UNIVERSITY OF LEEDS

This is a repository copy of Weakly supervised activity analysis with spatio-temporal
localisation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/104072/

Version: Accepted Version

Article:

Gu, F, Sridhar, M, Cohn, A orcid.org/0000-0002-7652-8907 et al. (4 more authors) (2016)
Weakly supervised activity analysis with spatio-temporal localisation. Neurocomputing,
216. pp. 778-789. ISSN 0925-2312

https://doi.org/10.1016/j.neucom.2016.08.032

Crown Copyright © 2016, Published by Elsevier B.V. Licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Weakly Supervised Activity Analysis with
Spatio-Temporal Localisation

Feng Gu*P, Muralikrishna Sridhar®, Anthony Cohn?®, David Hogg?,

Francisco Flérez-Revuelta®, Dorothy Monekosso®, Paolo Remagnino®

@School of Computing, University of Leeds, LS2 9JT, UK
bFaculty of Science, Engineering and Computing, Kingston University, KT1 2EE, UK
¢School of Computing, Creative Technologies € Engineering, Leeds Beckett University,
LS1 8HE, UK

Abstract

In computer vision, an increasing number of weakly annotated videos have
become available, due to the fact it is often difficult and time consuming
to annotate all the details in the videos collected. Learning methods that
analyse human activities in weakly annotated video data have gained great
interest in recent years. They are categorised as “weakly supervised learn-
ing”, and usually form a multi-instance multi-label (MIML) learning prob-
lem. In addition to the commonly known difficulties of MIML learning, i.e.
ambiguities in instances and labels, a weakly supervised method also has to
cope with large data size, high dimensionality, and a large proportion of noisy
examples usually found in video data. In this work, we propose a novel learn-
ing framework that iteratively optimises over a scalable MIML model and an
instance selection process incorporating pairwise spatio-temporal smoothing
during training. Such learned knowledge is then generalised to testing via
a noise removal process based on the support vector data description algo-
rithm. According to the experiments on three challenging benchmark video
datasets, the proposed framework yields a more discriminative MIML model
and less noisy training and testing data, and thus improves the system perfor-
mance. [t outperforms the state-of-the-art weakly supervised and even fully
supervised approaches in the literature, in terms of annotating and detecting
actions of a single person and interactions between a pair of people.
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1. Introduction

The annotation and detection of human activities have become increas-
ingly significant research problems in the field computer vision, due to the
growing demand of analysing large quantities of available videos. However,
the proliferation of videos is often unmatched by the availability of detailed
spatio-temporal annotation of activities in these videos, mainly due to the
laborious nature of such an effort. Thus, much of the annotation comes in
a weakly labelled form, where several class labels are simultaneously pro-
vided for a single data unit, i.e. a video, without any information about the
spatio-temporal locations of the activities. As a consequence, two types of
ambiguities result from such a weakly labelled annotation, making it hard
to directly apply conventional supervised learning techniques. The first am-
biguity is in the instance location, wherein spatio-temporal locations of the
true instances that may correspond to activities in a video are not known
a priori for training. The second ambiguity is in the instance label, multi-
ple class labels may be associated with a video, while the true label of each
individual instance in the video is not known a priori. The ambiguities of
instance location and instance label constitute a weakly supervised learning
problem, known as multi-instance multi-label (MIML) learning.

Numerous MIML learning techniques have emerged and formed a pow-
erful weakly supervised learning framework, which is capable of simultane-
ously dealing with instance location and instance label ambiguities mentioned
above. These techniques have been applied to various image datasets [38, 30,
33], but barely to videos. Similar to the applications to images, we expect
that MIML learning would address the instance location ambiguity by gen-
erating multiple instances at different spatio-temporal locations in a video
in the form of a bag, which is labelled with respect to the class labels given
for the entire video. Then it learns to identify the true instances that cor-
respond to real activities in the video. Additionally, MIML learning would
resolve the instance label ambiguity by explicitly modelling interclass cor-
relations and tries to learn the true label of each instance that corresponds
to one of the activity classes in the video. While investigating a recently
introduced MIML model [33] that we found scalable to video datasets, we
have observed that during both training and testing, a large number of noisy
samples, completely irrelevant to any activities of interest, tend to have an
adverse effect on the model’s learning ability. This problem has been re-
cently studied on various datasets for training multi-instance learners using



an approach known as instance selection [6] [11].

In this work, we use a scalable MIML model [33] as the base classifier,
and incorporate an innovative spatio-temporal smoothing based instance se-
lection process for the purpose of reducing noise in video data. This forms a
novel MIML learning framework for annotating and detecting human activ-
ities in weakly labelled video data, where the labelling merely provides the
presence of activities in each video but not their spatio-temporal locations.
Our contributions can be summarised as follows:

1) An instance selection process is introduced to enforce spatio-temporal
smoothing at the bag level, along with the instance classification by the
base MIML classifier at the instance level, which is formulated as an
energy function similar to the one defined in the minimisation problem of
Markov random fields (MRF) [17];

2) A two-step optimisation is applied to alternate iteratively between the
base MIML classifier and the instance selection process, aimed at min-
imising the MRF like energy function until it converges, which provides
the knowledge to distinguish the prototype instances potentially associ-
ated with the classes of interest from the noisy ones;

3) The learned knowledge of instance selection is then generalised to testing
via a noise removal process based on the support vector data descrip-
tion (SVDD) algorithm [28], which learns a description of the prototype
instances, to identify noisy instances as outliers during testing.

On application to three benchmark video datasets, we have found that the
proposed framework significantly improves the performance in terms of the
annotation task (to recognise activities and annotate their spatio-temporal
locations in a training video) and the detection task (to recognise activities
and detect their spatio-temporal locations in a testing video). The results
also suggest that it outperforms the original MIML model [33], the state-of-
the-art weakly supervised approaches [25] 24] [T8], as well as fully supervised
methods [4], 29 22] [32] in the literature across the three datasets.

The paper is organised as follows: Section [2| provides a review of re-
lated work for MIML techniques and weakly supervised action detection;
Section [3| details the feature representation of video under the weakly super-
vised setting; Section [] formulates the proposed framework and introduces
the generation of instances and bags in the setting of weakly supervised action
detection; Section [5| describes the experiments, such as data and implementa-
tion details; Section [6] demonstrates results and analysis of the experiments;
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finally Section [7] concludes this work and points out possible future work.

2. Related Work

Multi-instance learning and multi-label learning have evolved as two sep-
arate paradigms until recently [39], where the authors proposed two solu-
tions to bridge them for the MIML learning problem. The first solution
transforms each bag of instances into a single instance and then performs
multi-label learning. The second solution generalises a multi-instance sin-
gle label learning algorithm to handle multiple labels. Subsequently, Zha
et. al [38] proposed an undirected graphical model for image classification,
which simultaneously captures both the connections between class labels and
regions (instances), and the correlations among the labels in a single formu-
lation. Its learning and inference process relies on an expectation maximisa-
tion algorithm and approximation methods, e.g. the contrastive divergence
algorithm [I3] and Gibbs sampling [12], which tend to be slow for problems
with a large number of instances. In [30], the authors proposed an active
learning framework for image annotation that first divides the multi-label
problem into a set of binary classification problems and then devises a multi-
label set kernel to weight each instance for the multi-instance learning. This
framework exhibits limitations when applying to complex datasets, due to its
combined polynomial complexity of labels and instances respectively. The
methods above are merely designed for the recognition objects in images
without any localisation of recognised objects. Therefore they are not di-
rectly applicable to more complex video data, for annotating and detecting
human activities, with spatio-temporal localisation of recognised activities.

Hu et al. [14] proposed a multi-instance learning framework, SMILE-
SVM, to handle ambiguities in the locations of single person’s actions in
videos of complex scenes. The framework however relies on manually anno-
tated rough locations of an action in a video for training, and it assumes that
a video at most contains one true instance of one of the action classes. There-
fore, it cannot be directly applied to weakly labelled video data that provides
the presence of multiple activities without any spatio-temporal localisation in
each video. A multi-instance learning approach that optimises intraclass and
interclass distances for action annotation and detection is introduced in [25].
The training does not require the manual annotation of rough locations of
actions, but it still has the same assumption of one true instance of one of
the action classes per video. It is optimised by a genetic algorithm, which is



known for its slow convergence rate [15]. It is then extended and improved
for weakly supervised annotation in [24], by focusing on negative mining in
multi-instance learning. Neither of the approaches |25, 24] however explicitly
models the interclass relationships within each video (or bag), and thus may
struggle in cases where multiple action classes are simultaneously presented
in a video (i.e. multi-label learning).

A MIML approach [33] is recently introduced for bag level object recog-
nition in images that feature ambiguities in both the instance location and
instance label. The approach has been shown highly scalable to the amount
of instances, the dimensionality of feature space, and the number of label
classes, which is ideal for complex video data. It trains a set of discrimi-
native multi-instance classifiers and models the interclass correlation among
labels by finding a low rank weight matrix. This enforces the classifiers to
share weights and perform multi-label learning. This approach however is
designed for the classification of a bag rather than each individual instance in
the bag. It might not be able to distinguish the positive instances associated
with the label classes of interest from the rest in a bag, for the purpose of
spatial localisation in images or spatio-temporal localisation in videos. The
performance could further deteriorate under the influence of noise, e.g. prob-
lems with a low signal-to-noise-ratio (SNR), particularly common in video
data. As a result, some means of removing noise from the data, especially
those instances completely irrelevant to any label classes of interest, would
be beneficial. Recent approaches [0, 1] on instance selection represent the
target concept using multiple prototypes that are formed and updated iter-
atively, thereby simultaneously eliminating many noisy samples in each bag.
While instance selection has shown to be a promising direction, it has so
far been applied only to multi-instance learning problems but not MIML
ones, and has not been extended to testing. This leads to the motivation of
this work, that is, to develop a MIML learning framework that is capable
of reducing noise from both the training and testing data through instance
selection. Such a framework will be applied and evaluated on weakly labelled
video data, for purpose of annotating and detecting human activities with
spatio-temporal localisation.

3. Feature Representation of Videos

This section details the feature representation of videos for the purpose
of activity analysis in a weakly supervised setting. Given a video dataset,



the first step is to transform the videos into a machine readable input feature
vector format, which can be directly fed into a machine learning algorithm.
For MIML algorithms however, an additional step of generating bags and
instances in each bag is required. We extend the approach in [25] to generate
instances and bags for representing videos, and make it applicable not only
to actions of a single person but also interactions between a pair of people.

3.1. Prior for Temporal Localisation

Let [ty, te] NN be the frame span of a video clip, and t, < t, < t. be an
anchor time point. Given a window size z € N, three temporal windows are
created as [t, — z,t,) NN, [ty — 2/2,t, + z/2] "N and [t,,t, + 2] N N. This
resembles a temporal sliding window, and it provides the temporal prior of
an instance.

3.2. Prior for Spatial Localisation

Since we are merely interested in human activities in this work, a state-
of-the-art person detector [10] is used to detect bounding boxes of all the
people in each frame for an anchor point ¢,. For actions of a single person,
each person’s bounding box at t, is expanded with respect to the width and
height to cover regions of potential arm of leg motions. While for interactions
between a pair of people, each pair of person bounding boxes are selected
and expanded with respect to the widths and heights, and then the union of
the two expanded bounding boxes is treated as the final output. This is used
as the spatial prior of an instance.

3.3. Generation of Bags and Instances

A set of XYT cuboids are generated for a video clip based on the tem-
poral and spatial priors. We then use the BoWs approach to compute the
feature representation of each cuboid, from local descriptors, such as spatio-
temporal interest points (STIP) [16] and improved dense trajectory descrip-
tor (IDT) [31I]. Some regions of interest (ROI) are first identified in the
spatio-temporal space of a video, i.e. interest points and trajectories. Visual
features, e.g. histograms of oriented gradients (HOG), histograms of optical
flows (HOF) and motion boundary histograms (MBH), are then extracted
from each ROI to represent local appearances and motions. A subset of ex-
tracted descriptors are randomly selected from the training data, and they
are then fed into a unsupervised clustering method, e.g. K-Means [3], to
generate a user defined number of clusters. The generated clusters are called
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Figure 1: A flow chart of feature representation and training of the proposed methods.

“visual words”, and together they form a codebook. All descriptors inside a
cuboid are then compared to every visual word in the codebook to compute
a high dimensional and sparse histogram feature vector x € N? (D € N
is the dimensionality), by counting the numbers of closest clusters of visual
words based on some metric, e.g. the Euclidean distance. An instance is
thus represented as (c,x), where ¢ defines its spatio-temporal cuboid and x
represents its feature vector of appearance and motion. All the instances in
a video clip are put into a bag that is labelled with respect to the activity
classes presented in the clip. The generated bags of instances are then pro-
vided to a training process for learning and inference, as shown in Figure [I]

4. Learning and Inference

Let (x1,¥1)s ..., (Xn,yn) € X XY be a training set, and each example (or
video clip) x; (i € {1,...,N}) is a bag of instances, i.e. x; = {x;1,...,Xix, }
(K; = |xi]), where x;; € RPand D is the dimensionality. The spatio-temporal
cuboid of an instance x;; is defined as ¢y, = (Zik, Yk, Lik, Wik, Nix, liw) € RC,
corresponding to its XYT coordinates, width, height and length. A bag
x; is assigned a set of labels y; = {y!,...,yM}, where y/ € {—1,+1} (j €
{1,..., M}). A bag is labelled positive with respect to class j, i.e. yg = +1, if
at least one of the instances in the bag is positive, while it is labelled negative,
ie. yf = —1, if all the instances are negative. In this work, we assume that the
bag is positive for at least one of the label classes, i.e. % Z]Ail yg >—1 Vi
In the context of activity analysis, a video is labelled positive with respect
to an activity class, if at least one instance of the activity is contained in the
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video. While the video is labelled negative only if it does not contain any
instance of the activity class of interest.

We define two sets of parameters: model parameters W = [wy, ..., wy],
where w; € R is a weight matrix whose columns correspond to the label
classes; and instance parameters A = [A1,..., Ay], where \; C {0,1}% is a
set of latent variables and \;; corresponds to the occurrence of an instance x;;,
in a training bag x;. The data are represented as (x1, A1,y1), ..., (Xn, AN, YN)
by incorporating the latent variables A;. The weight matrix parametrises the
MIML model, while the latent variable \;;. determines whether an instance
x;. is selected in a bag x; for learning, and its value is determined by the
cumulative contribution of the instance to the bag being positive with respect
to all the label classes. It tends to be one if x;; is more likely positive for at
least one class j, and zero if x;; is more likely negative for all the classes, that
is, to distinguish patterns of any label classes from noise. The objective of
instance selection is to remove noisy instances from each bag in the training
set, while retaining the positive instances potentially associated with the
label classes of interest. It is to minimise the interference from noise and
thus reduce the difficulty in discriminating between different classes.

4.1. Energy Function for Learning

In order to learn the two sets of parameters, i.e. model parameters W
and instance parameters A, we define an energy function derived from the
minimisation problem of MRF [I7]. The energy function should be minimised
over all the training bags and label classes as

N M

i=1 j=1
TV 4
unary
N
+ E E S(Ciks Cikr s Xik» Xk Aikes Akt ) (1)
i=1 ik,ik'€i
N -~ o
pairwise

where the unary term captures a model of appearance and motion with re-
spect to each activity class of interest, while the pairwise term enforces the
spatio-temporal smoothness in each bag. On one hand, the unary term is
focused on maximising the predictive power of the base MIML classifier in



terms of classifying an instance in each bag as the correct class label. On the
other hand, the pairwise term is concentrated on maximising the smooth-
ness of every bag in both time and space, by enumerating all the pairs of
neighbouring instances and eliminating those that are similar to each other.

4.1.1. Unary Appearance and Motion Model

The unary term of Equation consists of a loss function for estimat-
ing the empirical error of a learned model and a regularisation function for
maintaining the model complexity and interclass correlations. It is derived
from the MIML model defined in [33], by incorporating the instance param-
eters A. Due to its differentiability and equivalence to maximum margin
classifiers [20], the logarithmic loss is chosen and defined as,

L(y], i, Ay wy) = = 6y, 1) log p(y] = 1]xi, iy wj)

=8y}, =1 logply] = —1[xs, A, w)) (2)

where 0(a,b) = 1 if a = b and 0 otherwise. As in logistic regression, the

probability of instance x;; being positive for class j is computed by
Aik

1 + exp(—w; - X)

(3)

where w; - x;;, is the inner product between a weight vector and the feature
vector of an instance. An instance x;; has zero contribution to the bag being
positive with respect to any of the label classes, if \;z; = 0. As a bag is labelled
negative only if all instances are negative, we use a noisy-or model to combine
probabilities of all the instances in a bag to compute the probability of the
bag being negative with respect to class j as

Py = 1xik, ik, Wj) = Aigo (W - Xip,) =

K;

p(y{ = —1|xi, i, wj) = H (1 —p(yik = 1|Xik7/\ikawj))
1

=T

(1 = Airo(w; - xir)) (4)

=
Il
—

Since y‘ij can only have two values, -1” or ‘1’, the probability of the bag
being positive is p(y{ =1|x;, A\, wj) =1 —p(yg = —1|x;, \i, W;).

The regularisation function, scaled by a cost parameter 7, is based on the
trace-norm defined as

. R (PP )
R(W) = min [Wlls = min_ = ([F|* + |G?) (5)
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where || - || is the fo-norm of a matrix. Trace-norm factorises the weight
matrix W into two matrices F and G, such that W = FQG, to attain a clas-
sifier, parametrised by the weight matrix W. The generalization capability
of the classifier is thus improved by extracting characteristics that are shared
among multiple classes. The matrix F, whose columns define common char-
acteristics, maps the input feature space to an intermediate feature space.
While the matrix G, whose columns predict the classes based on the com-
mon characteristics, performs classification on the mapped feature space. It
aims to derive a low rank matrix that minimises the model complexity while
enforcing interclass correlations. This is achieved by minimising the norm
of the weight matrix W, which is equivalent to minimising the sum of the
norms of matrices F and G, as defined in Equation [2]. The trace-norm
penalty has been proposed for situations where labels are correlated, and
it is equivalent to the sum of absolute values of the singular values of the
weight matrix [2]. As a result, the trace-norm of the weight matrix W can
be computed by singular value decomposition [§].

4.1.2. Pairwise Spatio-Temporal Smoothing

The pairwise term of Equation is the product of three measures of a
pair of instances in a training bag. It is computed over all possible pairs of
instances, K;(K; — 1) pairs in total, in the bag and is defined as

S(Cﬁm Cik s Xiks Xik! s Aik )\ik’) = Oé(Cik, Cik/ )5(Xz'k7 Xik! ) 90(>\z'k, /\ik’) (6)

where a(cy, cir) gives the inverse spatio-temporal overlap between a pair of
instances as
Cik (1 Cigr

(7)

and (X, X;r) computes the inverse cosine similarity metric between the
feature vectors of a pair of instances as follows

alciy, Cip) =1 —
Cir U Cipr

Xi . Xi /
B(Xipy Xgpr) = 1 — — 2 R (8)

[ | 1 |
and @ (g, A ) returns 1if A\jp # A\ and 0 otherwise. The value of a(cy, i)
is inversely proportional to the spatio-temporal overlap between a pair of
instances, and it penalises those with high spatio-temporal overlaps. The

value of (X, Xx) is inversely proportional to the cosine similarity metric
between a pair of instances, and it penalises those with high similarities in
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terms of their feature vectors. The value of @(Ajg, A\ip/) is binary and de-
termined by the equality between the instance selection latent variables of
a pair of instances, and it penalises those with latent variables of the same
value. Essentially the pairwise term encourages a pair of instances that are
overlapping spatially, temporally or both and similar to each other in terms
of appearance and motion, to have the same value of latent variables. It is
inspired by [7], aiming at the identification of clusters corresponding to dif-
ferent label classes that are separable spatially, temporally or both, resulting
sparse and more discriminative patterns of appearance and motion. This
leads not only to a better spatio-temporal localisation of instances, but also
to an improvement on the modelling of interclass correlations parametrised
by W. As a result, the pairwise term should significantly improve the pro-
posed framework’s ability to handle ambiguities in both the instance location
and instance label of a given dataset.

4.2. Two Step Optimisation

In order to solve the minimisation problem of Equation , we apply a
two-step optimisation that alternates between learning the MIML model W
and learning the latent variables A in an iterative manner, as displayed in Fig-
ure [} Such a process is inspired by the optimisation of latent SVM [10, 27].
Let t € N be the iteration number of the optimisation process. Parameters of
the MIML model at iteration ¢ are denoted as W) = [Wgt), e w§f}], and the

latent variables for instance selection of all the bags are A*) = {)\Et), C )\g\t,)}.

4.2.1. Step One: Learning the MIML Model

In the first step, the system learns parameters of the discriminative MIML
model W, while latent variables A are fixed. The optimisation is performed
over a set of continuous variables by minimising the following energy function

N M
Ew = ZZE(Y§>Xi,)\i>Wj)+77R(W) (9)

i=1 j=1
The pairwise term is discarded since it is independent of the MIML model
parameters and thus considered a constant. The goal of this step is to find
a weight matrix W® that minimises Ew. Such an optimisation problem is
non-convex and thus hard to obtain a global optimum. However it can be
solved by unconstrained optimisation techniques, to get a sufficiently good
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generalisation of unseen data [33]. We use limited-memory BFGS (Broyden-
Fletcher-Goldfarb-Shanno) [40], due to its fast convergence rate and low com-
putational cost. It does not explicitly compute and store the Hessian matrix
of second-order derivatives, making it highly scalable for large data. Details
of the first-order derivatives 2% and 2% required for the optimisation, can

ow oW 7’
be found in [33].

4.2.2. Step Two: Learning the Latent Variables
In the second step, the MIML model parametrised by W is fixed, and
the minimisation is performed over a set of discrete binary variables A as

N M N
Ex=) D LU xi Miwi)+ > D Sk Cinrs Xk Xt Ay i) (10)

i=1 j=1 i=1 ikik'€i

The regularisation function is dropped since it is independent of the latent
variables of instance selection and thus considered a constant. The goal of
this step is to search for a set of latent variables A® that minimises &j.
Such an optimisation problem can be solved by simulated annealing [20],
to obtain a good approximation of the global optimum [I]. The system
draws a subset of A from each bag via random sampling, while minimising
the value of £, by flipping the value of AE,?. It is performed by finding the
minimiser of each bag, which results the minimal sum of all the bags, i.e.
Ex. The computation for each bag is independent from that of others, and
this process can be performed over all the bags in parallel. As a result, the
computational complexity of this step is independent of the number of bags,
making it highly scalable for large data as well.

4.2.3. Conditions for Convergence

Either step is guaranteed to converge by the convergence properties of
limited-memory BFGS and simulated annealing. For the convergence of the
two-step optimisation however, we have to enforce an additional monotonic
decrease constraint of the energy function &w s, that is, the following crite-
rion must hold throughout the optimisation process

Eww A = Ewern aw = Ewern) p+1) (11)

The first inequality corresponds to the first step of learning the weight ma-
trix, as defined in Equation @, using the old bags. The second inequality
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refers to the second step of updating the latent variables and effectively each
bag, as defined in Equation ([10]), using the updated weight matrix. Due to
the constraint of monotonic value decrease of the energy function &w s, as
defined in Equation (1I)), the system is guaranteed to converge in a finite
number of steps, or it terminates whenever either of the inequalities is vio-
lated. The returned solution at convergence may not be the global optimum
of Equation , but it is the best solution found by the optimisation process.
We denote this iterative learning process as instance selection multi-instance
multi-label (IS-MIML).

4.3. Generalisation to Testing

The optimisation of @D during the training learns the knowledge of proto-
type instances, of which the latent variables are equal to one. The prototype
instances can be seen as patterns that are most likely associated with the
label classes, and are distinct from the noise in the training data. It is often
the case that the proportion of noisy examples is significantly higher than
that of the patterns, and the noise is highly varied and thus difficult to learn
a model to sufficiently generalise such a variety. Instead we can treat the
patterns as the normal data of an outlier detection problem and try to learn
a description of the normal class. Any instance that deviates from such a nor-
mal description is considered an outlier or noise and subsequently removed.
The remaining instances should be more representative of the prototype in-
stances identified in the training set, and thus easier for the learned MIML
model to distinguish between the label classes.

Let (W*, A*) be the best solution obtained from the two-step optimisa-
tion. The prototype instances xJ; are selected, such that \;z; = 1. We use
the SVDD algorithm [28] to generalise the learned knowledge of the MIML
model and instance selection from the training set to the testing set. The
SVDD algorithm is known for its efficiency and robustness of describing high
dimensional data for the purpose of outlier detection. It learns a model to
provide a closed boundary around the prototype instances x};, i.e. a hyper-
sphere, which is defined by centre a € R” and radius R > 0. The learning
aims at minimising the volume of the sphere, determined by R?, with the
constraint that the sphere contains all the prototype instances x7,. This can
be formulated as an optimisation problem as

{ minR’a7£ R2 —+ C sz gzk (12>
s. t. lo(x3) —al| < R*+ &
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where ¢(-) is a kernel function mapping the input data to a higher dimen-
sional feature space, C is a user specified regularization parameter, and &;;, is
the slack variable corresponding to each instance xj,. The optimisation above
can be solved in an equivalent dual form via quadratic programming [23]. De-
tails of the optimisation in dual form can be found in [28]. Let X, €;, and
Mir denote a testing instance, its spatio-temporal cuboid and latent variable.
A new instance is detected as an outlier if ||¢(x;,) — al| > R?, and we define
f(xi) = sgn(R? — ||¢(X4) — a||) for computing the instance selection latent
variables. Therefore we have Ay, = (1, f(Xi))-

In order to incorporate the spatio-temporal information into the instance
selection of testing, we apply a pairwise smoothing function similar to Equa-
tion @ and minimise the following energy function

N
&y = Z Z S(éikaéik’aiikyiik’vS‘ik7:\ik’) (13)

i=1 ik,ik' €i

By minimising &3 via the same simulated annealing optimisation as in Equa-
tion , we obtain the optimal latent variables A = [Ay,...,Ag], and
Air € A;. The final detection score of a testing instance therefore is

P, = 1R, i, W) = Ao (W), Rir) (14)

where w7 corresponds to the jth column of W*. We refer the framework with
both IS-MIML for training and the SVDD for testing as instance selection
one-class multi-instance multi-label (ISOC-MIML).

A detection returned by any of the algorithms described above can be
denoted as (éik,p(gfk = 1|>~cik,5\ik,w;-‘)), i.e. a spatio-temporal cuboid and
a detection confidence with respect to an activity class j. Similar to object
detection with sliding window approach, there often exist multiple detections
of an activity class in each video clip. As a result, we apply a standard intr-
aclass Non-Maximum Suppression (NMS) [19] to identify the top detections
(if there are any) of an activity class in each video clip.

5. Experiments

The proposed framework is evaluated on two types of tasks, namely “an-
notation” and “detection”. For both tasks, only the video level ground truth
(the presence of activities in a video without spatio-temporal localisation)
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is used for training in a weakly labelled setting. For the annotation task, a
learned model is required to recognise activities in each training video clip,
and to annotate them with spatio-temporal localisation. While for the de-
tection task, a learned model has to detect activities in each testing video
clip, with spatio-temporal localisation. The evaluation is aimed to verify the
proposed framework’s effectiveness in terms of instance selection for both
training and testing, and thus IS-MIML and ISOC-MIML are compared to
the original MIML [33] and a fully supervised method. We transform the
MIML formulation in Equation (9) into a single instance multi-label (SIML)
model, where each bag contains one instance generated using the spatio-
temporal ground truth. Such a model is essentially equivalent to a multi-class
logistic regression classifier that employs trace-norm to regularise interclass
correlations as in [2]. In addition to the internal comparisons, the proposed
framework is also compared to the state-of-the-art weakly supervised ap-
proaches for actions of a single person, e.g. Siva et al. [24] for the annotation
task and Siva et al. [25] [I8] for the detection task, and fully supervised ap-
proaches [4, 29] 22] 32] in the literature.

We adopt a well known evaluation procedure for object detection in the
PASCAL visual object classes (VOC) challenge [9]. Let V : R® — R be
a function that computes the volume of a cuboid, i.e. V(c) = w x h x [.
Let ¢ be the spatio-temporal cuboid of a detection, and g be the spatio-
temporal cuboid of an annotated activity in the ground truth. A detection is
considered true positive if it is assigned the correct activity class, and satisfies
the following constraint of spatio-temporal overlapping V(cNg)/V(cUg) > ¢.
We use € = (1/2)% = 1/8 as in [25, 37, 22], to compute the average precision
(AP) of each activity class for all the compared methods.

5.1. Benchmark Video Datasets

Experiments are conducted on three benchmark video datasets, namely
“MSR2” [37], “UT interaction” [21], and “LIRIS human activities” [32], for
internal comparisons between different versions of the proposed framework
and external comparisons with other approaches in the literature.

5.1.1. MSR2 Action Dataset

The MSR2 action dataset [37] is an extended version of the Microsoft
research action dataset. It consists of 54 video sequences recorded in a
crowded environment with lengths around 40 seconds. The video resolu-
tion is 320 x 240 and frame rate is 15 frames per second. Each video se-
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Waving + Waving Waving + Clapping Boxing + Waving

Figure 2: Action examples of the MSR2 action dataset, where different action classes may
co-occur temporally.

quence consists of multiple actions that may co-occur temporally but not
spatially. Temporal co-occurrence of two activities indicates their temporal
durations overlap, and thus cannot be temporally segmented. While spatial
co-occurrence of two activities implies their locations in the image plane over-
lap, i.e. occlusions, and thus they cannot be spatially segmented. There are
in total 203 action instances of three classes, namely ‘hand waving’, ‘hand
clapping’, and ‘boxing’, as shown in Figure 2l All the video sequences con-
tain at least one instance of each action class, i.e. multi-label. Instances and
bags are generated as in Section [3, and about 50,000 instances in total are
derived. This gives an average SNR of 1 : 250. A video-wise leave-one-out
cross validation (one video for testing and the rest for training) is used to
create the training and testing sets.

5.1.2. UT Interaction Dataset

The UT interaction dataset [2I] contains 20 video sequences, each of
which is about one minute long. Several participants with more than 15
different clothing conditions appear in the videos. The videos are taken
with a resolution of 720 x 480 and a frame rate of 30 frames per second.
There are in total 160 interaction instances of six classes: ‘hand shaking’,
‘hugging’, ‘pushing’, ‘pointing’, ‘punching’, and ‘kicking’, which may also
temporally but not spatially co-occur, as shown in Figure [3l All the video
sequences contain at least one instance of each interaction class, i.e. multi-
label. Similarly, instances and bags are generated as in Section |3, which
derives over 12,000 instances. This gives an average SNR of 1: 75. A video-
wise leave-one-out cross validation is also applied to create the training and
testing sets.
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Shaking + Pointing Hugging + Punching Pushing

Hugging Punching + Shaking

Figure 3: Action examples of the UT interaction dataset, where different interaction classes
may co-occur temporally.

5.1.3. LIRIS Human Activities Dataset

The LIRIS human activities dataset [32] is collected for complex and re-
alistic actions and interactions, where each video may contain more than
one action or interaction. Overall 21 different actors are involved and ac-
tivities are shot from various viewpoints and different settings to avoid the
possibility of learning activities from background features. There are totally
828 activity instances of 10 classes recorded in 167 video sequences. Among
the activities as shown in Figure [ some of them are interactions between
a pair of people, e.g. discussion (DI), give object (GI), hand shaking (HS).
Others are characterised as interaction between a person and an object, e.g.
put/take box (BO), enter/leave room (EN), try to enter (ET), unlock enter
(LO), left baggage (UB), typing and telephone (TE). Simple actions such
as walking and running are not considered activities to be detected in this
dataset. Two types of cameras were used in the data collection: Prime-
sense/Microsoft Kinect mounted on a mobile robot, capturing RGB images
(converted to grey-scale in the publicly available dataset) and 11 bit depth
images of a resolution of 640 x 480, at 25 frames per second; Sony DCR-
HC51 camcorder mounted on a tripod, filming RGB images of a resolution
of 720 x 576, at 25 frames per second. Over 90% of the video sequences con-
tained instances of more than one activity class, i.e. multi-label. Similarly,
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DI Discussion GI Give object BO Put/take box EN Enter/l. room ET Try to enter

LO Unlock enter TE Telephone

Figure 4: Action examples of the LIRIS human activities dataset, where different ac-
tion/interaction classes may co-occur temporally.

instances and bags are generated as in Section [3| which derives over 90,000
instances. This gives an average SNR of 1: 100. A video-wise leave-one-out
cross validation is also applied to create the training and testing sets.

The MSR2 dataset exhibits a noticeably low SNR, where the noise is pre-
dominantly derived from the crowded environment with lots of background
irrelevant motions. The UT interaction dataset is more complicated from
an activity analysis perspective, and its SNR is considerably higher. The
complexity is resulted from an increased number of activity classes but a
decreased number of instances per class. Moreover, activities presented in
the UT interaction dataset are interactions between a pair of people, rather
than actions of a single person. The proportion of video clips containing mul-
tiple activity classes is also significantly higher, which further enhances the
difficulty of distinguishing between activity classes. As a result, the MSR2
dataset is mainly used for a baseline evaluation of the proposed framework
in comparison to the state-of-the-art weakly supervised approaches [25], 24]
applied to the same dataset. While the UT interaction dataset is chosen
to test the framework’s ability to generalise to more complicated problems.
Furthermore, the LIRIS dataset is even more complex than MSR2 and UT
interaction datasets. First of all, the size of the dataset and the number of
activities classes are significantly larger; secondly some of the activities are
more complex, as they involve interactions between a person and an object,
e.g. doors, without proper object detectors to identify the semantic labels
of these objects, it is very difficult to recognise and detect the corresponding
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activities solely based on local descriptors of motion and appearance; Finally
the proportion of bags (video clips) that contain more than one activity
class and that of noisy instances are significantly greater than the other two
datasets, and thus the difficulty of MIML learning has also been enhanced.

5.2. Implementation Details

At the feature representation stage, we use the temporal window size
z = {30,60, 90,120,150} on all datasets with the anchor point ¢, moving
at every z/2 frames for the temporal prior. Values are chosen with respect
to the frame rate and the range of temporal durations of activity classes
of all the three datasets. For the spatial prior, each person bounding box
returned by the person detector is expanded by 100% to either side in terms
of width and 30% upwards in terms of height. Unlike [25], we only remove
the cuboids that contain zero STIP or IDT descriptors, to avoid any bias
for the generation of instances and bags. For the BoWs method, 500,000
STIP or IDT descriptors are randomly selected from the training data and
quantised into 4000 code words, as suggested in [16]. Feature vectors of the
derived instances are normalised using the ¢>-norm, due to the use of linear
kernels in our framework.

The cost parameter 7 of the MIML model is chosen from {279 ... 20} U
{0}E|, which yields the highest performance on a validation set (a randomly
selected subset of the training set in each fold). The initial temperature of
the simulated annealing optimisation is set to 1, and it is decreased by 20% of
the previous temperature at every iteration. Due to the stochastic nature of
the two-step optimisation, each experiment is run for 10 times and the results
are then averaged. We use LIBSVM-SVDD-3.1 [5] with a linear kernel and
default parameters for the SVDD. The rest of the framework is implemented
in MATLAB. For the intraclass NMS, we use one divided by the number of
activity classes as the threshold of confidence, i.e. p(gjfk = 1|X, Niks w}), and
1/8 as the threshold of spatio-temporal overlapping.

!Note those values are suggested in [33], and when n = 0 the regularisation function is
effectively disabled.
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| Method | MSR2 | UT Interaction | LIRIS |

MIML 0.895 0.584 0.469
IS-MIML 0.921 0.615 0.508
[SOC-MIML | 0.948 0.667 0.532

Table 1: Comparison of the original MIML, IS-MIML, and ISOC-MIML in all datasets,
for their recognition performances.

6. Results and Analysis

6.1. Qualitative Analysis

In order to demonstrate the proposed methods’ capability of removing
noisy instances, a qualitative analysis of the effectiveness of instance selec-
tion is conducted. First, we compare the recognition performance between
the original MIML without instance selection, the IS-MIML method with
instance selection for training, and ISOC-MIML method with instance selec-
tion for both training and testing. Table [l lists the average precisions of all
the classes in the datasets for the compared methods. The original MIML
method gives a reasonable performance, which is on par with the state-of-
the-art in the literature. However, the IS-MIML significantly outperforms,
which can be due to the introduction of instance selection in training. The
instance selection process aims to derive an easier and less noisy training
set for a learned model to classify. This is mainly contributed by the addi-
tion of the pairwise term in Equation for spatio-temporal smoothing, and
the iterative two-step optimisation for learning a more discriminative MIML
model. The performance is further improved in the ISOC-MIML, which thus
indicates the effectiveness of instance selection in testing.

Moreover, we also randomly select frames from each dataset to evalu-
ate the effect of instance selection for spatio-temporal localisation. Figure
displays some examples of the detection results, assuming the classes of ac-
tivities are accurately recognised. The original MIML method (green bound-
ing boxes) produces larger and inaccurate bounding boxes, while both the
IS-MIML (yellow bounding boxes) and ISOC-MIML (blue bounding boxes)
give more accurate ones, compared to the ground truth (red bounding boxes).
The is due to the fact the spatial location of a candidate instance in a video
is predicted by the person detector [I0]. It is well known, even the best per-
son detector inevitably produces false positives, and additionally, when the
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Figure 5: Qualitative comparison of the spatio-temporal location capability between the
original MIML, IS-MIML and ISOC-MIML in all datasets, where the red bounding box
represents the ground truth, the green one is the output of MIML, the yellow one is the
output of IS-MIML, and the blue one is the output of ISOC-MIML.

background is cluttered, detections of people or objects that are completely
irrelevant to the activities of interest can be outputted. As a result, without
instance selection, the MIML method is unable to remove the noisy instances,
which results many instances covering a larger area than an activity of inter-
est does. After the intraclass NMS, the resulting detection would tend to be
larger than the ground truth detection, especially in space.

6.2. Quantitative Analysis

As demonstrated in the previous section, the proposed instance selection
process has a positive effect on not only the recognition performance, but
also the spatio-temporal localisation accuracy. In this section, we conduct a
detailed quantitative analysis of the annotation and detection performances
of the proposed methods. The annotation performance of each compared
method in the MSR2 dataset, UT interaction dataset and LIRIS human ac-
tivities datasets are listed in Figure[6] Figure[7] and Figure[§|respectively. On
the MSR2 dataset, the annotation performance of the IS-MIML/ISOC-MIML
method is significantly higher than that of the original MIML, across all the
activity classes. IS-MIML/ISOC-MIML also significantly out-performs the
state-of-the-art weakly supervised approach [24]. Performances of MIML
and IS-MIML/ISOC-MIML are further improved when the feature represen-
tation of BoWs is generated from IDT descriptors rather than STIP descrip-
tors. Moreover, in the UT interaction dataset, the IS-MIML/ISOC-MIML
method also shows similar performance improvement over the original MIML
method, and the improvement gained by switching from STIP descriptors to
IDT descriptors in BoWs. Finally, in the LIRIS dataset, the IS-MIML /ISOC-
MIML method significantly outperforms the original MIML method, and the
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Figure 6: Comparison of the original MIML, the method in Siva et al. [24], and IS-
MIML/ISOC-MIML methods on the MSR2 dataset, for the annotation task.

IDT descriptor based BoWs representation produces better results than that
with the STIP descriptor.

The annotation results above show that the proposed framework effec-
tively removes noise from the training data, which leads to a more discrimi-
native model compared to the original MIML formulation [33]. The removal
of noise also reduces the difficulty of annotation task by eliminating a large
number of potential false positives. In comparison to the method in [24],
our framework also benefits from explicitly modelling the interclass correla-
tion in each training bag. In addition, the IDT descriptor certainly extracts
richer and more robust feature representation than the STIP descriptor for
the problem in question, with some sacrifice in computational complexity.

Figure [9]illustrates a comparison of the original MIML, IS-MIML, ISOC-
MIML and fully supervised SIML methods using the STIP descriptor or IDT
descriptor on the MSR2 dataset, Figure [10| shows the comparison on the UT
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Figure 7: Comparison of the original MIML and IS-MIML/ISOC-MIML methods on the
UT interaction dataset, for the annotation task.

interaction dataset, and Figure displays the comparison in the LIRIS
dataset. IS-MIML yields a significantly higher detection performance than
the original MIML on both datasets. The ISOC-MIML method significantly
out-performs IS-MIML, producing overall better performance than the fully
supervised SIML method. In addition, similar to what has been observed
in the annotation results, the methods using the IDT descriptor produce
significantly better results than those using the STIP descriptor. Table
lists a comparison between our methods and the state-of-the-art methods in
the literature in the MSR2 dataset, Table [3| shows the comparison in the UT
interaction dataset, and Table 4] shows the comparison in the LIRIS dataset.
The ISOC-MIML method with the IDT descriptor in particular, significantly
outperforms the state-of-the-art weakly supervised methods [25, 24 18] and
fully supervised methods [4], 29, 22, [32], across all three datasets.

The detection results above demonstrate the advantage of having instance
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’ Method ‘ Supervision ‘ Avg. Precision

Siva et al. [25] Full 0.665
Siva et al. [25] Weak 0.594
Cao et al. [4] Full (Cross Dataset) 0.170
Tian et al. [29] Full (Cross Dataset) 0.358
Mosabbeb et al. [18] Weak 0.701
[S-MIML (STIP) Weak 0.795
IS-MIML (IDT) Weak 0.825
ISOC-MIML (STIP) Weak 0.858
ISOC-MIML (IDT) Weak 0.880

Table 2: Comparison between our methods (ISOC-MIML) and the state-of-the-art meth-
ods in the literature for detection task in the MSR2 dataset, where the cross dataset
methods are trained on the KTH dataset.

’ Method ‘ Supervision | Avg. Precision

Shao and Jones [22] Full 0.375
Yu et al. [35] Full 0.067

Yu et al [36] Full 0.299
IS-MIML (STIP) Weak 0.322
IS-MIML (IDT) Weak 0.444
ISOC-MIML (STIP) Weak 0.402
ISOC-MIML (IDT) Weak 0.517

Table 3: Comparison between our methods (ISOC-MIML) and the state-of-the-art meth-
ods in the literature for detection task in the UT interaction dataset.

’ Method ‘ Supervision ‘ Avg. Precision

No. 49 [32] Full 0.440

NO. A [32] Full 0.220

No. B [32] Full 0.470
IS-MIML (STIP) Weak 0.391
IS-MIML (IDT) Weak 0.455
ISOC-MIML (STIP) Weak 0.425
ISOC-MIML (IDT) Weak 0.496

Table 4: Comparison between our methods (ISOC-MIML) and the state-of-the-art meth-
ods in the literature for detection task in the LIRIS activities dataset.
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Figure 8: Comparison of the original MIML and IS-MIML/ISOC-MIML methods on the
LIRIS human activities dataset, for the annotation task.

selection for training as in th IS-MIML, which leads to a more discriminative
MIML model in terms of distinguishing between activity classes. Moreover,
the ISOC-MIML method benefits from having instance selection for both
training and testing, which gives less noisy testing data in addition to a more
discriminative MIML model. As a result, the proposed framework yields a
much improved detection performance.

7. Conclusions and Future Work

In this paper, we propose a novel learning framework for annotating and
detecting not only actions of a single person but also interactions between
a pair of people, in weakly labelled video data. The proposed framework
iteratively optimises over a scalable MIML model and an instance selection
process incorporating pairwise spatio-temporal smoothing, until the system
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Figure 9: Comparison of all relevant methods on the MSR2 dataset, for the detection task.
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Figure 11: Comparison of all relevant methods on the LIRIS human activities dataset.

converges. Such learned knowledge is then generalised to the testing phase
by a noise removal process based on the SVDD algorithm. According to
the experimental results on three benchmark video datasets, the proposed
framework effectively removes noise from the training data, which yields a
significantly improved annotation performance. It is also proficient at re-
moving noise from the testing data, which leads to a significant improvement
on the detection performance. Our framework produces overall better re-
sults than a fully supervised method, degenerated from the original MIML
model. In addition, it significantly out-performs the state-of-the-art weakly
supervised and fully supervised methods in the literature.

There are a number of possible directions for future research, for instance
the sliding window-based instance representation can be replaced by a more
efficient approach, e.g. spatial-temporal branch-and-bound [37]. This how-
ever requires a new MIML model that is able to use such an instance rep-
resentation. We can also try to model the spatio-temporal structures of
activities within a cuboid under a MIML setting, e.g. relationships between
body parts as in deformable parts models [34].
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