

nature of segmentation means that two experts are unlikely

to produce the same ground truth). In Steger et al.’s pipeline,

the algorithms used in certain steps make assumptions about

the shape and size of the segmented objects (lymph nodes).

Current tools prevented the users from validating that these

assumptions were consistent with the characteristics of the

final output. Even though each segmentation result is fast to

compute (10 seconds), the sheer number of processing steps

and parameters, coupled to the sensitivity of results to specific

choices, makes pipeline design and optimization difficult.

4.3 2D Image Segmentation

Another class of segmentation involves 2D images, for ex-

ample, histopathology segmentation aims to robustly detect

contiguous regions of tissue in virtual slides [25]. With a

standard pipeline, no single set of parameter settings is optimal

for all input images (optimal settings for one image lead to

poor segmentation of others). Therefore, users need to design

a more sophisticated pipeline. But this requires them to better

understand the composite effect of different parameters and to

be able to review and make judgements about the segmented

output from many images. Some aspects of output assessment

are straightforward, but others require input from a domain

expert which can lead to delays due to work commitments.

4.4 Chemical Engineering

Chemical engineers want to scale-up chemical process models

to an industrial-scale to make manufacturing efficient. The

models are formed by integrating experimental data gathered

in laboratory experiments with a theoretical understanding of

the chemical reactions, and knowledge of numerical simula-

tions [26]. Each simulation typically only takes a few seconds

to compute. However, there are a large number of possible

models and variants, each taking the form of a network of

chemical reactions. Models are compared using a multitude

of graphical plots (e.g., showing time vs. concentration), but

the engineers do not have the tools to determine confidence
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intervals for individual model components. This means that

the engineers are unable to identify which components are

essential to include. And thus, to improve engineers’ overall

understanding of chemical processes.

4.5 Economic Modeling

In economic modeling, the goal is to develop a new model

based on new economic theory. Modeling experts work with

prior assumptions about model parameters and their distribu-

tions, to find the model that best matches real-world data from

a broad set of basis model specifications [27]. For this purpose,

several model variants are analyzed using stochastic simula-

tions. The evaluation of a model is subjective, with modeling

experts needing to visually assess a set of probabilistic output

functions. This whole process is highly iterative and time-

consuming. Users wish to be able to model several trends in

parallel and create more complex models. This is, however,

limited by current computational tools.

4.6 Aircraft Engine Design

Aircraft engine design involves parameter tweaking con-

strained both by high computational time and risk-averseness

to making large design changes [28]. The aim is to make small

improvements in engine performance, as measured across a

basket of up to five measures (fuel efficiency, stall speed, etc.).

The engine is modeled using approximately 100 parameters

that are highly abstracted from its physical characteristics.

It is straightforward for users to identify a set of feasible

solutions (a Pareto set), but experts have to use considerable

tacit knowledge to determine which is the best out of candidate

designs. Even using HPC, it takes days to compute the model,

meaning that it is only possible to perform the computation

for a small number of parameter settings.

4.7 Phylogenetic Trees

Complex output analysis after performing several pipeline

steps is the main bottleneck during the comparison of phy-

logenetic trees [29]. Biologists want to determine the ‘true’

evolutionary dependency of species. This is approximated by

so-called phylogenetic trees, calculated from the DNA (or

other data) of species using a set of algorithms (e.g., sequence

alignment, clustering). The calculation of the evolutionary tree

has several steps. Each has a set of parameters of different

types (quantitative, nominal, type of data used, and even the

choice of algorithm as a parameter). Although rules of thumb

exist for the parameter settings, the right parameter setting

depends on the dataset at hand. Biologists wish to analyze the

sensitivity of the output tree to the input parameters, datasets

and algorithms that are used [29], [30]. They calculate the

trees, which takes up to an hour per tree, and compare the tree

structures to analyze: (1) parameter sensitivity, and (2) core

structures within trees (i.e., evolutionarily stable subtrees).

This is difficult, as algorithmic tree distance functions do not

take detailed differences into account and visual exploration

of thousands of trees is not feasible. Therefore new visual tree

comparison and parameter sensitivity exploration tools needed

to be developed [29]. The tools showed that the construction

of phylogenetic trees depends – contrary to folk wisdom in

the community – to a large extent on clustering and scoring

schemes assumptions, but to a lesser extent on the detailed

parameters of the underlying evolutionary model.

4.8 Molecular Evolution

To study molecular evolution, scientists run nanoscale simu-

lations [31]. To understand the results and how the simulation

models may be improved, scientists need to be able to view

the overall molecular structure, and emergent large and small-

scale features that are scattered throughout. However, a ‘big’

volume of data is involved (e.g., 1 million data points, with

1000 dimensions), so HPC resources are typically needed

[32], and sometimes a single simulation may take weeks

so it is not possible to run a large number of simulations.

The high computational demand leads to the use of reduced

models that only approximate the true molecular dynamics.

Moreover, assessment is complicated by the fact that there may

be unknown or counter-intuitive connections between different

dimensions in the data. Users wish for new visual analytics

methods that would allow them to compare several models

and would display the differences between outcomes.

5 CHARACTERIZATION OF REQUIREMENTS

This section characterizes users’ requirements for the design

and optimization of data processing pipelines. The characteri-

zation is derived from the eight case studies (see Sec. 4). It was

refined and validated by reviewing 28 previously published

papers that describe application examples and visualization

systems for pipeline design and optimization. We use the

collective term scenarios for all of case studies and papers.

Each requirement in our characterization represents a fun-

damental barrier to end-users’ ability to design and optimize

high-quality data processing pipelines in certain applications.

The mapping between requirements and scenarios is summa-

rized in Table 1, with further detail provided in the online

supplementary material. Exemplar solutions are provided in

Section 6. In analyzing the scenarios, we consider details of the

application requirements which sometimes extended beyond

the capabilities of the tools that the authors of a given paper

were able to provide. The requirement remaining unmet by the

presented tools are also indicated in Table 1, with key open

challenges summarized in Section 7.2.

Inputs

ͻ Volume

ͻ Velocity

ͻ Variety

ͻ Veracity

Computations

ͻ Unknown/pre-
defined pipeline

ͻ Pipeline 
assumptions

ͻ Number of 
combinations (of 
parameters)

ͻ Comprehension of 
pipeline steps

ͻ Compute time

ͻ Provenance

Outputs

ͻ Number of 
outputs

ͻ Subjectivity of 
output quality

ͻ Sensitivity to 
inputs, 
parameters and 
algorithms

ͻ Uncertainty

ͻ Assessment time

ͻ Context

Fig. 2: Characterization of users’ requirements for pipeline design
and optimization. The main categories are inputs, computations and
outputs. Further information is given in Sections 5.1-5.3.
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TABLE 1: A mapping of users’ requirements onto the eight application case studies (see Sec. 4) and the 28 literature review papers
(‘*’ indicates the seven papers that were not part of Sedlmair et al.’s review [2]). Each colored cell indicates a requirement that is important
for a given case study/paper, and an ‘x’ indicates that the requirement remains unmet by users’ current tools.
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   Comparative genomics [1] x x req x x req req req

   3D image segmentation [24] req x req x req req x x

   Histopathology segmentation [25] req req req req req

   Chemical process models [26] x req req x

   Economic modelling [27] req req x x req req x req

   Aircraft engine design [28] req req x req req

   Phylogenetic trees [29,30] x req x x req req

   Molecular evolution [31,32] x x req x req x

* Raidou et al. [75] iCoCooN req req req

* Ruppert et al. [46]  -- x req x

   Luboshik et al. [38]  -- x req req req

   Bruckner et al. [10]  -- x req x req

* Beham et al. [43] Cupid req req x x

   Konyha et al. [39]  -- x req x

   Pretorius et al. [12] Paramorama req x req

   Afzal et al. [36] RVF x req req x

   Bergner et al. [13] ParaGlide x x req

   Torsney-Weir et al. [33] Tuner x req x x

* Padua et al. [11]  -- x req x

* Bögl et al. [42] TiMoVA req req req x x req

   Spence et al. [73]  -- req req

   Berger et al. [9]  -- req x x x

   Piringer et al. [40] HyperMoVal x x req req req

   Matkovic et al. [17]  -- req x

   Coffey et al. [34]  -- x x req

   Matkovic et al. [50]  -- x

   Potter et al. [49] Ensemble-Vis x req

   Booshehrian  et al. [19] Vismon req x req x

   Brecheisen et al. [52]  -- x req x

   Unger et al. [54]  -- req req req

   Amirkhanov et al. [74]  -- x

   Marks et al. [48] Design Galleries req x

   Waser et al. [18] World Lines req x x

* Martins et al. [35]  -- x req x

* Wu [53]  -- x x x

   Guo et al. [41]  -- req

First-hand Application Case Studies

Literature Review

Requirement/
scenario

Software 
name

Inputs Computations Outputs

The requirements are grouped as follows:

1) Inputs cover aspects of the data that is that is fed into a

pipeline, and are inspired by the ’Vs’ of ‘big data’.

2) Computations cover choices that a user makes in the

design of a pipeline and execution of the computational

steps.

3) Outputs cover requirements that are based on the dif-

ficulty of choosing between designs or parameter sets,

either on completion of a pipeline or between steps.
5.1 Inputs

Our inputs requirements are the volume, velocity, variety and

veracity of the data (see Fig. 2). They were inspired by the

‘Vs’ of big data. While there are various notions of big data,

we focus on those that are most relevant to pipeline design

and optimization.
A high data volume necessitates using distributed systems

architectures, storing the data and performing computations

remotely from users, and transmitting outputs over a net-

work to users. Even with massively scalable computations

(e.g., using MapReduce) and data structures that allow direct

access to multiple abstractions of the data, response times

are typically slower than those needed for truly interactive

visualization. However, as the molecular evolution case study

shows (see Sec. 4.8), it is sometimes possible to achieve real-

time interaction (a latency of 100 ms, or less).

Velocity introduces the requirement to process data as it

arrives, and is most challenging when it is impossible to

store all of the data. This shifts the challenge to being one

of designing a processing pipeline to filter or abstract the

data, after which further pipelines are used for detailed data

analysis. This is considered as future challenge (see Sec. 7.2).

Variety comes mainly in three forms, which may be com-

bined to define the requirements of a particular scenario. First,

unstructured data is inherently more difficult to analyze than
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data that are structured into the rows and columns of a con-

ventional database. Examples include free text, images from

a multitude of patients [33], multimedia, and the designs of

3D models [34]. Second, as the number of variables increases

(e.g., [35]), it is more challenging to deal with inputs. Third,

as more sophisticated relationships (e.g., additional factors in

the spread of disease in an epidemic [36]) are sought then

processing time may increase exponentially.

Veracity: It is common for data to be incomplete (missing

values) or contain erroneous items (noise, bias, duplicates or

errors). Missing data is often treated conservatively, discarding

the records concerned or giving missing fields a zero score

[37]. In other applications, veracity involves noise that masks

patterns that users wish to find and understand, with an exam-

ple being the comparative genomics case study (see Sec. 4.1).

Veracity brings with it the requirement for visualizations that

help users to understand missingness and noise in their data,

and their effect on pipeline outputs.

5.2 Computations

This set of requirements covers choices that users make about

a pipeline and its execution (see Fig. 2). The pipeline may need

to be designed as part of the data analysis (i.e., an unknown

pipeline), and the steps of the pipeline may need to adhere

to certain (external) assumptions. Pipeline execution involves

calculating outputs from inputs using certain algorithms and

their parameters, which all contribute to the outputs. The

complexity of the analysis may mean that the pipeline needs to

be iteratively refined and, in multi-step pipelines (see Fig. 1b),

users may need to assess outputs and make additional choices

between pipeline steps.

Unknown pipeline: Users need to choose a pipeline before

processing data with it. Sometimes the pipeline is well-

established (e.g., [38], [39]), but in other situations users need

to choose between algorithms (e.g., the 3D image segmen-

tation case study in Sec. 4.2), improve the sophistication of

an existing pipeline [17], [40], make a pipeline robust to the

characteristics of the input data [12], or design the pipeline

from scratch [27], [41], [42]. The latter is particularly true in

exploratory analysis, where users are analyzing a new form of

data or looking for new patterns (e.g., [9], [10], [11], [43]).

Pipeline steps often make certain assumptions. Sometimes

these assumptions are either known or may be checked a priori

(e.g., the economic modeling case study in Sec. 4.5). However,

on other occasions users need to be able to rigorously check

assumptions. For example, implicit choices made for one step

of a pipeline may prove to be incompatible with outputs pro-

duced by subsequent steps (e.g., the 3D image segmentation

case study in Sec. 4.2). Another case is when assumptions

are historic and difficult to update, due to a lack of new data

(e.g., basing influenza infection rates on those that occurred

during the 1918 pandemic [36]). The rigorous checking of

assumptions is impeded by a lack of tools that allow users to

holistically assess the analysis workflow [1].

The number of combinations is dictated by the range of

possibilities being considered for the pipeline (see Unknown

Pipeline, above) and the size of the parameter space for each

pipeline (the number of samples category of Sedlmair et al.
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(b) Complex pipeline [44]

Fig. 3: Simple vs. complex pipeline. a) Calculation of phylogenetic
trees [29]. b) Pipeline for medical image segmentation [44].

[2]). The latter depends on the number of parameters that are

non-trivial to choose (typically only a subset of all the param-

eters [12]), the range of possible values, and how the values

are sampled. As the number of parameters increases, sampling

generally becomes sparser. Even where sampling is performed

at regular intervals [12] or using stochastic techniques [19],

users would benefit from help to make choices once the

number of combinations becomes non-trivial. Greater help

is required in scenarios where the number of combinations

currently forces users to techniques such as a Latin Hypercube

[38], or approaches have yet to be developed for choosing a

range of combinations (e.g., the comparative genomics and

phylogenetic trees case studies in Sec. 4.1 and 4.7).

Ease of comprehension is also an important requirement

when users are designing or optimizing processing pipelines

(see Fig. 3). Many pipelines are linear, but as the number

of steps increases (e.g., see phylogenetic tree case study in

Sec. 4.7) so does the cognitive complexity of the system being

modeled [45]. Another way in which pipelines may be usually

complex includes the steps being interrelated (i.e., the pipeline

forms a network rather than a linear pipeline). Exemplars

include the chemical processes case study, the provision of

many options in an environmental flooding scenario [18], and.

Alternatively, the pipeline may contain a number of ‘what if’

branches [42]. Sometimes individual parameters are easy for

users to understand (e.g., the number of clusters for k-means),
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but other parameters are abstractions of physical systems [34]

or the parameters are difficult to relate to output consequences

[11], [46]. Sometimes, users tend to treat the pipeline as a

‘black box’ and accept the default settings [47].

Compute time refers to the time required to perform the

calculations of a pipeline, so that a user may assess the

outputs by using a visualization system or another mechanism.

The time is dictated by the quantity of data being analyzed,

the resources available and the computational complexity

of the algorithms (linear, exponential, etc). Compute time

affects the ways in which it is feasible to use visualization

to design and optimize processing pipelines. For example,

in the aircraft engine design case study (see Sec. 4.6) the

calculation takes days and users employ considerable tacit

knowledge to make optimization decisions. When compute

time is excessive, alternative approaches include the use of

surrogate models that seek a trade-off between accuracy and

speed [9], selective sampling of the parameter space [13], [33],

and off-line post-processing of output to calculate pipeline

alternatives or derived measures [18], [48]. By contrast, in the

3D image segmentation case study (see Sec. 4.2), the pipeline

calculation takes only seconds and it would be feasible to

batch process millions of parameter combinations with an

HPC facility. If computation is interactive then users may

interactively analyze the effect of parameter changes.

Provenance involves recording all of a user’s choices, as

well as information about the inputs, and is particularly

valuable when pipeline design or optimization is iterative,

involves several people, or takes place over an extended period

of time. However, although capturing provenance is a central

tenet of good data analysis practice, it is not often stated as

an explicit requirement. Notable exceptions are [36], [42].

5.3 Outputs

The outputs of a pipeline’s calculations either need to be

directly assessed or need to be used as an input to the next

step of the pipeline (see Fig. 1b). The requirements for both

cases are discussed.

First, the number of outputs becomes important when the

output is very detailed (e.g., hundreds of thousands of DNA

regions; see the comparative genomics case study in Sec. 4.1)

or thousands of simulation results are computed from a single

input and parameter set (e.g., using a stochastic model [19]).

As the number of outputs increases, so does the requirement

for sophisticated visualization techniques to assess the outputs.

Those techniques become less scalable as the outputs become

more complex and involve, for example, geographic visualiza-

tions [49], animations [10] or 3D graphics where users need

to inspect many different views [50].

The subjectivity of an output’s interpretation and assessment

decreases the ease with which users may judge the suitability

of a given pipeline design or parameter settings. Users need

to make non-trivial subjective assessments of outputs that

range from competing objective criteria (e.g., [39]), to maps

(e.g., [36]), images (e.g., [13]), animations (e.g. [10]), and

3D models (e.g., [43]). Objective measures (derived measures)

are sometimes used as a proxy for subjective assessment, to

simplify and quantify the output so that low-quality parameter

settings may be ruled out. Examples include measures of

segmentation quality (e.g., the 3D image segmentation case

study in Sec. 4.2, see Fig. 4), and cell segregation, where

metrics for the number and mean area of cells could highlight

regions of the parameter space that have similar scores but on

inspection result in low- vs. high-quality segregation [12].
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Fig. 4: Computation of derived outputs (i.e., quality values) for
quantitative evaluation of medical image segmentations [24].

Sensitivity is the size of the change of outputs with respect

to the size of changes in inputs and calculation parameters

(e.g., a small change in inputs or in parameters may result

in large changes in outputs). Together with uncertainty (see

below), sensitivity is one of six recurring analysis tasks that

were identified in the review by Sedlmair et al. [2]. They

are also a common requirement in the case studies described

in Section 4. Where sensitivity is important in multi-step

pipelines then tools are needed to integrate out from the steps

so that users may adopt a rigorous approach to pipeline design

and optimization (e.g., the comparative genomics case study).

Uncertainty may relate to the precision (the exactness of

outputs), completeness (e.g., the effect of missing data), con-

sistency (agreement of interrelated outputs), timeliness (cer-

tainty about the currency of data), and credibility (trustfulness

of data sources) [51]. Uncertainty of the outputs needs to be

considered when assessing the quality of computational out-

puts. For example, in the economic modeling case study (see

Sec. 4.5), stochastic algorithms result in uncertain results that

require detailed inspection by the expert. Despite the frequency

with which sensitivity and uncertainty were highlighted as

important in an application (see Table 1), it is rare that they

appear together as requirements (exceptions are [9], [19], [38],

[40], [52], [53] and the molecular evolution case study).

Assessment time: The time that users take to assess output

may be a challenge. Sometimes this is due to the high-

dimensionality of the data (e.g., [35] and the phylogenetic

trees case study in Sec. 4.7). In other applications the challenge

centers on users needing to make a thorough comparison of

computed output with baseline or ground-truth data, for exam-

ple at multiple levels of detail, across widely differing spatial

locations, or over time (e.g., [40], [54] and the molecular

evolution case study).
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It is sometimes important to view output in the context of

the results of previous research, for example, to validate a

new model (e.g., [40], [54]) or to help users interpret new

data (e.g., the comparative genomics case study). On other

occasions the context is provided by reference data or ground

truth. Occasionally the subjectivity of the task may mean that

there are several competing ground truths (e.g., the 3D image

segmentation case study), which all need to be considered

when optimizing data processing.

6 VISUALIZATION FUNCTIONALITY

This section summarizes the functionality that existing in-

teractive visualization systems provide to help users design

and optimize data processing pipelines. The section is divided

into three main parts, which map onto the three groups of

requirements (Inputs, Computations, and Outputs).

Interactive visualization is an intrinsic part of the solution

for big data analysis and, hence, for the four Inputs require-

ments. Sometimes that solution is achieved by appropriate

systems engineering (see Sec. 6.1), and on other occasions

by visualization methods that support computation or output

exploration (see Sec. 6.2 and 6.3, respectively).

Interactive visualization benefits the Computations require-

ments in a number of ways. One is by providing an overview

of alternative pipeline designs (unknown pipeline) or the steps

that were taken during analysis (provenance) (see Sec. 6.2.4),

and these could be combined to help users understand the

consequences of different assumptions. Visualization is used

directly in the comprehension of computations (see Sec. 6.2.2),

but plays only a supporting role in reducing compute time

(see Sec. 6.2.3). The number of combinations requirement

benefits from combining on-the-fly computation with visual

exploration (e.g., see the hybrid approach in Sec. 6.2.1).

Regarding Outputs, interactive visualization has clear ben-

efits for helping users assess subjectivity, which is central

to many real-world data analysis problems (e.g., [24], [25],

[27], [28]). The sensitivity and number of outputs require-

ments benefit from visual exploration techniques as described

in Sections 6.3.1 and 6.3.2, respectively). Uncertainty is a

long-standing research topic in visualization [55], but also

where some innovative solutions have been produced (e.g.,

see Fig. 10). Context is addressed by the multiple levels of

detail and view perspectives provided by many visualization

systems, and the ability of some systems to leverage display

real estate to show detail in context (e.g., [1], [32]). However,

assessment time is mainly limited by users and, therefore, only

addressed indirectly by visualization.

The choice and combination of functionality, of course,

depends on details of an application’s user requirements.

Almost all of the visualization functionality is interactive,

from the user input that is needed to select parameters in user-

defined and hybrid approaches, to brushing, filtering and other

operations when users are investigating visualization input-

output correspondence, navigating views to explore outputs,

and reviewing the provenance of the pipeline design process.

6.1 Visual Assessment of Input Data

Data analysis pipeline creation and optimization often starts

with the visual assessment of the input data for their suitabil-

ity in subsequent calculations. Many interactive visualization

approaches for various data types could be used, and a

comprehensive overview is beyond the scope of this paper.

The reader is referred to reviews, e.g., [56], [57], [58].

We do, however, need to consider how visualization sys-

tems can help scale-up processing pipelines to deal with big

volumes of data. Such data is typically stored remotely from

a user, and so requires distributed visualization systems. Web-

based solutions inevitably compromise interactive responsive-

ness for bandwidth usage, but are well-established in domains

such as bioinformatics (e.g., [59]). However, it is possible to

achieve real-time interaction with remote rendering through

the usage of dedicated graphics cluster (see Fig. 5) or using

incremental visualization approaches [60], [61].

Data volume, veracity, variety and velocity still pose chal-

lenges for visualization (e.g., see [61], [62]). We discuss this

under future research (see Sec. 7.2.3, 7.2.5 and 7.2.7).

Fig. 5: Example of a scalable visualization system for molecular
dynamic simulations. One of the benefits that users gained was being
able to identify fracture modes [32].

6.2 Visual Support for Computation

Interactive visualization offers support for dealing with a large

number of parameters, comprehending computations and com-

putation steps, overseeing time-intensive calculations, creating

pipelines and analyzing result provenance.

6.2.1 Large Number of Parameter Combinations

Parameter value selection is widely supported across today’s

systems. The support ranges from iterative user-defined selec-

tion of model parameters [42], [46], to automated parameter

selection (e.g., by random or regular sampling [12], [13],

[29]). Moreover, hybrid approaches combine user steering and

automatic parameter value sampling [63].

User-defined selection offers the user full control over

model creation and refinement. Users iteratively choose com-

putation parameters and examine the outputs, until the solution

is satisfactory. An example is the system for model selection

in time series analysis by Bögl et al. [42]. User-defined

selection may be very time consuming and often requires

expertise for selecting good parameters for the next iteration.

Therefore, it is suited to cases where the calculation of outputs

is computationally intensive (e.g. the aircraft engine design
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case study in Sec. 4.6) or outputs take a considerable time to

assess (e.g., the economic modeling case study in Sec. 4.5).

By contrast, automated parameter sampling offers the pos-

sibility to explore a large number of outputs at one time, with

minimal need for manual intervention. This option is best

suited to cases where individual outputs may be calculated

rapidly, and one thing that this allows is the analysis of output

sensitivity (e.g., in image segmentation [12] (see Fig. 6) and

the phylogenetic trees case study [29]).

A hybrid approach is advantageous in large or sparsely

sampled parameter spaces, with the user and system working

together to choose regions of the space that should be explored

in greater detail. One notable exemplar is a system that

pre-computes heterogeneity information (e.g., gradients), to

provide hints about the most promising paths in time and

parameter scale, from which users interactively make specific

choices for refinement [63]. In another approach, users explore

one or two parameters at a time, by interactively calculating

the output variation in those parameter dimensions [9].

Fig. 6: Automated parameter sampling and user-driven filtering of
relevant parameters for 2D image segmentation. This increased the
rigor with which a user investigated parameter combinations, and led
to a slight but meaningful increase in the quality of the results [12].

6.2.2 Comprehension of Computations

Comprehension is supported by ‘opening the black box’ of

computations [64]. This allows the user to examine intermedi-

ate calculation results and thus to get a better understanding of

the calculation progress and the transformation of inputs into

outputs [11]. Two main approaches stand out: (a) progressive

visual analytics showing intermediate results during calcula-

tion and (b) explanatory visualization showing the progress of

calculation after the computation has finished.

Progressive visual analytics functionality is often tightly

coupled with the option of computational steering [64], [65],

[66]. We elaborate on this in the next section as it is often

used also for time-intensive computations.

One example of explanatory visualization addresses a re-

quirement of the medical image segmentation case study (see

Sec. 4.2) by presenting a visualization of the quality improve-

ment during the iterative 3D medical image segmentation [67].

6.2.3 Time Intensive Computations

Time intensive computations such as those in the aircraft

engine design case study (see Sec. 4.6) can be supported

by off-line computation [48], steering [68] or the progressive

visual analytics approach that was outlined above. They show

information about a running computation and incremental

results during the computation. Moreover, they offer control

over pipeline execution and results, allowing users to adjust

parameters during computation instead of waiting for final

result [65]. Such approaches are systematized by Mühlbacher

et al. [64]. As an example, Schreck et al. [65] introduce the

visualization and steering of self-organizing map calculations

(see Fig. 7), Stolper et al. [66] show the progress of K-Means

calculation and Hellerstein et al. [69] presented a so-called

Control Project, which includes incremental calculation and

steering of association rule mining algorithms.

(a) Start (b) Progress 1 (c) Progress 2

Fig. 7: Progressive trajectory clustering for movement analysis [65].
User can see intermediate results and adjust further calculation.

6.2.4 Pipeline Design and Provenance

Visual pipeline design systems provide interactive visual

means for creating pipelines (also often referred to as work-

flows) by combining calculation steps and setting calculation

parameters. Some work focused on allowing users to make

iterative changes in a pipelines design [17], [70]. Recently,

these pipeline creation tools were enhanced with pipeline

simplification and workflow suggestions [71], [72] allowing

users to create pipelines faster and in a more informed way.

Provenance involves recording all of a user’s choices

(inputs, parameters, computation algorithms) during pipeline

design or optimization. As analysis workflows become more

complex, capturing provenance is likely to become increas-

ingly important, even though it was only explicitly highlighted

in a small amount of the research listed in Table 1. One

well-known exemplar is the Vistrails scientific workflow and

provenance management system [15], which allows the user to

create and to reuse pipelines for visualization and data explo-

ration. Another is the TiMoVA system [42], which integrated

Fig. 8: A World Lines view (bottom) shows the history of a flood
simulation (top) and allows the user to steer and compare the
simulations. This greatly enhances the ease with which users can
compare management strategies [18].
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a model’s history with the visualization of model outputs to

show all of a pipeline’s steps. Waser et al. [18] propose a

system ‘World Lines’ that shows the history of simulations

and allows the user to steer the simulation and compare the

simulation runs (see Fig. 8).

6.3 Visual Exploration of Outputs

Dedicated interactive visualization approaches help the user

in gaining insights into the sensitivity of outputs to inputs

and calculation setting. Other visualization tools support ex-

ploration of large number of outputs as well as dealing with

subjective output assessment. Some visualization approaches

also offer the user with the possibility to make comprehensive

output assessments while computation is taking place.

6.3.1 Assessing Sensitivity of Outputs to Inputs

Input-output correspondence visualization is often employed

to explore the sensitivity of outputs to input parameter values

(e.g. [9] and the phylogenetic trees case study in Sec. 4.7), to

enable interactive refinement of parameters to optimize outputs

(e.g., [12], [40], [46]), to assess the effect of inputs on outputs

(‘understanding the black box’ [38]) or to interactively analyze

the influence of input uncertainty on the output uncertainty

through the pipeline [53]. All these cases require that users

have the possibility to interactively assess subjective outputs

in the context of input parameters. The visualization of input-

output correspondence poses a challenge as both inputs and

outputs need to be shown simultaneously.

One possibility is to show inputs and outputs in an inte-

grated view. For example, ‘extended’ parallel coordinate plots

can be employed for quantitative inputs and outputs, which

are treated as variables in the plots [9]. Cupid [43] overlays

examples of 3D geometry within parallel coordinate plots of

the input parameter values, and uses the same 3D geometry

to depict nodes in trees showing output clusters (see Fig. 9).

Alternatively, inputs and outputs can be shown in linked

views with brushing and filtering [63]. The Influence Explorer

allows correspondences to be investigated from opposite per-

spectives, via a Parameters Window (an input perspective) and

a Performances Window (an output perspective) [73].

Input-output correspondence is often shown by the position

of outputs according to the values of input parameters. The

Design Galleries approach uses graphical miniatures as data

points in XY plots of two input parameters [48]. Luboschik et

al. [38] show inputs on a plot X axis and outputs on the Y axis,

thereby indicating the influence of inputs on outputs. Both

Ruppert et al. [46] and Booshehrian et al. [19] use a grid-based

visualization of outputs. The grid is produced by discretizing

the input parameters into a set of intervals, with outputs shown

inside the grid cells. Paramorama implements a hierarchical

ordering of input parameters, together with miniatures of the

output images for user-selected parameter regions [12], [14].

6.3.2 Large Number of Outputs

Visualization systems allow users to inspect outputs in a

variety of forms. This is important whenever the output is

partly or wholly subjective, a situation encountered in half of

the scenarios that are listed in Table 1. Some of the systems

Fig. 9: Cupid [43] system shows the correspondence of input pa-
rameters to the outputs via clustering and overlays in a parallel
coordinates plot. Cupid now allows users to detect relationships
between parameters and identify sensitive parameter ranges.

focus on individual outputs, and others offer the possibility of

exploring a set of outputs or comparing the outputs.

For exploring individual outputs we highlight three visual-

ization types. The first is overlaying graphical output on top of

the ground truth (‘perfect output’) so that any differences are

shown directly (e.g., [12], [14], [52]). A second involves mul-

tiple linked views [73], where each view is designed to allow

questions about the output to be answered from a particular

perspective. Examples include environmental modeling, where

users need to assess multivariate, image and spatio-temporal

output [49], [54], and the linking of histograms, scatterplots,

parallel coordinates and function graphs to optimize a fuel

injection system [39]. The third involves computing derived

measures from outputs, because it is easier to visualize those

measures for a large parameter space than to show all of the

underlying subjective output. (e.g., [33], [42]). The derived

measures for outputs of various parameter combinations can

then be inspected for assessing output quality (see Fig. 10).

To allow users to explore a large set of outputs, a system

needs to provide a step change in the quantity of output that

may be visualized. One way is by providing visualizations

for multiple levels of detail. Exemplars structure outputs to

facilitate exploration [43], or use one view to provide an

overview (e.g., a contour plot or histogram) and others to show

the detailed output for a given combination of parameters that

a user chooses interactively (e.g., [13], [19]). Alternatively,

flexible user interfaces, allow the user to filter out or to focus

on interesting parts of the dataset. Exemplars include allowing

users to specify output constraints to rule out parts of the input

parameter space [19], to identify and exclude outliers [41], and

filters chosen using one dataset to be applied to others [13].

A third option is to group similar outputs and then show only

representatives of each group [29], [43].

The circumstances under which users need to visually

compare outputs include making fine-grained assessments of

sensitivity or understanding the validity of multiple models.

Comparison is often supported by small multiples [10], [18],

[41], [49], [74], [75]. Other exemplars allow users to make

comparisons at multiple levels of detail (e.g., a plot of time
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Fig. 10: Tuner: Visualization of output values (lower triangle) together
with their uncertainty (upper triangle) for various parameter value
combinations. This helps users to understand trade-offs between
parameters and select starting locations for data analysis [33].

vs. lives saved, and maps showing the geographic distribution

of lives saved [36]), or clustering outputs (e.g., [29], [43]).

7 DISCUSSION

We first discuss our characterization of the requirements and

then we identify challenges for future visualization research.

7.1 Requirement Characterization

Our requirement characterization focuses on data processing

and user’s involvement in construction and optimization. It

covers the three main factors: inputs, computations and out-

puts. The construction of the factors was challenging as we

had to strike a balance between complexity, generality and

broadness of coverage of characterization.

As Table 1 highlights, there are some notable differences

between the first-hand case studies (see Sec. 4) and appli-

cation examples from the literature. Factors that were more

prevalent in the case studies were an unknown pipeline (i.e.,

needing to design rather than simply optimize it), assumptions,

assessment time and context. Of particular note is how often

assessment time was identified as an important factor in the

end-user scenarios. In economic modeling this was due to the

difficulty of comprehending the implications of a single output,

but in the other scenarios it was primarily due to a combination

of the quantity and subjectivity of the output. By contrast, it

was notable how often the number of parameter combinations,

number of outputs, subjectivity and uncertainty appear as key

requirements in our case studies as well as in the literature.

The wider context in which the design process is conducted

also influences the choices that users make during pipeline

design and optimization (e.g., see [21]). This wider context

is outside the scope of the present paper, and we limit our

discussion to highlighting three key factors. The first factor

comprises constraints on time, budget or resources provided

by the organization when performing pipeline decisions. For

example, in the economic modeling case study (see Sec. 4.5),

the time constraint influenced the number of parameter settings

that could be analyzed by the user in a given time frame for

the final result. The second factor is the expertise and diversity

of roles of the people who contribute to the analysis. If there

are several users then they may have different roles such as

bioinformaticians, computer scientists and biologists working

together in comparative genomics or phylogenetic tree analysis

(see Sec. 4.1 and 4.7). The third factor is the intended audience

(e.g., analysts, managers or the general public), which plays

a role when selecting an appropriate communication of the

pipeline design strategy.

7.2 Future Challenges for Visualization Research

We conclude the discussion by presenting seven challenges

that visualization research needs to address. Previous authors

have presented challenges at a high level (e.g., data, users,

design, and technology [76]) or focusing on particular types

of visualization (e.g., scientific [55]). By analyzing users’

unmet requirements (see Table 1), and building on the work

by Johnson [55], we identify challenges that are key to the

successful exploitation of visualization in the design and

optimization of data processing pipelines. The challenges start

with users’ workflow, and then focus on computations and

outputs. The challenges associated with display real estate and

user interaction cut across the user requirements that are shown

in Table 1. We conclude by summarizing additional challenges

that visualization systems face for processing big data.

7.2.1 Transform Users’ Workflow

Data processing pipeline is often executed in discrete steps

due to the processing time that is involved, meaning that

the consequences of choices made in one step on its succes-

sors are not rigorously assessed. Situations where users have

highlighted concerns include trade-offs between noise removal

and feature suppression (see Sec. 4.1), validating whether

the characteristics of 3D image segmentation outputs are

consistent with assumptions that are inherent with the methods

used in certain pipeline steps (see Sec. 4.2), and checking

whether assumptions about co-evolutionary distance proved

true (see Sec. 4.7). A challenge is to create visualization

systems that can ‘un-break’ users’ workflow [1] and that allow

the users to holistically assess the consequences of decisions

made in each pipeline step on the other steps.

7.2.2 Assist in Parameter Choice

Some pipelines have tens, or even hundreds, of parameters

(e.g., [13]). Research is needed into how visualization systems

can provide users with support to select of regions of interest in

a parameter space [17], and guidance for choosing parameters

that are difficult to comprehend (e.g., training parameters for

machine learning [40]). Alternatively, one could research new

visual methods with which users could specify output char-

acteristics so that a visualization system may automatically

derive suitable parameters [10].

7.2.3 Represent Error and Uncertainty

This is a long-standing challenge [55]. For example, users can

only assess sensitivity for a subset of parameter combinations

[9], and want to check the parameter settings against diverse
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inputs in 3D image segmentation or compare the outputs of

molecular evolution hypotheses. Users also want to understand

uncertainty ‘stack-up’ over the pipeline steps [52], [53] and

need innovative visualizations to understand the interplay

of simulation parameters and outcomes [18]. In multi-step

pipelines (see Fig. 1), errors and uncertainty in the outputs

of one step may increase the veracity of the inputs to the

next step. Analyzing and visualizing the flow of uncertainty

in pipelines is an ongoing research challenge.

7.2.4 Exploit the Power of Derived Measures

It is often only practical to view a subset of subjective output

[36], due to the number of outputs, output size (e.g., large

images) or output complexity (e.g., epidemic model outputs).

Derived measures offer a solution that speeds up assessment

by allowing coarse judgments and comparisons to be made

objectively. Yet, the usage of these measures is arguably in its

infancy. In particular, users want greater flexibility to adapt

derived measures on-the-fly to meet particular needs [19],

[42], to be provided with measures that capture qualitative

perceptual differences (e.g., [48]) and, when suitable measures

are unknown, bring rigor by comparing new measures [11].

7.2.5 Leverage Large Amounts of Display Real Estate

It is common for people to use multiple monitors on their

desktop, ultra-high definition (UHD) displays have become a

commodity, and tiled displays (‘powerwalls’) may be created

for modest cost. Increasing the display real estate allows users

to visualize detail in context (see [55]), and show orders of

magnitude than is possible with ordinary displays [77].

One key research challenge is to develop guidelines about

how to exploit that real estate. We need to: (a) determine

the useful size of a display, taking account of both the

momentary capacity of our eyes’ photoreceptors [78] and the

benefits of physical navigation [79], (b) know how to construct

information-rich visualizations that show many variables in a

single view, and (c) explore usability issues that are related to

the manageability of many views [39].

Another challenge is to gather convincing evidence about

the benefits of large amounts of real estate in an application

setting. The evidence is largely anecdotal (e.g., [1], [32]).

7.2.6 Improve User Interaction

Interactive visualization allows users to generate a sequence of

visualizations answering a particular component of the overall

research question. This raises design challenges:

First, how should a visualization tool guide users toward an

analysis strategy that progressively simplifies the data (e.g.,

use histograms and descriptive statistics to exclude variables

with low sensitivity, apply dimension reduction techniques to

collapse the variable space, and identify factors to be subdivide

heterogeneous data into homogeneous sets).

Second, the interaction cost needs to be substantially re-

duced. One study with well-known tools found that users had

to perform an average of 13 motor actions to complete each

application-level task (e.g., filter data or format a visualization)

[80]. Tools such as Tableau improve the situation, but are still

cumbersome for exploring the effect of sets of variables.

Third, back-end computation needs to be seamlessly inte-

grated with user interaction (e.g., to leverage user input in

pattern recognition [81], and drill-down to important parameter

subspaces [46]). This will require new interfaces and imple-

mentations that ‘open’ black box algorithms [64].

7.2.7 Up-scale for Big Data

The four aspects of big data clearly present challenges for

visualization, some of which are the same as those listed

above. Large amounts of display real estate will help to

address the problems posed by big volume data, by increasing

the capability of visualizations to show detail in context and

multiple abstractions. Data that is big in terms of variety will

benefit from derived measures and interaction strategies that

help users to simplify high-dimensional data.

Where veracity is an issue, assessing data quality is an

inherent part of analysis. Research is needed to determine

how multi-dimensional data visualization techniques may be

exploited and integrated within users’ analysis workflow.

Finally, high-velocity data compounds the challenges iden-

tified above and raises the need for processing pipelines to be

simplified, which cuts to the core of the use of visualization

systems for pipeline design.

8 CONCLUSION

This article described the requirements for visualization sys-

tems supporting pipeline design and optimization. Through

eight practical case studies and a review of representative

literature we identified users’ requirements when designing

and optimizing data processing pipelines. We matched user

requirements with the functionality that previous visualization

systems have provided and derived open challenges for visual-

ization research. The result is a framework that developers can

use to relate user requirements to techniques exemplified by

those systems, and to implement effective solutions to given

application requirements. Visualization researchers will profit

from our comprehensive overview of user requirements and

unmet visualization challenge for future research.
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